Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
base_model: google/gemma-3-1b-it
|
| 2 |
tags:
|
| 3 |
- text-generation
|
|
@@ -8,7 +9,6 @@ tags:
|
|
| 8 |
- wall-e
|
| 9 |
- lightweight
|
| 10 |
- mobile-friendly
|
| 11 |
-
- privacy-preserving
|
| 12 |
- local-ai
|
| 13 |
- multilingual
|
| 14 |
- coding-assistant
|
|
@@ -17,126 +17,165 @@ license: apache-2.0
|
|
| 17 |
language:
|
| 18 |
- en
|
| 19 |
- fa
|
| 20 |
-
-
|
| 21 |
library_name: transformers
|
| 22 |
pipeline_tag: text-generation
|
|
|
|
| 23 |
|
| 24 |
[](https://huggingface.co/spaces/sinamsv0/WALL-E-DEMO)
|
| 25 |
[](https://github.com/unknownmsv/WALL-E)
|
| 26 |
[](LICENSE)
|
| 27 |
|
| 28 |
-
# 🤖 WALL•E —
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
-
|
| 35 |
-
-
|
| 36 |
-
-
|
| 37 |
-
- ✅ **Open & transparent** – Fully open-source under Apache 2.0
|
| 38 |
|
| 39 |
-
|
| 40 |
-
### 🌐 **Multilingual Proficiency**
|
| 41 |
-
- **English**: Native-level comprehension and generation
|
| 42 |
-
- **فارسی**: Fluent Persian with natural responses
|
| 43 |
-
- **Deutsch**: Conversational German support
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
- **🖥️ System Assistant**: Linux command explanations and troubleshooting
|
| 49 |
-
- **🔍 Quick Information**: Factual responses without unnecessary fluff
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
- **26+ downloads in first 48 hours** – Community validated
|
| 59 |
-
- **<2 second inference** on mid-range smartphones
|
| 60 |
-
- **40% smaller** than comparable models with similar capabilities
|
| 61 |
-
- **Zero cloud dependency** – Works completely offline
|
| 62 |
|
| 63 |
-
##
|
| 64 |
|
| 65 |
-
### **Option 1: Hugging Face Transformers**
|
| 66 |
```python
|
| 67 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 68 |
|
| 69 |
model_id = "sinamsv0/WALL-E"
|
| 70 |
-
|
| 71 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
pipe = pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
|
| 80 |
-
|
| 81 |
|
| 82 |
-
· Android APK: GitHub Releases
|
| 83 |
-
· Linux AppImage: Self-contained executable
|
| 84 |
-
· Windows EXE: Coming soon
|
| 85 |
|
| 86 |
-
📁 Model Details
|
| 87 |
|
| 88 |
-
Training Information
|
| 89 |
|
| 90 |
-
|
| 91 |
-
· Method: Supervised Fine-Tuning (SFT)
|
| 92 |
-
· Dataset: Custom multilingual mix with safety alignment
|
| 93 |
-
· Hardware: Single RTX 4090 (24GB VRAM)
|
| 94 |
-
· Training Time: ~8 hours
|
| 95 |
|
| 96 |
-
Safety & Limitations
|
| 97 |
|
| 98 |
-
|
| 99 |
-
· ✅ Refuses harmful or unethical requests
|
| 100 |
-
· ⚠️ Limited to 1B parameters – best for focused tasks
|
| 101 |
-
· ⚠️ Not suitable for complex reasoning or creative writing
|
| 102 |
|
| 103 |
-
|
| 104 |
|
| 105 |
-
|
| 106 |
-
2. Students: Study aid and document summarization
|
| 107 |
-
3. Privacy-conscious users: AI that respects data boundaries
|
| 108 |
-
4. Edge deployments: IoT and mobile applications
|
| 109 |
-
5. Researchers: Baseline for lightweight model development
|
| 110 |
|
| 111 |
-
|
| 112 |
|
| 113 |
-
· GitHub Issues: Bug reports and feature requests
|
| 114 |
-
· Discord Community: Live discussions and support
|
| 115 |
-
· Hugging Face Spaces: Interactive demos and examples
|
| 116 |
-
· Twitter/X: @dreamhubIR for updates
|
| 117 |
|
| 118 |
-
📈 Roadmap
|
| 119 |
|
| 120 |
-
· iOS version (Q4 2024)
|
| 121 |
-
· Voice interface integration
|
| 122 |
-
· Plugin system for extended functionality
|
| 123 |
-
· Expanded language support (Arabic, Spanish)
|
| 124 |
-
· Hardware acceleration benchmarks
|
| 125 |
|
| 126 |
-
🙏 Acknowledgments
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
-
---
|
| 134 |
|
| 135 |
-
⭐ Star us on GitHub to support the project!
