sinamsv0 commited on
Commit
cf15f7c
·
verified ·
1 Parent(s): 4fdaf83

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -82
README.md CHANGED
@@ -1,3 +1,4 @@
 
1
  base_model: google/gemma-3-1b-it
2
  tags:
3
  - text-generation
@@ -8,7 +9,6 @@ tags:
8
  - wall-e
9
  - lightweight
10
  - mobile-friendly
11
- - privacy-preserving
12
  - local-ai
13
  - multilingual
14
  - coding-assistant
@@ -17,126 +17,165 @@ license: apache-2.0
17
  language:
18
  - en
19
  - fa
20
- - De
21
  library_name: transformers
22
  pipeline_tag: text-generation
 
23
 
24
  [![Open in HF Space](https://img.shields.io/badge/🤗%20Try%20Live%20Demo-FFD21E?style=for-the-badge&logo=huggingface)](https://huggingface.co/spaces/sinamsv0/WALL-E-DEMO)
25
  [![GitHub](https://img.shields.io/badge/⭐%20GitHub-181717?style=for-the-badge&logo=github)](https://github.com/unknownmsv/WALL-E)
26
  [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg?style=for-the-badge)](LICENSE)
27
 
28
- # 🤖 WALL•E — Your Personal 1B Parameter AI Assistant
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- **WALL•E** is a fine-tuned, lightweight AI model based on **Gemma 3 1B**, optimized for practical everyday tasks. Designed to run entirely locally on your device, it prioritizes **privacy, speed, and utility** over sheer size.
 
 
 
31
 
32
- ## 🎯 **Why WALL•E Exists**
33
- Most AI models are either too large for local use or too general for specific tasks. WALL•E bridges this gap by offering:
34
- - **Complete local execution** No internet or API keys required
35
- - **Mobile & edge optimized** – Runs on Android, Linux, and resource-constrained devices
36
- - **Privacy by design** Your data never leaves your device
37
- - ✅ **Open & transparent** – Fully open-source under Apache 2.0
38
 
39
- ## **Key Features**
40
- ### 🌐 **Multilingual Proficiency**
41
- - **English**: Native-level comprehension and generation
42
- - **فارسی**: Fluent Persian with natural responses
43
- - **Deutsch**: Conversational German support
44
 
45
- ### ⚡ **Practical Task Optimization**
46
- - **📝 Smart Summarization**: Condense articles, emails, documents instantly
47
- - **💻 Coding Companion**: Python, JavaScript, Bash, and shell scripting assistance
48
- - **🖥️ System Assistant**: Linux command explanations and troubleshooting
49
- - **🔍 Quick Information**: Factual responses without unnecessary fluff
50
 
51
- ### 🚀 **Technical Excellence**
52
- - **Base Model**: `google/gemma-3-1b-it` with Unsloth optimizations
53
- - **Training**: Fine-tuned using custom datasets for safety and multilingual performance
54
- - **Quantization**: Available BF16 (2GB) variants
55
- - **Context**: 2048 token window for coherent conversations
 
 
 
56
 
57
- ## 📊 **Performance Highlights**
58
- - **26+ downloads in first 48 hours** – Community validated
59
- - **<2 second inference** on mid-range smartphones
60
- - **40% smaller** than comparable models with similar capabilities
61
- - **Zero cloud dependency** – Works completely offline
62
 
63
- ## 🛠️ **Quick Start**
64
 
65
- ### **Option 1: Hugging Face Transformers**
66
  ```python
67
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
68
 
69
  model_id = "sinamsv0/WALL-E"
70
- model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
71
  tokenizer = AutoTokenizer.from_pretrained(model_id)
 
 
 
 
72
 
73
- pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
 
 
 
 
74
 
75
- # Example usage
76
- response = pipe("Summarize this: Climate change is...", max_new_tokens=150)
77
- print(response[0]['generated_text'])
78
- ```
79
 
80
- Option 2: Direct Downloads
81
 
82
- · Android APK: GitHub Releases
83
- · Linux AppImage: Self-contained executable
84
- · Windows EXE: Coming soon
85
 
