Jimmy-Ooi commited on
Commit
50e010e
·
verified ·
1 Parent(s): 3d2584e

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,665 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:188228
9
+ - loss:SoftmaxLoss
10
+ base_model: google-bert/bert-base-cased
11
+ widget:
12
+ - source_sentence: COc1cc([C@@H]2Oc3c(O)cc([C@H]4Oc5cc(O)cc(O)c5C(=O)[C@@H]4O)cc3[C@H]2CO)ccc1O
13
+ sentences:
14
+ - CCCCCCCCCCCCCCC(=O)OCC(O)CO
15
+ - COc1cc(-c2ccc(C(=O)NCc3ccccc3)c(O)c2)cc(OC)c1O
16
+ - COc1cc(/C=C/C(=N\O)c2cc3ccccc3cc2O)cc(OC)c1
17
+ - source_sentence: CN1[C@@H]2CC[C@H]1C/C(=N/Nc1nc(-c3ccc(Cl)cc3Cl)cs1)C2
18
+ sentences:
19
+ - CCC(=O)N1CCN(Cc2ccc(F)cc2)CC1
20
+ - Nc1ccccc1C(=O)N1CCN(Cc2ccc(F)cc2)CC1
21
+ - O=C(c1cccc(O)c1)N1CCN(Cc2ccc(F)cc2)CC1
22
+ - source_sentence: Cc1ccc(C(=O)Nc2cccc(C(=O)/C=C/c3ccc4c(c3)c3ccccc3n4C)c2)cc1
23
+ sentences:
24
+ - O=C(/C=C/c1ccc(O)c(O)c1)NC(Cc1ccccc1)C(=O)NO
25
+ - COc1cccc(OC(=O)COC(=O)c2ccc(O)cc2O)c1
26
+ - NC(=S)N/N=C/c1cccc2ccccc12
27
+ - source_sentence: CC(=O)c1c(O)ccc(C(c2ccc(O)cc2O)c2ccc(O)c(C(C)=O)c2O)c1O
28
+ sentences:
29
+ - C=CC(C)(C)c1cc(C2CC(=O)c3c(cc(O)c(CC=C(C)C)c3O)O2)c(OC)cc1O
30
+ - O=C1ON=C(c2ccccc2)/C1=C/c1ccc(O)cc1O
31
+ - COc1cc(-c2ccc(C(=O)O)c(O)c2)cc(OC)c1O
32
+ - source_sentence: CCCCc1ccc(/C(CC)=N/NC(N)=S)cc1
33
+ sentences:
34
+ - COc1ccccc1/C=N/NC(=O)c1ccc(OC)c(OC)c1
35
+ - COc1cc([C@@H]2Oc3c(O)cc([C@H]4Oc5cc(O)cc(O)c5C(=O)[C@@H]4O)cc3[C@H]2CO)ccc1O
36
+ - O=C(/C=C/c1ccc(O)c(O)c1)NCCc1c[nH]c2ccc(O)cc12
37
+ pipeline_tag: sentence-similarity
38
+ library_name: sentence-transformers
39
+ ---
40
+
41
+ # SentenceTransformer based on google-bert/bert-base-cased
42
+
43
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** Sentence Transformer
49
+ - **Base model:** [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) <!-- at revision cd5ef92a9fb2f889e972770a36d4ed042daf221e -->
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Output Dimensionality:** 768 dimensions
52
+ - **Similarity Function:** Cosine Similarity
53
+ - **Training Dataset:**
54
+ - csv
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
61
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
62
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
63
+
64
+ ### Full Model Architecture
65
+
66
+ ```
67
+ SentenceTransformer(
68
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
69
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
70
+ )
71
+ ```
72
+
73
+ ## Usage
74
+
75
+ ### Direct Usage (Sentence Transformers)
76
+
77
+ First install the Sentence Transformers library:
78
+
79
+ ```bash
80
+ pip install -U sentence-transformers
81
+ ```
82
+
83
+ Then you can load this model and run inference.