|
| 136 |
-
🔗 Share your use cases and help improve WALL•E for everyone.
|
| 137 |
|
| 138 |
-
"Small model, big impact – AI that works for you, not the other way around."
|
| 139 |
|
| 140 |
-
---
|
| 141 |
|
| 142 |
-
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
base_model: google/gemma-3-1b-it
|
| 3 |
tags:
|
| 4 |
- text-generation
|
|
|
|
| 9 |
- wall-e
|
| 10 |
- lightweight
|
| 11 |
- mobile-friendly
|
|
|
|
| 12 |
- local-ai
|
| 13 |
- multilingual
|
| 14 |
- coding-assistant
|
|
|
|
| 17 |
language:
|
| 18 |
- en
|
| 19 |
- fa
|
| 20 |
+
- de
|
| 21 |
library_name: transformers
|
| 22 |
pipeline_tag: text-generation
|
| 23 |
+
---
|
| 24 |
|
| 25 |
[](https://huggingface.co/spaces/sinamsv0/WALL-E-DEMO)
|
| 26 |
[](https://github.com/unknownmsv/WALL-E)
|
| 27 |
[](LICENSE)
|
| 28 |
|
| 29 |
+
# 🤖 WALL•E — Lightweight Local AI Assistant (1B)
|
| 30 |
+
|
| 31 |
+
**WALL•E** is a fine-tuned, lightweight language model based on **Gemma 3 1B**, designed for **local, privacy-preserving AI usage**.
|
| 32 |
+
It focuses on *practical tasks*, *fast responses*, and *real-world utility* rather than model size.
|
| 33 |
+
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
## 🎯 Why WALL•E?
|
| 37 |
+
|
| 38 |
+
Most modern AI models are either:
|
| 39 |
+
- Too large to run locally, or
|
| 40 |
+
- Too generic for everyday tasks
|
| 41 |
+
|
| 42 |
+
**WALL•E** is built to fill that gap.
|
| 43 |
+
|
| 44 |
+
✅ Runs entirely locally
|
| 45 |
+
✅ No API keys or cloud services
|
| 46 |
+
✅ Designed for low-resource environments
|
| 47 |
+
✅ Open-source and transparent
|
| 48 |
+
|
| 49 |
+
---
|
| 50 |
+
|
| 51 |
+
## ✨ Key Capabilities
|
| 52 |
|
| 53 |
+
### 🌐 Multilingual Support
|
| 54 |
+
- **English** – primary interaction language
|
| 55 |
+
- **فارسی (Persian)** – natural and fluent responses
|
| 56 |
+
- **Deutsch (German)** – conversational support
|
| 57 |
|
| 58 |
+
### 🛠 Practical Task Focus
|
| 59 |
+
- 📝 Text summarization (articles, notes, reports)
|
| 60 |
+
- 💻 Coding help (Python, JavaScript, Bash, shell)
|
| 61 |
+
- 🖥 Linux command explanations & troubleshooting
|
| 62 |
+
- 📚 Short factual answers and guidance
|
|
|
|
| 63 |
|
| 64 |
+
The model is optimized to handle **short and minimal prompts** naturally (e.g. *"Hi"*, *"Explain ls -la"*), avoiding over-generation.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
---
|
| 67 |
+
|
| 68 |
+
## ⚙️ Technical Overview
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
| Component | Details |
|
| 71 |
+
|------------------|--------|
|
| 72 |
+
| Base Model | Google Gemma 3 1B |
|
| 73 |
+
| Fine-tuning | Supervised Fine-Tuning (SFT) |
|
| 74 |
+
| Framework | Unsloth |
|
| 75 |
+
| Context Length | 2048 tokens |
|
| 76 |
+
| Precision | BF16 |
|
| 77 |
+
| License | Apache 2.0 |
|
| 78 |
|
| 79 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