86
- 📁 Model Details
87
 
88
- Training Information
89
 
90
- · Framework: Unsloth (4x faster training)
91
- · Method: Supervised Fine-Tuning (SFT)
92
- · Dataset: Custom multilingual mix with safety alignment
93
- · Hardware: Single RTX 4090 (24GB VRAM)
94
- · Training Time: ~8 hours
95
 
96
- Safety & Limitations
97
 
98
- · Aligned with constitutional AI principles
99
- · ✅ Refuses harmful or unethical requests
100
- · ⚠️ Limited to 1B parameters – best for focused tasks
101
- · ⚠️ Not suitable for complex reasoning or creative writing
102
 
103
- 🌍 Use Cases
104
 
105
- 1. Developers: Local coding assistant without cloud costs
106
- 2. Students: Study aid and document summarization
107
- 3. Privacy-conscious users: AI that respects data boundaries
108
- 4. Edge deployments: IoT and mobile applications
109
- 5. Researchers: Baseline for lightweight model development
110
 
111
- 🔗 Community & Support
112
 
113
- · GitHub Issues: Bug reports and feature requests
114
- · Discord Community: Live discussions and support
115
- · Hugging Face Spaces: Interactive demos and examples
116
- · Twitter/X: @dreamhubIR for updates
117
 
118
- 📈 Roadmap
119
 
120
- · iOS version (Q4 2024)
121
- · Voice interface integration
122
- · Plugin system for extended functionality
123
- · Expanded language support (Arabic, Spanish)
124
- · Hardware acceleration benchmarks
125
 
126
- 🙏 Acknowledgments
127
 
128
- · Google for the Gemma 3 base model
129
- · Unsloth for the amazing training optimizations
130
- · Hugging Face for the model hosting infrastructure
131
- · The 26 early adopters who helped validate WALL•E
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
- ---
134
 
135
- ⭐ Star us on GitHub to support the project!
136
- 🔗 Share your use cases and help improve WALL•E for everyone.
137
 
138
- "Small model, big impact – AI that works for you, not the other way around."
139
 
140
- ---
141
 
142
- #WALLE #Gemma3 #LocalAI #PrivacyAI #OpenSource #MobileAI #EdgeComputing #LightweightAI #MultilingualAI
 
 
1
+ ---
2
  base_model: google/gemma-3-1b-it
3
  tags:
4
  - text-generation
 
9
  - wall-e
10
  - lightweight
11
  - mobile-friendly
 
12
  - local-ai
13
  - multilingual
14
  - coding-assistant
 
17
  language:
18
  - en
19
  - fa
20
+ - de
21
  library_name: transformers
22
  pipeline_tag: text-generation
23
+ ---
24
 
25
  [![Open in HF Space](https://img.shields.io/badge/🤗%20Try%20Live%20Demo-FFD21E?style=for-the-badge&logo=huggingface)](https://huggingface.co/spaces/sinamsv0/WALL-E-DEMO)
26
  [![GitHub](https://img.shields.io/badge/⭐%20GitHub-181717?style=for-the-badge&logo=github)](https://github.com/unknownmsv/WALL-E)
27
  [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg?style=for-the-badge)](LICENSE)
28
 
29
+ # 🤖 WALL•E — Lightweight Local AI Assistant (1B)
30
+
31
+ **WALL•E** is a fine-tuned, lightweight language model based on **Gemma 3 1B**, designed for **local, privacy-preserving AI usage**.
32
+ It focuses on *practical tasks*, *fast responses*, and *real-world utility* rather than model size.
33
+
34
+ ---
35
+
36
+ ## 🎯 Why WALL•E?
37
+
38
+ Most modern AI models are either:
39
+ - Too large to run locally, or
40
+ - Too generic for everyday tasks
41
+
42
+ **WALL•E** is built to fill that gap.
43
+
44
+ ✅ Runs entirely locally
45
+ ✅ No API keys or cloud services
46
+ ✅ Designed for low-resource environments
47
+ ✅ Open-source and transparent
48
+
49
+ ---
50
+
51
+ ## ✨ Key Capabilities
52
 