84
+ ```python
85
+ from sentence_transformers import SentenceTransformer
86
+
87
+ # Download from the 🤗 Hub
88
+ model = SentenceTransformer("Jimmy-Ooi/Tyrisonase_test_model_1000_10_adafactor")
89
+ # Run inference
90
+ sentences = [
91
+ 'CCCCc1ccc(/C(CC)=N/NC(N)=S)cc1',
92
+ 'COc1ccccc1/C=N/NC(=O)c1ccc(OC)c(OC)c1',
93
+ 'O=C(/C=C/c1ccc(O)c(O)c1)NCCc1c[nH]c2ccc(O)cc12',
94
+ ]
95
+ embeddings = model.encode(sentences)
96
+ print(embeddings.shape)
97
+ # [3, 768]
98
+
99
+ # Get the similarity scores for the embeddings
100
+ similarities = model.similarity(embeddings, embeddings)
101
+ print(similarities)
102
+ # tensor([[ 1.0000, -0.2733, -0.0760],
103
+ # [-0.2733, 1.0000, 0.9683],
104
+ # [-0.0760, 0.9683, 1.0000]])
105
+ ```
106
+
107
+ <!--
108
+ ### Direct Usage (Transformers)
109
+
110
+ <details><summary>Click to see the direct usage in Transformers</summary>
111
+
112
+ </details>
113
+ -->
114
+
115
+ <!--
116
+ ### Downstream Usage (Sentence Transformers)
117
+
118
+ You can finetune this model on your own dataset.
119
+
120
+ <details><summary>Click to expand</summary>
121
+
122
+ </details>
123
+ -->
124
+
125
+ <!--
126
+ ### Out-of-Scope Use
127
+
128
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
+ -->
130
+
131
+ <!--
132
+ ## Bias, Risks and Limitations
133
+
134
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
135
+ -->
136
+
137
+ <!--
138
+ ### Recommendations
139
+
140
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
141
+ -->
142
+
143
+ ## Training Details
144
+
145
+ ### Training Dataset
146
+
147
+ #### csv
148
+
149
+ * Dataset: csv
150
+ * Size: 188,228 training samples
151
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
152
+ * Approximate statistics based on the first 1000 samples:
153
+ | | premise | hypothesis | label |
154
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
155
+ | type | string | string | int |
156
+ | details | <ul><li>min: 8 tokens</li><li>mean: 38.76 tokens</li><li>max: 106 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 39.72 tokens</li><li>max: 145 tokens</li></ul> | <ul><li>0: ~50.20%</li><li>2: ~49.80%</li></ul> |
157
+ * Samples:
158
+ | premise | hypothesis | label |
159
+ |:---------------------------------------------------------------------|:--------------------------------------------------------------------------|:---------------|
160
+ | <code>COc1cc(OC)c(C2CCN(C)C2CO)c(O)c1-c1cc(-c2ccccc2Cl)[nH]n1</code> | <code>O=C(O)c1ccc(OCc2cn(Cc3cc(=O)c(O)co3)nn2)cc1</code> | <code>2</code> |
161
+ | <code>Cl.NC(Cc1ccc(=O)n(O)c1)C(=O)O</code> | <code>Cn1c2ccccc2c2cc(/C=C/C(=O)c3cccc(NC(=O)c4cccc(Cl)c4)c3)ccc21</code> | <code>0</code> |
162
+ | <code>Cc1ccc(O)cc1O</code> | <code>O=C1NC(=O)C(=Cc2cc(O)c(O)c(O)c2)C(=O)N1</code> | <code>0</code> |
163
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
164
+
165
+ ### Evaluation Dataset
166
+
167