## 🚀 Quick Start (Transformers)
|
| 82 |
|
|
|
|
| 83 |
```python
|
| 84 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 85 |
|
| 86 |
model_id = "sinamsv0/WALL-E"
|
| 87 |
+
|
| 88 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 89 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 90 |
+
model_id,
|
| 91 |
+
device_map="auto"
|
| 92 |
+
)
|
| 93 |
|
| 94 |
+
pipe = pipeline(
|
| 95 |
+
"text-generation",
|
| 96 |
+
model=model,
|
| 97 |
+
tokenizer=tokenizer
|
| 98 |
+
)
|
| 99 |
|
| 100 |
+
response = pipe(
|
| 101 |
+
"Summarize this text: Artificial intelligence is...",
|
| 102 |
+
max_new_tokens=120
|
| 103 |
+
)
|
| 104 |
|
| 105 |
+
print(response[0]["generated_text"])
|
| 106 |
|
|
|
|
|
|
|
|
|
|
| 107 |
|
|
|
|
| 108 |
|
|
|
|
| 109 |
|
| 110 |
+
🧪 Training Summary
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
|
|
|
| 112 |
|
| 113 |
+
Method: Supervised Fine-Tuning (SFT)
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
Data: Custom multilingual datasets with safety-focused filtering
|
| 116 |
|
| 117 |
+
Hardware: Single consumer GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
Goal: Improve instruction-following, multilingual responses, and short-prompt behavior
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
|
|
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
|
|
|
| 124 |
|
| 125 |
+
🛡 Safety & Limitations
|
| 126 |
+
|
| 127 |
+
✅ Trained with safety-aware data
|
| 128 |
+
✅ Avoids harmful or unethical requests
|
| 129 |
+
⚠️ Limited reasoning depth due to 1B parameter size
|
| 130 |
+
⚠️ Not intended for complex multi-step reasoning or creative writing
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
🌍 Ideal Use Cases
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
Local coding assistant
|
| 138 |
+
|
| 139 |
+
Study and document summarization
|
| 140 |
+
|
| 141 |
+
Privacy-focused users
|
| 142 |
+
|
| 143 |
+
Lightweight edge deployments
|
| 144 |
+
|
| 145 |
+
Research and experimentation with small LLMs
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
🤝 Community & Links
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
GitHub: https://github.com/unknownmsv/WALL-E
|
| 155 |
+
|
| 156 |
+
Hugging Face Model: https://huggingface.co/sinamsv0/WALL-E
|
| 157 |
+
|
| 158 |
+
Hugging Face Space: https://huggingface.co/spaces/sinamsv0/WALL-E-DEMO
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
🔮 Roadmap (Planned)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
UI tools for local use
|
| 168 |
+
|
| 169 |
+
Optional voice interface
|
| 170 |
+
|
| 171 |
+
Extended language support
|
| 172 |
+
|
| 173 |
+
Performance benchmarking on edge devices
|
| 174 |
+
|
| 175 |
|
|
|
|
| 176 |
|
|
|
|
|
|
|
| 177 |
|
|
|
|
| 178 |
|
|
|
|
| 179 |
|
| 180 |
+
Small model, focused design.
|
| 181 |
+
WALL•E proves that useful AI doesn’t have to be huge.
|