53
+ ### 🌐 Multilingual Support
54
+ - **English** – primary interaction language
55
+ - **فارسی (Persian)** – natural and fluent responses
56
+ - **Deutsch (German)** – conversational support
57
 
58
+ ### 🛠 Practical Task Focus
59
+ - 📝 Text summarization (articles, notes, reports)
60
+ - 💻 Coding help (Python, JavaScript, Bash, shell)
61
+ - 🖥 Linux command explanations & troubleshooting
62
+ - 📚 Short factual answers and guidance
 
63
 
64
+ The model is optimized to handle **short and minimal prompts** naturally (e.g. *"Hi"*, *"Explain ls -la"*), avoiding over-generation.
 
 
 
 
65
 
66
+ ---
67
+
68
+ ## ⚙️ Technical Overview
 
 
69
 
70
+ | Component | Details |
71
+ |------------------|--------|
72
+ | Base Model | Google Gemma 3 1B |
73
+ | Fine-tuning | Supervised Fine-Tuning (SFT) |
74
+ | Framework | Unsloth |
75
+ | Context Length | 2048 tokens |
76
+ | Precision | BF16 |
77
+ | License | Apache 2.0 |
78
 
79
+ ---
 
 
 
 
80
 
81
+ ## 🚀 Quick Start (Transformers)
82
 
 
83
  ```python
84
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
85
 
86
  model_id = "sinamsv0/WALL-E"
87
+
88
  tokenizer = AutoTokenizer.from_pretrained(model_id)
89
+ model = AutoModelForCausalLM.from_pretrained(
90
+ model_id,
91
+ device_map="auto"
92
+ )
93
 
94
+ pipe = pipeline(
95
+ "text-generation",
96
+ model=model,
97
+ tokenizer=tokenizer
98
+ )
99
 
100
+ response = pipe(
101
+ "Summarize this text: Artificial intelligence is...",
102
+ max_new_tokens=120
103
+ )
104
 
105
+ print(response[0]["generated_text"])
106
 
 
 
 
107
 
 
108
 
 
109
 
110
+ 🧪 Training Summary
 
 
 
 
111
 
 
112
 
113
+ Method: Supervised Fine-Tuning (SFT)
 
 
 
114
 
115
+ Data: Custom multilingual datasets with safety-focused filtering
116
 
117
+ Hardware: Single consumer GPU
 
 
 
 
118
 
119
+ Goal: Improve instruction-following, multilingual responses, and short-prompt behavior
120
 
 
 
 
 
121
 
 
122
 
 
 
 
 
 
123
 
 
124
 
125
+ 🛡 Safety & Limitations
126
+
127
+ Trained with safety-aware data
128
+ Avoids harmful or unethical requests
129
+ ⚠️ Limited reasoning depth due to 1B parameter size
130
+ ⚠️ Not intended for complex multi-step reasoning or creative writing
131
+
132
+
133
+
134
+ 🌍 Ideal Use Cases
135
+
136
+
137
+ Local coding assistant
138
+
139
+ Study and document summarization
140
+
141
+ Privacy-focused users
142
+
143
+ Lightweight edge deployments
144
+
145
+ Research and experimentation with small LLMs
146
+
147
+
148
+
149
+
150
+
151
+ 🤝 Community & Links
152
+
153
+
154
+ GitHub: https://github.com/unknownmsv/WALL-E
155
+
156
+ Hugging Face Model: https://huggingface.co/sinamsv0/WALL-E
157
+
158
+ Hugging Face Space: https://huggingface.co/spaces/sinamsv0/WALL-E-DEMO
159
+
160
+
161
+
162
+
163
+
164
+ 🔮 Roadmap (Planned)
165
+
166
+
167
+ UI tools for local use
168
+
169
+ Optional voice interface
170
+
171
+ Extended language support
172
+
173
+ Performance benchmarking on edge devices
174
+
175
 
 
176
 
 
 
177
 
 
178
 
 
179
 
180
+ Small model, focused design.
181
+ WALL•E proves that useful AI doesn’t have to be huge.