+ #### csv
168
+
169
+ * Dataset: csv
170
+ * Size: 33,217 evaluation samples
171
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
172
+ * Approximate statistics based on the first 1000 samples:
173
+ | | premise | hypothesis | label |
174
+ |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
175
+ | type | string | string | int |
176
+ | details | <ul><li>min: 11 tokens</li><li>mean: 39.05 tokens</li><li>max: 145 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 39.29 tokens</li><li>max: 145 tokens</li></ul> | <ul><li>0: ~51.40%</li><li>2: ~48.60%</li></ul> |
177
+ * Samples:
178
+ | premise | hypothesis | label |
179
+ |:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:---------------|
180
+ | <code>CC(=O)Oc1c(/N=N/c2ccc(C3=N/C(=C/c4ccc(OC(F)(F)F)cc4)C(=O)O3)cc2)ccc2ccccc12</code> | <code>CC1(C)C=Cc2c(cc3c(c2O)C(=O)CC(c2ccc(O)cc2O)O3)O1</code> | <code>0</code> |
181
+ | <code>COc1cc2c(c(OC)c1OC)[C@@H]1O[C@H](COC(=O)c3ccc(O)cc3)[C@@H](O)[C@H](O)[C@H]1OC2=O</code> | <code>O=C(c1cccc(F)c1)N1CCN(Cc2ccc(F)cc2)CC1</code> | <code>0</code> |
182
+ | <code>CC(=O)Nc1ccc(/N=N/c2c(N)nc(N)nc2Cl)cc1</code> | <code>NC(=S)c1ccncc1</code> | <code>0</code> |
183
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
184
+
185
+ ### Training Hyperparameters
186
+ #### Non-Default Hyperparameters
187
+
188
+ - `per_device_train_batch_size`: 64
189
+ - `per_device_eval_batch_size`: 64
190
+ - `weight_decay`: 0.001
191
+ - `num_train_epochs`: 10
192
+ - `warmup_steps`: 100
193
+ - `fp16`: True
194
+ - `optim`: adafactor
195
+
196
+ #### All Hyperparameters
197
+ <details><summary>Click to expand</summary>
198
+
199
+ - `overwrite_output_dir`: False
200
+ - `do_predict`: False
201
+ - `eval_strategy`: no
202
+ - `prediction_loss_only`: True
203
+ - `per_device_train_batch_size`: 64
204
+ - `per_device_eval_batch_size`: 64
205
+ - `per_gpu_train_batch_size`: None
206
+ - `per_gpu_eval_batch_size`: None
207
+ - `gradient_accumulation_steps`: 1
208
+ - `eval_accumulation_steps`: None
209
+ - `torch_empty_cache_steps`: None
210
+ - `learning_rate`: 5e-05
211
+ - `weight_decay`: 0.001
212
+ - `adam_beta1`: 0.9
213
+ - `adam_beta2`: 0.999
214
+ - `adam_epsilon`: 1e-08
215
+ - `max_grad_norm`: 1.0
216
+ - `num_train_epochs`: 10
217
+ - `max_steps`: -1
218
+ - `lr_scheduler_type`: linear
219
+ - `lr_scheduler_kwargs`: {}
220
+ - `warmup_ratio`: 0.0
221
+ - `warmup_steps`: 100
222
+ - `log_level`: passive
223
+ - `log_level_replica`: warning
224
+ - `log_on_each_node`: True
225
+ - `logging_nan_inf_filter`: True
226
+ - `save_safetensors`: True
227
+ - `save_on_each_node`: False
228
+ - `save_only_model`: False
229
+ - `restore_callback_states_from_checkpoint`: False
230
+ - `no_cuda`: False
231
+ - `use_cpu`: False
232
+ - `use_mps_device`: False
233
+ - `seed`: 42
234
+ - `data_seed`: None
235
+ - `jit_mode_eval`: False
236
+ - `bf16`: False
