--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Etunimi Sukunimi Kaunistelua sanoa että vain yhden ihmisen tähden. Putinin toimilla on Venäjällä laaja kannatus, kyllä kansakunnalla on myös kollektiivista vastuuta tapahtumista. Sotaa vastaan protestoivia on ollut vähemmän kuin Venäjällä sotilaita Ukrainassa. - text: Toivottavasti valtio korvaa jokaisen menetetyn euron - text: Etunimi Sukunimi Niin on.. ja valtioita joista lähinnä venäjä ja valko-venäjä. - text: www.maskikauppa.fi - text: Etunimi Sukunimi Jatka veikkonen. metrics: - metric pipeline_tag: text-classification library_name: setfit inference: true base_model: TurkuNLP/bert-base-finnish-cased-v1 model-index: - name: SetFit with TurkuNLP/bert-base-finnish-cased-v1 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.7911322719833359 name: Metric --- # SetFit with TurkuNLP/bert-base-finnish-cased-v1 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [TurkuNLP/bert-base-finnish-cased-v1](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [TurkuNLP/bert-base-finnish-cased-v1](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | 1 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.7911 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("Finnish-actions/SetFit-FinBERT1-A3-challenge") # Run inference preds = model("www.maskikauppa.fi") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 20.2233 | 213 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 843 | | 1 | 120 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 6 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - evaluation_strategy: epoch - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0014 | 1 | 0.2409 | - | | 0.0692 | 50 | 0.2872 | - | | 0.1383 | 100 | 0.2515 | - | | 0.2075 | 150 | 0.2327 | - | | 0.2766 | 200 | 0.1678 | - | | 0.3458 | 250 | 0.0977 | - | | 0.4149 | 300 | 0.0434 | - | | 0.4841 | 350 | 0.031 | - | | 0.5533 | 400 | 0.0183 | - | | 0.6224 | 450 | 0.0084 | - | | 0.6916 | 500 | 0.0069 | - | | 0.7607 | 550 | 0.0057 | - | | 0.8299 | 600 | 0.0045 | - | | 0.8990 | 650 | 0.0011 | - | | 0.9682 | 700 | 0.0005 | - | | 1.0 | 723 | - | 0.4558 | | 1.0373 | 750 | 0.0003 | - | | 1.1065 | 800 | 0.0008 | - | | 1.1757 | 850 | 0.0007 | - | | 1.2448 | 900 | 0.0001 | - | | 1.3140 | 950 | 0.0001 | - | | 1.3831 | 1000 | 0.0008 | - | | 1.4523 | 1050 | 0.0001 | - | | 1.5214 | 1100 | 0.0001 | - | | 1.5906 | 1150 | 0.0001 | - | | 1.6598 | 1200 | 0.0001 | - | | 1.7289 | 1250 | 0.0001 | - | | 1.7981 | 1300 | 0.0001 | - | | 1.8672 | 1350 | 0.0001 | - | | 1.9364 | 1400 | 0.0001 | - | | 2.0 | 1446 | - | 0.4562 | | 2.0055 | 1450 | 0.0 | - | | 2.0747 | 1500 | 0.0001 | - | | 2.1438 | 1550 | 0.0001 | - | | 2.2130 | 1600 | 0.0 | - | | 2.2822 | 1650 | 0.0001 | - | | 2.3513 | 1700 | 0.0 | - | | 2.4205 | 1750 | 0.0 | - | | 2.4896 | 1800 | 0.0 | - | | 2.5588 | 1850 | 0.0 | - | | 2.6279 | 1900 | 0.0 | - | | 2.6971 | 1950 | 0.0 | - | | 2.7663 | 2000 | 0.0 | - | | 2.8354 | 2050 | 0.0 | - | | 2.9046 | 2100 | 0.0 | - | | 2.9737 | 2150 | 0.0 | - | | 3.0 | 2169 | - | 0.4560 | | 3.0429 | 2200 | 0.0 | - | | 3.1120 | 2250 | 0.0 | - | | 3.1812 | 2300 | 0.0 | - | | 3.2503 | 2350 | 0.0 | - | | 3.3195 | 2400 | 0.0 | - | | 3.3887 | 2450 | 0.0 | - | | 3.4578 | 2500 | 0.0 | - | | 3.5270 | 2550 | 0.0 | - | | 3.5961 | 2600 | 0.0 | - | | 3.6653 | 2650 | 0.0 | - | | 3.7344 | 2700 | 0.0 | - | | 3.8036 | 2750 | 0.0 | - | | 3.8728 | 2800 | 0.0 | - | | 3.9419 | 2850 | 0.0 | - | | 4.0 | 2892 | - | 0.4593 | ### Framework Versions - Python: 3.11.9 - SetFit: 1.1.3 - Sentence Transformers: 3.2.0 - Transformers: 4.44.0 - PyTorch: 2.4.0+cu124 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```