--- license: apache-2.0 base_model: google/flan-t5-small tags: - summarization - meeting-summarization - text-generation-inference - transformers datasets: - qmsum language: - en --- # Meeting Summarizer This model is a fine-tuned version of **google/flan-t5-small** for meeting summarization tasks. ## Model Details - **Base Model:** google/flan-t5-small - **Task:** Abstractive Meeting Summarization - **Training Data:** QMSum Dataset + Enhanced Training - **Parameters:** ~60.5M parameters - **Max Input Length:** 256 tokens - **Max Output Length:** 64 tokens ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("CodeXRyu/meeting-summarizer-v2") model = AutoModelForSeq2SeqLM.from_pretrained("CodeXRyu/meeting-summarizer-v2") # Example usage meeting_text = "Your meeting transcript here..." inputs = tokenizer.encode(meeting_text, return_tensors="pt", max_length=256, truncation=True) outputs = model.generate(inputs, max_length=64, num_beams=4, early_stopping=True) summary = tokenizer.decode(outputs[0], skip_special_tokens=True) print(summary) ``` ## Training Configuration - **Max Input Length:** 256 tokens - **Max Output Length:** 64 tokens - **Training:** Fine-tuned on meeting summarization data --- *This model was trained for meeting summarization tasks.*