237
+ - `fp16`: True
238
+ - `fp16_opt_level`: O1
239
+ - `half_precision_backend`: auto
240
+ - `bf16_full_eval`: False
241
+ - `fp16_full_eval`: False
242
+ - `tf32`: None
243
+ - `local_rank`: 0
244
+ - `ddp_backend`: None
245
+ - `tpu_num_cores`: None
246
+ - `tpu_metrics_debug`: False
247
+ - `debug`: []
248
+ - `dataloader_drop_last`: False
249
+ - `dataloader_num_workers`: 0
250
+ - `dataloader_prefetch_factor`: None
251
+ - `past_index`: -1
252
+ - `disable_tqdm`: False
253
+ - `remove_unused_columns`: True
254
+ - `label_names`: None
255
+ - `load_best_model_at_end`: False
256
+ - `ignore_data_skip`: False
257
+ - `fsdp`: []
258
+ - `fsdp_min_num_params`: 0
259
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
260
+ - `fsdp_transformer_layer_cls_to_wrap`: None
261
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
262
+ - `parallelism_config`: None
263
+ - `deepspeed`: None
264
+ - `label_smoothing_factor`: 0.0
265
+ - `optim`: adafactor
266
+ - `optim_args`: None
267
+ - `adafactor`: False
268
+ - `group_by_length`: False
269
+ - `length_column_name`: length
270
+ - `project`: huggingface
271
+ - `trackio_space_id`: trackio
272
+ - `ddp_find_unused_parameters`: None
273
+ - `ddp_bucket_cap_mb`: None
274
+ - `ddp_broadcast_buffers`: False
275
+ - `dataloader_pin_memory`: True
276
+ - `dataloader_persistent_workers`: False
277
+ - `skip_memory_metrics`: True
278
+ - `use_legacy_prediction_loop`: False
279
+ - `push_to_hub`: False
280
+ - `resume_from_checkpoint`: None
281
+ - `hub_model_id`: None
282
+ - `hub_strategy`: every_save
283
+ - `hub_private_repo`: None
284
+ - `hub_always_push`: False
285
+ - `hub_revision`: None
286
+ - `gradient_checkpointing`: False
287
+ - `gradient_checkpointing_kwargs`: None
288
+ - `include_inputs_for_metrics`: False
289
+ - `include_for_metrics`: []
290
+ - `eval_do_concat_batches`: True
291
+ - `fp16_backend`: auto
292
+ - `push_to_hub_model_id`: None
293
+ - `push_to_hub_organization`: None
294
+ - `mp_parameters`:
295
+ - `auto_find_batch_size`: False
296
+ - `full_determinism`: False
297
+ - `torchdynamo`: None
298
+ - `ray_scope`: last
299
+ - `ddp_timeout`: 1800
300
+ - `torch_compile`: False
301
+ - `torch_compile_backend`: None
302
+ - `torch_compile_mode`: None
303
+ - `include_tokens_per_second`: False
304
+ - `include_num_input_tokens_seen`: no
305
+ - `neftune_noise_alpha`: None
306
+ - `optim_target_modules`: None
307
+ - `batch_eval_metrics`: False
308
+ - `eval_on_start`: False
309
+ - `use_liger_kernel`: False
310
+ - `liger_kernel_config`: None
311
+ - `eval_use_gather_object`: False
312
+ - `average_tokens_across_devices`: True
313
+ - `prompts`: None
314
+ - `batch_sampler`: batch_sampler
315
+ - `multi_dataset_batch_sampler`: proportional
316
+ - `router_mapping`: {}
317
+ - `learning_rate_mapping`: {}
318
+
319
+ </details>
320
+
321
+ ### Training Logs
322
+ <details><summary>Click to expand</summary>
323
+
324
+ | Epoch | Step | Training Loss |
325
+ |:------:|:-----:|:-------------:|
326
+ | 0.0340 | 100 | 0.7569 |
327
+ | 0.0680 | 200 | 0.6817 |
328
+ | 0.1020 | 300 | 0.6559 |
329
+ | 0.1360 | 400 | 0.6302 |
330
+ | 0.1700 | 500 | 0.6204 |
331
+ | 0.2039 | 600 | 0.6015 |
332
+ | 0.2379 | 700 | 0.5901 |
333
+ | 0.2719 | 800 | 0.583 |
334
+ | 0.3059 | 900 | 0.5892 |
335
+ | 0.3399 | 1000 | 0.58 |
336
+ | 0.3739 | 1100 | 0.5752 |
337
+ | 0.4079 | 1200 | 0.5707 |
338
+ | 0.4419 | 1300 | 0.5727 |
339
+ | 0.4759 | 1400 | 0.5562 |
340
+ | 0.5099 | 1500 | 0.5736 |
341
+ | 0.5438 | 1600 | 0.5609 |
342
+ | 0.5778 | 1700 | 0.5545 |
343
+ | 0.6118 | 1800 | 0.5528 |
344
+ | 0.6458 | 1900 | 0.5503 |
345
+ | 0.6798 | 2000 | 0.5527 |
346
+ | 0.7138 | 2100 | 0.5552 |
347
+ | 0.7478 | 2200 | 0.5499 |
348
+ | 0.7818 | 2300 | 0.5477 |
349
+ | 0.8158 | 2400 | 0.5429 |
350
+ | 0.8498 | 2500 | 0.5314 |
351
+ | 0.8838 | 2600 | 0.5542 |
352
+ | 0.9177 | 2700 | 0.5373 |
353
+ | 0.9517 | 2800 | 0.5321 |
354
+ | 0.9857 | 2900 | 0.5412 |
355
+ | 1.0197 | 3000 | 0.5367 |
356
+ | 1.0537 | 3100 | 0.5368 |
357
+ | 1.0877 | 3200 | 0.5388 |
358
+ | 1.1217 | 3300 | 0.5419 |
359
+ | 1.1557 | 3400 | 0.5303 |
360
+ | 1.1897 | 3500 | 0.5369 |
361
+ | 1.2237 | 3600 | 0.5357 |
362
+ | 1.2576 | 3700 | 0.5296 |
363
+ | 1.2916 | 3800 | 0.5368 |
364
+ | 1.3256 | 3900 | 0.5351 |
365
+ | 1.3596 | 4000 | 0.533 |
366
+ | 1.3936 | 4100 | 0.5294 |
367
+ | 1.4276 | 4200 | 0.5341 |
368
+ | 1.4616 | 4300 | 0.5307 |
369
+ | 1.4956 | 4400 | 0.5295 |
370
+ | 1.5296 | 4500 | 0.5269 |
371
+ | 1.5636 | 4600 | 0.5272 |
372
+ | 1.5976 | 4700 | 0.5227 |
373
+ | 1.6315 | 4800 | 0.529 |
374
+ | 1.6655 | 4900 | 0.5316 |
375
+ | 1.6995 | 5000 | 0.53 |
376
+ | 1.7335 | 5100 | 0.5251 |
377
+ | 1.7675 | 5200 | 0.5294 |
378
+ | 1.8015 | 5300 | 0.5225 |
379
+ | 1.8355 | 5400 | 0.5204 |
380
+ | 1.8695 | 5500 | 0.5139 |
381
+ | 1.9035 | 5600 | 0.525 |
382
+ | 1.9375 | 5700 | 0.5242 |
383
+ | 1.9714 | 5800 | 0.5208 |
384
+ | 2.0054 | 5900 | 0.5183 |
385
+ | 2.0394 | 6000 | 0.523 |
386
+ | 2.0734 | 6100 | 0.5144 |
387
+ | 2.1074 | 6200 | 0.514 |
388
+ | 2.1414 | 6300 | 0.516 |
389
+ | 2.1754 | 6400 | 0.527 |
390
+ | 2.2094 | 6500 | 0.5182 |
391
+ | 2.2434 | 6600 | 0.5213 |
392
+ | 2.2774 | 6700 | 0.5162 |
393
+ | 2.3114 | 6800 | 0.5202 |
394
+ | 2.3453 | 6900 | 0.5258 |
395
+ | 2.3793 | 7000 | 0.5191 |
396
+ | 2.4133 | 7100 | 0.5185 |
397
+ | 2.4473 | 7200 | 0.5134 |
398
+ | 2.4813 | 7300 | 0.5231 |
399
+ | 2.5153 | 7400 | 0.513 |
400
+ | 2.5493 | 7500 | 0.5167 |
401
+ | 2.5833 | 7600 | 0.5089 |
402
+ | 2.6173 | 7700 | 0.5163 |
403
+ | 2.6513 | 7800 | 0.517 |
404
+ | 2.6852 | 7900 | 0.5081 |
405
+ | 2.7192 | 8000 | 0.5171 |
406
+ | 2.7532 | 8100 | 0.5138 |
407
+ | 2.7872 | 8200 | 0.508 |
408
+ | 2.8212 | 8300 | 0.5172 |
409
+ | 2.8552 | 8400 | 0.5109 |
410
+ | 2.8892 | 8500 | 0.5023 |
411
+ | 2.9232 | 8600 | 0.5128 |
412
+ | 2.9572 | 8700 | 0.5119 |
413
+ | 2.9912 | 8800 | 0.5082 |
414
+ | 3.0252 | 8900 | 0.5183 |
415
+ | 3.0591 | 9000 | 0.512 |
416
+ | 3.0931 | 9100 | 0.5112 |
417
+ | 3.1271 | 9200 | 0.5157 |
418
+ | 3.1611 | 9300 | 0.5066 |
419
+ | 3.1951 | 9400 | 0.5035 |
420
+ | 3.2291 | 9500 | 0.5037 |
421
+ | 3.2631 | 9600 | 0.5112 |
422
+ | 3.2971 | 9700 | 0.5147 |
423
+ | 3.3311 | 9800 | 0.5112 |
424
+ | 3.3651 | 9900 | 0.5 |
425
+ | 3.3990 | 10000 | 0.5152 |
426
+ | 3.4330 | 10100 | 0.5146 |
427
+ | 3.4670 | 10200 | 0.5103 |
428
+ | 3.5010 | 10300 | 0.5129 |
429
+ | 3.5350 | 10400 | 0.5005 |
430
+ | 3.5690 | 10500 | 0.5065 |
431
+ | 3.6030 | 10600 | 0.5105 |
432
+ | 3.6370 | 10700 | 0.5101 |
433
+ | 3.6710 | 10800 | 0.5058 |
434
+ | 3.7050 | 10900 | 0.5093 |
435
+ | 3.7390 | 11000 | 0.5102 |
436
+ | 3.7729 | 11100 | 0.511 |
437
+ | 3.8069 | 11200 | 0.4982 |
438
+ | 3.8409 | 11300 | 0.4973 |
439
+ | 3.8749 | 11400 | 0.5068 |
440
+ | 3.9089 | 11500 | 0.497 |
441
+ | 3.9429 | 11600 | 0.5018 |
442
+ | 3.9769 | 11700 | 0.5028 |
443
+ | 4.0109 | 11800 | 0.5132 |
444
+ | 4.0449 | 11900 | 0.5024 |
445
+ | 4.0789 | 12000 | 0.4992 |
446
+ | 4.1128 | 12100 | 0.4954 |
447
+ | 4.1468 | 12200 | 0.5094 |
448
+ | 4.1808 | 12300 | 0.5091 |
449
+ | 4.2148 | 12400 | 0.507 |
450
+ | 4.2488 | 12500 | 0.504 |
451
+ | 4.2828 | 12600 | 0.5029 |
452
+ | 4.3168 | 12700 | 0.4976 |
453
+ | 4.3508 | 12800 | 0.5001 |
454
+ | 4.3848 | 12900 | 0.5077 |
455
+ | 4.4188 | 13000 | 0.496 |
456
+ | 4.4528 | 13100 | 0.5075 |
457
+ | 4.4867 | 13200 | 0.5059 |
458
+ | 4.5207 | 13300 | 0.5111 |
459
+ | 4.5547 | 13400 | 0.504 |
460
+ | 4.5887 | 13500 | 0.4977 |
461
+ | 4.6227 | 13600 | 0.5156 |
462
+ | 4.6567 | 13700 | 0.4949 |
463
+ | 4.6907 | 13800 | 0.5064 |
464
+ | 4.7247 | 13900 | 0.5014 |
465
+ | 4.7587 | 14000 | 0.5006 |
466
+ | 4.7927 | 14100 | 0.5018 |
467
+ | 4.8266 | 14200 | 0.5079 |
468
+ | 4.8606 | 14300 | 0.5089 |
469
+ | 4.8946 | 14400 | 0.5006 |
470
+ | 4.9286 | 14500 | 0.5123 |
471
+ | 4.9626 | 14600 | 0.5019 |
472
+ | 4.9966 | 14700 | 0.5023 |
473
+ | 5.0306 | 14800 | 0.496 |
474
+ | 5.0646 | 14900 | 0.4934 |
475
+ | 5.0986 | 15000 | 0.5006 |
476
+ | 5.1326 | 15100 | 0.5021 |
477
+ | 5.1666 | 15200 | 0.4989 |
478
+ | 5.2005 | 15300 | 0.4932 |
479
+ | 5.2345 | 15400 | 0.5023 |
480
+ | 5.2685 | 15500 | 0.5047 |
481
+ | 5.3025 | 15600 | 0.5007 |
482
+ | 5.3365 | 15700 | 0.4982 |
483
+ | 5.3705 | 15800 | 0.5005 |
484
+ | 5.4045 | 15900 | 0.5101 |
485
+ | 5.4385 | 16000 | 0.4958 |
486
+ | 5.4725 | 16100 | 0.5039 |
487
+ | 5.5065 | 16200 | 0.4988 |
488
+ | 5.5404 | 16300 | 0.5028 |
489
+ | 5.5744 | 16400 | 0.499 |
490
+ | 5.6084 | 16500 | 0.4923 |
491
+ | 5.6424 | 16600 | 0.5024 |
492
+ | 5.6764 | 16700 | 0.5022 |
493
+ | 5.7104 | 16800 | 0.5007 |
494
+ | 5.7444 | 16900 | 0.4982 |
495
+ | 5.7784 | 17000 | 0.4969 |
496
+ | 5.8124 | 17100 | 0.4981 |
497
+ | 5.8464 | 17200 | 0.4987 |
498
+ | 5.8804 | 17300 | 0.4964 |
499
+ | 5.9143 | 17400 | 0.4974 |
500
+ | 5.9483 | 17500 | 0.4925 |
501
+ | 5.9823 | 17600 | 0.5087 |
502
+ | 6.0163 | 17700 | 0.4963 |
503
+ | 6.0503 | 17800 | 0.4954 |
504
+ | 6.0843 | 17900 | 0.4914 |
505
+ | 6.1183 | 18000 | 0.4878 |
506
+ | 6.1523 | 18100 | 0.5001 |
507
+ | 6.1863 | 18200 | 0.5008 |
508
+ | 6.2203 | 18300 | 0.5035 |
509
+ | 6.2542 | 18400 | 0.5016 |
510
+ | 6.2882 | 18500 | 0.4944 |
511
+ | 6.3222 | 18600 | 0.5011 |
512
+ | 6.3562 | 18700 | 0.4927 |
513
+ | 6.3902 | 18800 | 0.4965 |
514
+ | 6.4242 | 18900 | 0.5039 |
515
+ | 6.4582 | 19000 | 0.4971 |
516
+ | 6.4922 | 19100 | 0.4992 |
517
+ | 6.5262 | 19200 | 0.488 |
518
+ | 6.5602 | 19300 | 0.4935 |
519
+ | 6.5942 | 19400 | 0.5032 |
520
+ | 6.6281 | 19500 | 0.4955 |
521
+ | 6.6621 | 19600 | 0.494 |
522
+ | 6.6961 | 19700 | 0.4997 |
523
+ | 6.7301 | 19800 | 0.4941 |
524
+ | 6.7641 | 19900 | 0.4996 |
525
+ | 6.7981 | 20000 | 0.4951 |
526
+ | 6.8321 | 20100 | 0.497 |
527
+ | 6.8661 | 20200 | 0.4989 |
528
+ | 6.9001 | 20300 | 0.4937 |
529
+ | 6.9341 | 20400 | 0.4983 |
530
+ | 6.9680 | 20500 | 0.4968 |
531
+ | 7.0020 | 20600 | 0.5024 |
532
+ | 7.0360 | 20700 | 0.4979 |
533
+ | 7.0700 | 20800 | 0.4919 |
534
+ | 7.1040 | 20900 | 0.509 |
535
+ | 7.1380 | 21000 | 0.4961 |
536
+ | 7.1720 | 21100 | 0.4981 |
537
+ | 7.2060 | 21200 | 0.4903 |
538
+ | 7.2400 | 21300 | 0.4995 |
539
+ | 7.2740 | 21400 | 0.4961 |
540
+ | 7.3080 | 21500 | 0.4929 |
541
+ | 7.3419 | 21600 | 0.4919 |
542
+ | 7.3759 | 21700 | 0.5023 |
543
+ | 7.4099 | 21800 | 0.4865 |
544
+ | 7.4439 | 21900 | 0.4984 |
545
+ | 7.4779 | 22000 | 0.4882 |
546
+ | 7.5119 | 22100 | 0.4928 |
547
+ | 7.5459 | 22200 | 0.4929 |
548
+ | 7.5799 | 22300 | 0.504 |
549
+ | 7.6139 | 22400 | 0.4998 |
550
+ | 7.6479 | 22500 | 0.494 |
551
+ | 7.6818 | 22600 | 0.4891 |
552
+ | 7.7158 | 22700 | 0.4981 |
553
+ | 7.7498 | 22800 | 0.4888 |
554
+ | 7.7838 | 22900 | 0.4893 |
555
+ | 7.8178 | 23000 | 0.4948 |
556
+ | 7.8518 | 23100 | 0.4985 |
557
+ | 7.8858 | 23200 | 0.5004 |
558
+ | 7.9198 | 23300 | 0.492 |
559
+ | 7.9538 | 23400 | 0.4937 |
560
+ | 7.9878 | 23500 | 0.4947 |
561
+ | 8.0218 | 23600 | 0.4932 |
562
+ | 8.0557 | 23700 | 0.491 |
563
+ | 8.0897 | 23800 | 0.4966 |
564
+ | 8.1237 | 23900 | 0.5002 |
565
+ | 8.1577 | 24000 | 0.4956 |
566
+ | 8.1917 | 24100 | 0.4923 |
567
+ | 8.2257 | 24200 | 0.4935 |
568
+ | 8.2597 | 24300 | 0.492 |
569
+ | 8.2937 | 24400 | 0.489 |
570
+ | 8.3277 | 24500 | 0.4948 |
571
+ | 8.3617 | 24600 | 0.4937 |
572
+ | 8.3956 | 24700 | 0.4909 |
573
+ | 8.4296 | 24800 | 0.5005 |
574
+ | 8.4636 | 24900 | 0.4962 |
575
+ | 8.4976 | 25000 | 0.4865 |
576
+ | 8.5316 | 25100 | 0.4893 |
577
+ | 8.5656 | 25200 | 0.4931 |
578
+ | 8.5996 | 25300 | 0.4968 |
579
+ | 8.6336 | 25400 | 0.4951 |
580
+ | 8.6676 | 25500 | 0.4907 |
581
+ | 8.7016 | 25600 | 0.505 |
582
+ | 8.7356 | 25700 | 0.4938 |
583
+ | 8.7695 | 25800 | 0.4953 |
584
+ | 8.8035 | 25900 | 0.4968 |
585
+ | 8.8375 | 26000 | 0.4854 |
586
+ | 8.8715 | 26100 | 0.4847 |
587
+ | 8.9055 | 26200 | 0.4918 |
588
+ | 8.9395 | 26300 | 0.4987 |
589
+ | 8.9735 | 26400 | 0.4918 |
590
+ | 9.0075 | 26500 | 0.5023 |
591
+ | 9.0415 | 26600 | 0.4976 |
592
+ | 9.0755 | 26700 | 0.4947 |
593
+ | 9.1094 | 26800 | 0.4924 |
594
+ | 9.1434 | 26900 | 0.4914 |
595
+ | 9.1774 | 27000 | 0.4976 |
596
+ | 9.2114 | 27100 | 0.4908 |
597
+ | 9.2454 | 27200 | 0.4873 |
598
+ | 9.2794 | 27300 | 0.491 |
599
+ | 9.3134 | 27400 | 0.4912 |
600
+ | 9.3474 | 27500 | 0.4915 |
601
+ | 9.3814 | 27600 | 0.4933 |
602
+ | 9.4154 | 27700 | 0.4949 |
603
+ | 9.4494 | 27800 | 0.4978 |
604
+ | 9.4833 | 27900 | 0.4956 |
605
+ | 9.5173 | 28000 | 0.4854 |
606
+ | 9.5513 | 28100 | 0.4919 |
607
+ | 9.5853 | 28200 | 0.4919 |
608
+ | 9.6193 | 28300 | 0.4979 |
609
+ | 9.6533 | 28400 | 0.4921 |
610
+ | 9.6873 | 28500 | 0.4961 |
611
+ | 9.7213 | 28600 | 0.4918 |
612
+ | 9.7553 | 28700 | 0.4923 |
613
+ | 9.7893 | 28800 | 0.4934 |
614
+ | 9.8232 | 28900 | 0.4871 |
615
+ | 9.8572 | 29000 | 0.4879 |
616
+ | 9.8912 | 29100 | 0.4922 |
617
+ | 9.9252 | 29200 | 0.4921 |
618
+ | 9.9592 | 29300 | 0.4884 |
619
+ | 9.9932 | 29400 | 0.4936 |
620
+
621
+ </details>
622
+
623
+ ### Framework Versions
624
+ - Python: 3.12.12
625
+ - Sentence Transformers: 5.1.2
626
+ - Transformers: 4.57.3
627
+ - PyTorch: 2.9.0+cu126
628
+ - Accelerate: 1.12.0
629
+ - Datasets: 4.0.0
630
+ - Tokenizers: 0.22.1
631
+
632
+ ## Citation
633
+
634
+ ### BibTeX
635
+
636
+ #### Sentence Transformers and SoftmaxLoss
637
+ ```bibtex
638
+ @inproceedings{reimers-2019-sentence-bert,
639
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
640
+ author = "Reimers, Nils and Gurevych, Iryna",
641
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
642
+ month = "11",
643
+ year = "2019",
644
+ publisher = "Association for Computational Linguistics",
645
+ url = "https://arxiv.org/abs/1908.10084",
646
+ }
647
+ ```
648
+
649
+ <!--
650
+ ## Glossary
651
+
652
+ *Clearly define terms in order to be accessible across audiences.*
653
+ -->
654
+
655
+ <!--
656
+ ## Model Card Authors
657
+
658
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
659
+ -->
660
+
661
+ <!--
662
+ ## Model Card Contact
663
+
664
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
665
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.57.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 28996
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.2",
5
+ "transformers": "4.57.3",
6
+ "pytorch": "2.9.0+cu126"
7
+ },
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2336f5315c5175f6951fb266b8efe4b57b83ba43afdd4f6f330d045a4cc7009e
3
+ size 433263448
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff