Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +665 -0
- config.json +25 -0
- config_sentence_transformers.json +14 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,665 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- dense
|
| 7 |
+
- generated_from_trainer
|
| 8 |
+
- dataset_size:188228
|
| 9 |
+
- loss:SoftmaxLoss
|
| 10 |
+
base_model: google-bert/bert-base-cased
|
| 11 |
+
widget:
|
| 12 |
+
- source_sentence: COc1cc([C@@H]2Oc3c(O)cc([C@H]4Oc5cc(O)cc(O)c5C(=O)[C@@H]4O)cc3[C@H]2CO)ccc1O
|
| 13 |
+
sentences:
|
| 14 |
+
- CCCCCCCCCCCCCCC(=O)OCC(O)CO
|
| 15 |
+
- COc1cc(-c2ccc(C(=O)NCc3ccccc3)c(O)c2)cc(OC)c1O
|
| 16 |
+
- COc1cc(/C=C/C(=N\O)c2cc3ccccc3cc2O)cc(OC)c1
|
| 17 |
+
- source_sentence: CN1[C@@H]2CC[C@H]1C/C(=N/Nc1nc(-c3ccc(Cl)cc3Cl)cs1)C2
|
| 18 |
+
sentences:
|
| 19 |
+
- CCC(=O)N1CCN(Cc2ccc(F)cc2)CC1
|
| 20 |
+
- Nc1ccccc1C(=O)N1CCN(Cc2ccc(F)cc2)CC1
|
| 21 |
+
- O=C(c1cccc(O)c1)N1CCN(Cc2ccc(F)cc2)CC1
|
| 22 |
+
- source_sentence: Cc1ccc(C(=O)Nc2cccc(C(=O)/C=C/c3ccc4c(c3)c3ccccc3n4C)c2)cc1
|
| 23 |
+
sentences:
|
| 24 |
+
- O=C(/C=C/c1ccc(O)c(O)c1)NC(Cc1ccccc1)C(=O)NO
|
| 25 |
+
- COc1cccc(OC(=O)COC(=O)c2ccc(O)cc2O)c1
|
| 26 |
+
- NC(=S)N/N=C/c1cccc2ccccc12
|
| 27 |
+
- source_sentence: CC(=O)c1c(O)ccc(C(c2ccc(O)cc2O)c2ccc(O)c(C(C)=O)c2O)c1O
|
| 28 |
+
sentences:
|
| 29 |
+
- C=CC(C)(C)c1cc(C2CC(=O)c3c(cc(O)c(CC=C(C)C)c3O)O2)c(OC)cc1O
|
| 30 |
+
- O=C1ON=C(c2ccccc2)/C1=C/c1ccc(O)cc1O
|
| 31 |
+
- COc1cc(-c2ccc(C(=O)O)c(O)c2)cc(OC)c1O
|
| 32 |
+
- source_sentence: CCCCc1ccc(/C(CC)=N/NC(N)=S)cc1
|
| 33 |
+
sentences:
|
| 34 |
+
- COc1ccccc1/C=N/NC(=O)c1ccc(OC)c(OC)c1
|
| 35 |
+
- COc1cc([C@@H]2Oc3c(O)cc([C@H]4Oc5cc(O)cc(O)c5C(=O)[C@@H]4O)cc3[C@H]2CO)ccc1O
|
| 36 |
+
- O=C(/C=C/c1ccc(O)c(O)c1)NCCc1c[nH]c2ccc(O)cc12
|
| 37 |
+
pipeline_tag: sentence-similarity
|
| 38 |
+
library_name: sentence-transformers
|
| 39 |
+
---
|
| 40 |
+
|
| 41 |
+
# SentenceTransformer based on google-bert/bert-base-cased
|
| 42 |
+
|
| 43 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 44 |
+
|
| 45 |
+
## Model Details
|
| 46 |
+
|
| 47 |
+
### Model Description
|
| 48 |
+
- **Model Type:** Sentence Transformer
|
| 49 |
+
- **Base model:** [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) <!-- at revision cd5ef92a9fb2f889e972770a36d4ed042daf221e -->
|
| 50 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 51 |
+
- **Output Dimensionality:** 768 dimensions
|
| 52 |
+
- **Similarity Function:** Cosine Similarity
|
| 53 |
+
- **Training Dataset:**
|
| 54 |
+
- csv
|
| 55 |
+
<!-- - **Language:** Unknown -->
|
| 56 |
+
<!-- - **License:** Unknown -->
|
| 57 |
+
|
| 58 |
+
### Model Sources
|
| 59 |
+
|
| 60 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 61 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
|
| 62 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 63 |
+
|
| 64 |
+
### Full Model Architecture
|
| 65 |
+
|
| 66 |
+
```
|
| 67 |
+
SentenceTransformer(
|
| 68 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
|
| 69 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 70 |
+
)
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
## Usage
|
| 74 |
+
|
| 75 |
+
### Direct Usage (Sentence Transformers)
|
| 76 |
+
|
| 77 |
+
First install the Sentence Transformers library:
|
| 78 |
+
|
| 79 |
+
```bash
|
| 80 |
+
pip install -U sentence-transformers
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
Then you can load this model and run inference.
|
| 84 |
+
```python
|
| 85 |
+
from sentence_transformers import SentenceTransformer
|
| 86 |
+
|
| 87 |
+
# Download from the 🤗 Hub
|
| 88 |
+
model = SentenceTransformer("Jimmy-Ooi/Tyrisonase_test_model_1000_10_adafactor")
|
| 89 |
+
# Run inference
|
| 90 |
+
sentences = [
|
| 91 |
+
'CCCCc1ccc(/C(CC)=N/NC(N)=S)cc1',
|
| 92 |
+
'COc1ccccc1/C=N/NC(=O)c1ccc(OC)c(OC)c1',
|
| 93 |
+
'O=C(/C=C/c1ccc(O)c(O)c1)NCCc1c[nH]c2ccc(O)cc12',
|
| 94 |
+
]
|
| 95 |
+
embeddings = model.encode(sentences)
|
| 96 |
+
print(embeddings.shape)
|
| 97 |
+
# [3, 768]
|
| 98 |
+
|
| 99 |
+
# Get the similarity scores for the embeddings
|
| 100 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 101 |
+
print(similarities)
|
| 102 |
+
# tensor([[ 1.0000, -0.2733, -0.0760],
|
| 103 |
+
# [-0.2733, 1.0000, 0.9683],
|
| 104 |
+
# [-0.0760, 0.9683, 1.0000]])
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
<!--
|
| 108 |
+
### Direct Usage (Transformers)
|
| 109 |
+
|
| 110 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 111 |
+
|
| 112 |
+
</details>
|
| 113 |
+
-->
|
| 114 |
+
|
| 115 |
+
<!--
|
| 116 |
+
### Downstream Usage (Sentence Transformers)
|
| 117 |
+
|
| 118 |
+
You can finetune this model on your own dataset.
|
| 119 |
+
|
| 120 |
+
<details><summary>Click to expand</summary>
|
| 121 |
+
|
| 122 |
+
</details>
|
| 123 |
+
-->
|
| 124 |
+
|
| 125 |
+
<!--
|
| 126 |
+
### Out-of-Scope Use
|
| 127 |
+
|
| 128 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 129 |
+
-->
|
| 130 |
+
|
| 131 |
+
<!--
|
| 132 |
+
## Bias, Risks and Limitations
|
| 133 |
+
|
| 134 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 135 |
+
-->
|
| 136 |
+
|
| 137 |
+
<!--
|
| 138 |
+
### Recommendations
|
| 139 |
+
|
| 140 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 141 |
+
-->
|
| 142 |
+
|
| 143 |
+
## Training Details
|
| 144 |
+
|
| 145 |
+
### Training Dataset
|
| 146 |
+
|
| 147 |
+
#### csv
|
| 148 |
+
|
| 149 |
+
* Dataset: csv
|
| 150 |
+
* Size: 188,228 training samples
|
| 151 |
+
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
| 152 |
+
* Approximate statistics based on the first 1000 samples:
|
| 153 |
+
| | premise | hypothesis | label |
|
| 154 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
|
| 155 |
+
| type | string | string | int |
|
| 156 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 38.76 tokens</li><li>max: 106 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 39.72 tokens</li><li>max: 145 tokens</li></ul> | <ul><li>0: ~50.20%</li><li>2: ~49.80%</li></ul> |
|
| 157 |
+
* Samples:
|
| 158 |
+
| premise | hypothesis | label |
|
| 159 |
+
|:---------------------------------------------------------------------|:--------------------------------------------------------------------------|:---------------|
|
| 160 |
+
| <code>COc1cc(OC)c(C2CCN(C)C2CO)c(O)c1-c1cc(-c2ccccc2Cl)[nH]n1</code> | <code>O=C(O)c1ccc(OCc2cn(Cc3cc(=O)c(O)co3)nn2)cc1</code> | <code>2</code> |
|
| 161 |
+
| <code>Cl.NC(Cc1ccc(=O)n(O)c1)C(=O)O</code> | <code>Cn1c2ccccc2c2cc(/C=C/C(=O)c3cccc(NC(=O)c4cccc(Cl)c4)c3)ccc21</code> | <code>0</code> |
|
| 162 |
+
| <code>Cc1ccc(O)cc1O</code> | <code>O=C1NC(=O)C(=Cc2cc(O)c(O)c(O)c2)C(=O)N1</code> | <code>0</code> |
|
| 163 |
+
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
| 164 |
+
|
| 165 |
+
### Evaluation Dataset
|
| 166 |
+
|
| 167 |
+
#### csv
|
| 168 |
+
|
| 169 |
+
* Dataset: csv
|
| 170 |
+
* Size: 33,217 evaluation samples
|
| 171 |
+
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
| 172 |
+
* Approximate statistics based on the first 1000 samples:
|
| 173 |
+
| | premise | hypothesis | label |
|
| 174 |
+
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
|
| 175 |
+
| type | string | string | int |
|
| 176 |
+
| details | <ul><li>min: 11 tokens</li><li>mean: 39.05 tokens</li><li>max: 145 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 39.29 tokens</li><li>max: 145 tokens</li></ul> | <ul><li>0: ~51.40%</li><li>2: ~48.60%</li></ul> |
|
| 177 |
+
* Samples:
|
| 178 |
+
| premise | hypothesis | label |
|
| 179 |
+
|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:---------------|
|
| 180 |
+
| <code>CC(=O)Oc1c(/N=N/c2ccc(C3=N/C(=C/c4ccc(OC(F)(F)F)cc4)C(=O)O3)cc2)ccc2ccccc12</code> | <code>CC1(C)C=Cc2c(cc3c(c2O)C(=O)CC(c2ccc(O)cc2O)O3)O1</code> | <code>0</code> |
|
| 181 |
+
| <code>COc1cc2c(c(OC)c1OC)[C@@H]1O[C@H](COC(=O)c3ccc(O)cc3)[C@@H](O)[C@H](O)[C@H]1OC2=O</code> | <code>O=C(c1cccc(F)c1)N1CCN(Cc2ccc(F)cc2)CC1</code> | <code>0</code> |
|
| 182 |
+
| <code>CC(=O)Nc1ccc(/N=N/c2c(N)nc(N)nc2Cl)cc1</code> | <code>NC(=S)c1ccncc1</code> | <code>0</code> |
|
| 183 |
+
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
| 184 |
+
|
| 185 |
+
### Training Hyperparameters
|
| 186 |
+
#### Non-Default Hyperparameters
|
| 187 |
+
|
| 188 |
+
- `per_device_train_batch_size`: 64
|
| 189 |
+
- `per_device_eval_batch_size`: 64
|
| 190 |
+
- `weight_decay`: 0.001
|
| 191 |
+
- `num_train_epochs`: 10
|
| 192 |
+
- `warmup_steps`: 100
|
| 193 |
+
- `fp16`: True
|
| 194 |
+
- `optim`: adafactor
|
| 195 |
+
|
| 196 |
+
#### All Hyperparameters
|
| 197 |
+
<details><summary>Click to expand</summary>
|
| 198 |
+
|
| 199 |
+
- `overwrite_output_dir`: False
|
| 200 |
+
- `do_predict`: False
|
| 201 |
+
- `eval_strategy`: no
|
| 202 |
+
- `prediction_loss_only`: True
|
| 203 |
+
- `per_device_train_batch_size`: 64
|
| 204 |
+
- `per_device_eval_batch_size`: 64
|
| 205 |
+
- `per_gpu_train_batch_size`: None
|
| 206 |
+
- `per_gpu_eval_batch_size`: None
|
| 207 |
+
- `gradient_accumulation_steps`: 1
|
| 208 |
+
- `eval_accumulation_steps`: None
|
| 209 |
+
- `torch_empty_cache_steps`: None
|
| 210 |
+
- `learning_rate`: 5e-05
|
| 211 |
+
- `weight_decay`: 0.001
|
| 212 |
+
- `adam_beta1`: 0.9
|
| 213 |
+
- `adam_beta2`: 0.999
|
| 214 |
+
- `adam_epsilon`: 1e-08
|
| 215 |
+
- `max_grad_norm`: 1.0
|
| 216 |
+
- `num_train_epochs`: 10
|
| 217 |
+
- `max_steps`: -1
|
| 218 |
+
- `lr_scheduler_type`: linear
|
| 219 |
+
- `lr_scheduler_kwargs`: {}
|
| 220 |
+
- `warmup_ratio`: 0.0
|
| 221 |
+
- `warmup_steps`: 100
|
| 222 |
+
- `log_level`: passive
|
| 223 |
+
- `log_level_replica`: warning
|
| 224 |
+
- `log_on_each_node`: True
|
| 225 |
+
- `logging_nan_inf_filter`: True
|
| 226 |
+
- `save_safetensors`: True
|
| 227 |
+
- `save_on_each_node`: False
|
| 228 |
+
- `save_only_model`: False
|
| 229 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 230 |
+
- `no_cuda`: False
|
| 231 |
+
- `use_cpu`: False
|
| 232 |
+
- `use_mps_device`: False
|
| 233 |
+
- `seed`: 42
|
| 234 |
+
- `data_seed`: None
|
| 235 |
+
- `jit_mode_eval`: False
|
| 236 |
+
- `bf16`: False
|
| 237 |
+
- `fp16`: True
|
| 238 |
+
- `fp16_opt_level`: O1
|
| 239 |
+
- `half_precision_backend`: auto
|
| 240 |
+
- `bf16_full_eval`: False
|
| 241 |
+
- `fp16_full_eval`: False
|
| 242 |
+
- `tf32`: None
|
| 243 |
+
- `local_rank`: 0
|
| 244 |
+
- `ddp_backend`: None
|
| 245 |
+
- `tpu_num_cores`: None
|
| 246 |
+
- `tpu_metrics_debug`: False
|
| 247 |
+
- `debug`: []
|
| 248 |
+
- `dataloader_drop_last`: False
|
| 249 |
+
- `dataloader_num_workers`: 0
|
| 250 |
+
- `dataloader_prefetch_factor`: None
|
| 251 |
+
- `past_index`: -1
|
| 252 |
+
- `disable_tqdm`: False
|
| 253 |
+
- `remove_unused_columns`: True
|
| 254 |
+
- `label_names`: None
|
| 255 |
+
- `load_best_model_at_end`: False
|
| 256 |
+
- `ignore_data_skip`: False
|
| 257 |
+
- `fsdp`: []
|
| 258 |
+
- `fsdp_min_num_params`: 0
|
| 259 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 260 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 261 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 262 |
+
- `parallelism_config`: None
|
| 263 |
+
- `deepspeed`: None
|
| 264 |
+
- `label_smoothing_factor`: 0.0
|
| 265 |
+
- `optim`: adafactor
|
| 266 |
+
- `optim_args`: None
|
| 267 |
+
- `adafactor`: False
|
| 268 |
+
- `group_by_length`: False
|
| 269 |
+
- `length_column_name`: length
|
| 270 |
+
- `project`: huggingface
|
| 271 |
+
- `trackio_space_id`: trackio
|
| 272 |
+
- `ddp_find_unused_parameters`: None
|
| 273 |
+
- `ddp_bucket_cap_mb`: None
|
| 274 |
+
- `ddp_broadcast_buffers`: False
|
| 275 |
+
- `dataloader_pin_memory`: True
|
| 276 |
+
- `dataloader_persistent_workers`: False
|
| 277 |
+
- `skip_memory_metrics`: True
|
| 278 |
+
- `use_legacy_prediction_loop`: False
|
| 279 |
+
- `push_to_hub`: False
|
| 280 |
+
- `resume_from_checkpoint`: None
|
| 281 |
+
- `hub_model_id`: None
|
| 282 |
+
- `hub_strategy`: every_save
|
| 283 |
+
- `hub_private_repo`: None
|
| 284 |
+
- `hub_always_push`: False
|
| 285 |
+
- `hub_revision`: None
|
| 286 |
+
- `gradient_checkpointing`: False
|
| 287 |
+
- `gradient_checkpointing_kwargs`: None
|
| 288 |
+
- `include_inputs_for_metrics`: False
|
| 289 |
+
- `include_for_metrics`: []
|
| 290 |
+
- `eval_do_concat_batches`: True
|
| 291 |
+
- `fp16_backend`: auto
|
| 292 |
+
- `push_to_hub_model_id`: None
|
| 293 |
+
- `push_to_hub_organization`: None
|
| 294 |
+
- `mp_parameters`:
|
| 295 |
+
- `auto_find_batch_size`: False
|
| 296 |
+
- `full_determinism`: False
|
| 297 |
+
- `torchdynamo`: None
|
| 298 |
+
- `ray_scope`: last
|
| 299 |
+
- `ddp_timeout`: 1800
|
| 300 |
+
- `torch_compile`: False
|
| 301 |
+
- `torch_compile_backend`: None
|
| 302 |
+
- `torch_compile_mode`: None
|
| 303 |
+
- `include_tokens_per_second`: False
|
| 304 |
+
- `include_num_input_tokens_seen`: no
|
| 305 |
+
- `neftune_noise_alpha`: None
|
| 306 |
+
- `optim_target_modules`: None
|
| 307 |
+
- `batch_eval_metrics`: False
|
| 308 |
+
- `eval_on_start`: False
|
| 309 |
+
- `use_liger_kernel`: False
|
| 310 |
+
- `liger_kernel_config`: None
|
| 311 |
+
- `eval_use_gather_object`: False
|
| 312 |
+
- `average_tokens_across_devices`: True
|
| 313 |
+
- `prompts`: None
|
| 314 |
+
- `batch_sampler`: batch_sampler
|
| 315 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 316 |
+
- `router_mapping`: {}
|
| 317 |
+
- `learning_rate_mapping`: {}
|
| 318 |
+
|
| 319 |
+
</details>
|
| 320 |
+
|
| 321 |
+
### Training Logs
|
| 322 |
+
<details><summary>Click to expand</summary>
|
| 323 |
+
|
| 324 |
+
| Epoch | Step | Training Loss |
|
| 325 |
+
|:------:|:-----:|:-------------:|
|
| 326 |
+
| 0.0340 | 100 | 0.7569 |
|
| 327 |
+
| 0.0680 | 200 | 0.6817 |
|
| 328 |
+
| 0.1020 | 300 | 0.6559 |
|
| 329 |
+
| 0.1360 | 400 | 0.6302 |
|
| 330 |
+
| 0.1700 | 500 | 0.6204 |
|
| 331 |
+
| 0.2039 | 600 | 0.6015 |
|
| 332 |
+
| 0.2379 | 700 | 0.5901 |
|
| 333 |
+
| 0.2719 | 800 | 0.583 |
|
| 334 |
+
| 0.3059 | 900 | 0.5892 |
|
| 335 |
+
| 0.3399 | 1000 | 0.58 |
|
| 336 |
+
| 0.3739 | 1100 | 0.5752 |
|
| 337 |
+
| 0.4079 | 1200 | 0.5707 |
|
| 338 |
+
| 0.4419 | 1300 | 0.5727 |
|
| 339 |
+
| 0.4759 | 1400 | 0.5562 |
|
| 340 |
+
| 0.5099 | 1500 | 0.5736 |
|
| 341 |
+
| 0.5438 | 1600 | 0.5609 |
|
| 342 |
+
| 0.5778 | 1700 | 0.5545 |
|
| 343 |
+
| 0.6118 | 1800 | 0.5528 |
|
| 344 |
+
| 0.6458 | 1900 | 0.5503 |
|
| 345 |
+
| 0.6798 | 2000 | 0.5527 |
|
| 346 |
+
| 0.7138 | 2100 | 0.5552 |
|
| 347 |
+
| 0.7478 | 2200 | 0.5499 |
|
| 348 |
+
| 0.7818 | 2300 | 0.5477 |
|
| 349 |
+
| 0.8158 | 2400 | 0.5429 |
|
| 350 |
+
| 0.8498 | 2500 | 0.5314 |
|
| 351 |
+
| 0.8838 | 2600 | 0.5542 |
|
| 352 |
+
| 0.9177 | 2700 | 0.5373 |
|
| 353 |
+
| 0.9517 | 2800 | 0.5321 |
|
| 354 |
+
| 0.9857 | 2900 | 0.5412 |
|
| 355 |
+
| 1.0197 | 3000 | 0.5367 |
|
| 356 |
+
| 1.0537 | 3100 | 0.5368 |
|
| 357 |
+
| 1.0877 | 3200 | 0.5388 |
|
| 358 |
+
| 1.1217 | 3300 | 0.5419 |
|
| 359 |
+
| 1.1557 | 3400 | 0.5303 |
|
| 360 |
+
| 1.1897 | 3500 | 0.5369 |
|
| 361 |
+
| 1.2237 | 3600 | 0.5357 |
|
| 362 |
+
| 1.2576 | 3700 | 0.5296 |
|
| 363 |
+
| 1.2916 | 3800 | 0.5368 |
|
| 364 |
+
| 1.3256 | 3900 | 0.5351 |
|
| 365 |
+
| 1.3596 | 4000 | 0.533 |
|
| 366 |
+
| 1.3936 | 4100 | 0.5294 |
|
| 367 |
+
| 1.4276 | 4200 | 0.5341 |
|
| 368 |
+
| 1.4616 | 4300 | 0.5307 |
|
| 369 |
+
| 1.4956 | 4400 | 0.5295 |
|
| 370 |
+
| 1.5296 | 4500 | 0.5269 |
|
| 371 |
+
| 1.5636 | 4600 | 0.5272 |
|
| 372 |
+
| 1.5976 | 4700 | 0.5227 |
|
| 373 |
+
| 1.6315 | 4800 | 0.529 |
|
| 374 |
+
| 1.6655 | 4900 | 0.5316 |
|
| 375 |
+
| 1.6995 | 5000 | 0.53 |
|
| 376 |
+
| 1.7335 | 5100 | 0.5251 |
|
| 377 |
+
| 1.7675 | 5200 | 0.5294 |
|
| 378 |
+
| 1.8015 | 5300 | 0.5225 |
|
| 379 |
+
| 1.8355 | 5400 | 0.5204 |
|
| 380 |
+
| 1.8695 | 5500 | 0.5139 |
|
| 381 |
+
| 1.9035 | 5600 | 0.525 |
|
| 382 |
+
| 1.9375 | 5700 | 0.5242 |
|
| 383 |
+
| 1.9714 | 5800 | 0.5208 |
|
| 384 |
+
| 2.0054 | 5900 | 0.5183 |
|
| 385 |
+
| 2.0394 | 6000 | 0.523 |
|
| 386 |
+
| 2.0734 | 6100 | 0.5144 |
|
| 387 |
+
| 2.1074 | 6200 | 0.514 |
|
| 388 |
+
| 2.1414 | 6300 | 0.516 |
|
| 389 |
+
| 2.1754 | 6400 | 0.527 |
|
| 390 |
+
| 2.2094 | 6500 | 0.5182 |
|
| 391 |
+
| 2.2434 | 6600 | 0.5213 |
|
| 392 |
+
| 2.2774 | 6700 | 0.5162 |
|
| 393 |
+
| 2.3114 | 6800 | 0.5202 |
|
| 394 |
+
| 2.3453 | 6900 | 0.5258 |
|
| 395 |
+
| 2.3793 | 7000 | 0.5191 |
|
| 396 |
+
| 2.4133 | 7100 | 0.5185 |
|
| 397 |
+
| 2.4473 | 7200 | 0.5134 |
|
| 398 |
+
| 2.4813 | 7300 | 0.5231 |
|
| 399 |
+
| 2.5153 | 7400 | 0.513 |
|
| 400 |
+
| 2.5493 | 7500 | 0.5167 |
|
| 401 |
+
| 2.5833 | 7600 | 0.5089 |
|
| 402 |
+
| 2.6173 | 7700 | 0.5163 |
|
| 403 |
+
| 2.6513 | 7800 | 0.517 |
|
| 404 |
+
| 2.6852 | 7900 | 0.5081 |
|
| 405 |
+
| 2.7192 | 8000 | 0.5171 |
|
| 406 |
+
| 2.7532 | 8100 | 0.5138 |
|
| 407 |
+
| 2.7872 | 8200 | 0.508 |
|
| 408 |
+
| 2.8212 | 8300 | 0.5172 |
|
| 409 |
+
| 2.8552 | 8400 | 0.5109 |
|
| 410 |
+
| 2.8892 | 8500 | 0.5023 |
|
| 411 |
+
| 2.9232 | 8600 | 0.5128 |
|
| 412 |
+
| 2.9572 | 8700 | 0.5119 |
|
| 413 |
+
| 2.9912 | 8800 | 0.5082 |
|
| 414 |
+
| 3.0252 | 8900 | 0.5183 |
|
| 415 |
+
| 3.0591 | 9000 | 0.512 |
|
| 416 |
+
| 3.0931 | 9100 | 0.5112 |
|
| 417 |
+
| 3.1271 | 9200 | 0.5157 |
|
| 418 |
+
| 3.1611 | 9300 | 0.5066 |
|
| 419 |
+
| 3.1951 | 9400 | 0.5035 |
|
| 420 |
+
| 3.2291 | 9500 | 0.5037 |
|
| 421 |
+
| 3.2631 | 9600 | 0.5112 |
|
| 422 |
+
| 3.2971 | 9700 | 0.5147 |
|
| 423 |
+
| 3.3311 | 9800 | 0.5112 |
|
| 424 |
+
| 3.3651 | 9900 | 0.5 |
|
| 425 |
+
| 3.3990 | 10000 | 0.5152 |
|
| 426 |
+
| 3.4330 | 10100 | 0.5146 |
|
| 427 |
+
| 3.4670 | 10200 | 0.5103 |
|
| 428 |
+
| 3.5010 | 10300 | 0.5129 |
|
| 429 |
+
| 3.5350 | 10400 | 0.5005 |
|
| 430 |
+
| 3.5690 | 10500 | 0.5065 |
|
| 431 |
+
| 3.6030 | 10600 | 0.5105 |
|
| 432 |
+
| 3.6370 | 10700 | 0.5101 |
|
| 433 |
+
| 3.6710 | 10800 | 0.5058 |
|
| 434 |
+
| 3.7050 | 10900 | 0.5093 |
|
| 435 |
+
| 3.7390 | 11000 | 0.5102 |
|
| 436 |
+
| 3.7729 | 11100 | 0.511 |
|
| 437 |
+
| 3.8069 | 11200 | 0.4982 |
|
| 438 |
+
| 3.8409 | 11300 | 0.4973 |
|
| 439 |
+
| 3.8749 | 11400 | 0.5068 |
|
| 440 |
+
| 3.9089 | 11500 | 0.497 |
|
| 441 |
+
| 3.9429 | 11600 | 0.5018 |
|
| 442 |
+
| 3.9769 | 11700 | 0.5028 |
|
| 443 |
+
| 4.0109 | 11800 | 0.5132 |
|
| 444 |
+
| 4.0449 | 11900 | 0.5024 |
|
| 445 |
+
| 4.0789 | 12000 | 0.4992 |
|
| 446 |
+
| 4.1128 | 12100 | 0.4954 |
|
| 447 |
+
| 4.1468 | 12200 | 0.5094 |
|
| 448 |
+
| 4.1808 | 12300 | 0.5091 |
|
| 449 |
+
| 4.2148 | 12400 | 0.507 |
|
| 450 |
+
| 4.2488 | 12500 | 0.504 |
|
| 451 |
+
| 4.2828 | 12600 | 0.5029 |
|
| 452 |
+
| 4.3168 | 12700 | 0.4976 |
|
| 453 |
+
| 4.3508 | 12800 | 0.5001 |
|
| 454 |
+
| 4.3848 | 12900 | 0.5077 |
|
| 455 |
+
| 4.4188 | 13000 | 0.496 |
|
| 456 |
+
| 4.4528 | 13100 | 0.5075 |
|
| 457 |
+
| 4.4867 | 13200 | 0.5059 |
|
| 458 |
+
| 4.5207 | 13300 | 0.5111 |
|
| 459 |
+
| 4.5547 | 13400 | 0.504 |
|
| 460 |
+
| 4.5887 | 13500 | 0.4977 |
|
| 461 |
+
| 4.6227 | 13600 | 0.5156 |
|
| 462 |
+
| 4.6567 | 13700 | 0.4949 |
|
| 463 |
+
| 4.6907 | 13800 | 0.5064 |
|
| 464 |
+
| 4.7247 | 13900 | 0.5014 |
|
| 465 |
+
| 4.7587 | 14000 | 0.5006 |
|
| 466 |
+
| 4.7927 | 14100 | 0.5018 |
|
| 467 |
+
| 4.8266 | 14200 | 0.5079 |
|
| 468 |
+
| 4.8606 | 14300 | 0.5089 |
|
| 469 |
+
| 4.8946 | 14400 | 0.5006 |
|
| 470 |
+
| 4.9286 | 14500 | 0.5123 |
|
| 471 |
+
| 4.9626 | 14600 | 0.5019 |
|
| 472 |
+
| 4.9966 | 14700 | 0.5023 |
|
| 473 |
+
| 5.0306 | 14800 | 0.496 |
|
| 474 |
+
| 5.0646 | 14900 | 0.4934 |
|
| 475 |
+
| 5.0986 | 15000 | 0.5006 |
|
| 476 |
+
| 5.1326 | 15100 | 0.5021 |
|
| 477 |
+
| 5.1666 | 15200 | 0.4989 |
|
| 478 |
+
| 5.2005 | 15300 | 0.4932 |
|
| 479 |
+
| 5.2345 | 15400 | 0.5023 |
|
| 480 |
+
| 5.2685 | 15500 | 0.5047 |
|
| 481 |
+
| 5.3025 | 15600 | 0.5007 |
|
| 482 |
+
| 5.3365 | 15700 | 0.4982 |
|
| 483 |
+
| 5.3705 | 15800 | 0.5005 |
|
| 484 |
+
| 5.4045 | 15900 | 0.5101 |
|
| 485 |
+
| 5.4385 | 16000 | 0.4958 |
|
| 486 |
+
| 5.4725 | 16100 | 0.5039 |
|
| 487 |
+
| 5.5065 | 16200 | 0.4988 |
|
| 488 |
+
| 5.5404 | 16300 | 0.5028 |
|
| 489 |
+
| 5.5744 | 16400 | 0.499 |
|
| 490 |
+
| 5.6084 | 16500 | 0.4923 |
|
| 491 |
+
| 5.6424 | 16600 | 0.5024 |
|
| 492 |
+
| 5.6764 | 16700 | 0.5022 |
|
| 493 |
+
| 5.7104 | 16800 | 0.5007 |
|
| 494 |
+
| 5.7444 | 16900 | 0.4982 |
|
| 495 |
+
| 5.7784 | 17000 | 0.4969 |
|
| 496 |
+
| 5.8124 | 17100 | 0.4981 |
|
| 497 |
+
| 5.8464 | 17200 | 0.4987 |
|
| 498 |
+
| 5.8804 | 17300 | 0.4964 |
|
| 499 |
+
| 5.9143 | 17400 | 0.4974 |
|
| 500 |
+
| 5.9483 | 17500 | 0.4925 |
|
| 501 |
+
| 5.9823 | 17600 | 0.5087 |
|
| 502 |
+
| 6.0163 | 17700 | 0.4963 |
|
| 503 |
+
| 6.0503 | 17800 | 0.4954 |
|
| 504 |
+
| 6.0843 | 17900 | 0.4914 |
|
| 505 |
+
| 6.1183 | 18000 | 0.4878 |
|
| 506 |
+
| 6.1523 | 18100 | 0.5001 |
|
| 507 |
+
| 6.1863 | 18200 | 0.5008 |
|
| 508 |
+
| 6.2203 | 18300 | 0.5035 |
|
| 509 |
+
| 6.2542 | 18400 | 0.5016 |
|
| 510 |
+
| 6.2882 | 18500 | 0.4944 |
|
| 511 |
+
| 6.3222 | 18600 | 0.5011 |
|
| 512 |
+
| 6.3562 | 18700 | 0.4927 |
|
| 513 |
+
| 6.3902 | 18800 | 0.4965 |
|
| 514 |
+
| 6.4242 | 18900 | 0.5039 |
|
| 515 |
+
| 6.4582 | 19000 | 0.4971 |
|
| 516 |
+
| 6.4922 | 19100 | 0.4992 |
|
| 517 |
+
| 6.5262 | 19200 | 0.488 |
|
| 518 |
+
| 6.5602 | 19300 | 0.4935 |
|
| 519 |
+
| 6.5942 | 19400 | 0.5032 |
|
| 520 |
+
| 6.6281 | 19500 | 0.4955 |
|
| 521 |
+
| 6.6621 | 19600 | 0.494 |
|
| 522 |
+
| 6.6961 | 19700 | 0.4997 |
|
| 523 |
+
| 6.7301 | 19800 | 0.4941 |
|
| 524 |
+
| 6.7641 | 19900 | 0.4996 |
|
| 525 |
+
| 6.7981 | 20000 | 0.4951 |
|
| 526 |
+
| 6.8321 | 20100 | 0.497 |
|
| 527 |
+
| 6.8661 | 20200 | 0.4989 |
|
| 528 |
+
| 6.9001 | 20300 | 0.4937 |
|
| 529 |
+
| 6.9341 | 20400 | 0.4983 |
|
| 530 |
+
| 6.9680 | 20500 | 0.4968 |
|
| 531 |
+
| 7.0020 | 20600 | 0.5024 |
|
| 532 |
+
| 7.0360 | 20700 | 0.4979 |
|
| 533 |
+
| 7.0700 | 20800 | 0.4919 |
|
| 534 |
+
| 7.1040 | 20900 | 0.509 |
|
| 535 |
+
| 7.1380 | 21000 | 0.4961 |
|
| 536 |
+
| 7.1720 | 21100 | 0.4981 |
|
| 537 |
+
| 7.2060 | 21200 | 0.4903 |
|
| 538 |
+
| 7.2400 | 21300 | 0.4995 |
|
| 539 |
+
| 7.2740 | 21400 | 0.4961 |
|
| 540 |
+
| 7.3080 | 21500 | 0.4929 |
|
| 541 |
+
| 7.3419 | 21600 | 0.4919 |
|
| 542 |
+
| 7.3759 | 21700 | 0.5023 |
|
| 543 |
+
| 7.4099 | 21800 | 0.4865 |
|
| 544 |
+
| 7.4439 | 21900 | 0.4984 |
|
| 545 |
+
| 7.4779 | 22000 | 0.4882 |
|
| 546 |
+
| 7.5119 | 22100 | 0.4928 |
|
| 547 |
+
| 7.5459 | 22200 | 0.4929 |
|
| 548 |
+
| 7.5799 | 22300 | 0.504 |
|
| 549 |
+
| 7.6139 | 22400 | 0.4998 |
|
| 550 |
+
| 7.6479 | 22500 | 0.494 |
|
| 551 |
+
| 7.6818 | 22600 | 0.4891 |
|
| 552 |
+
| 7.7158 | 22700 | 0.4981 |
|
| 553 |
+
| 7.7498 | 22800 | 0.4888 |
|
| 554 |
+
| 7.7838 | 22900 | 0.4893 |
|
| 555 |
+
| 7.8178 | 23000 | 0.4948 |
|
| 556 |
+
| 7.8518 | 23100 | 0.4985 |
|
| 557 |
+
| 7.8858 | 23200 | 0.5004 |
|
| 558 |
+
| 7.9198 | 23300 | 0.492 |
|
| 559 |
+
| 7.9538 | 23400 | 0.4937 |
|
| 560 |
+
| 7.9878 | 23500 | 0.4947 |
|
| 561 |
+
| 8.0218 | 23600 | 0.4932 |
|
| 562 |
+
| 8.0557 | 23700 | 0.491 |
|
| 563 |
+
| 8.0897 | 23800 | 0.4966 |
|
| 564 |
+
| 8.1237 | 23900 | 0.5002 |
|
| 565 |
+
| 8.1577 | 24000 | 0.4956 |
|
| 566 |
+
| 8.1917 | 24100 | 0.4923 |
|
| 567 |
+
| 8.2257 | 24200 | 0.4935 |
|
| 568 |
+
| 8.2597 | 24300 | 0.492 |
|
| 569 |
+
| 8.2937 | 24400 | 0.489 |
|
| 570 |
+
| 8.3277 | 24500 | 0.4948 |
|
| 571 |
+
| 8.3617 | 24600 | 0.4937 |
|
| 572 |
+
| 8.3956 | 24700 | 0.4909 |
|
| 573 |
+
| 8.4296 | 24800 | 0.5005 |
|
| 574 |
+
| 8.4636 | 24900 | 0.4962 |
|
| 575 |
+
| 8.4976 | 25000 | 0.4865 |
|
| 576 |
+
| 8.5316 | 25100 | 0.4893 |
|
| 577 |
+
| 8.5656 | 25200 | 0.4931 |
|
| 578 |
+
| 8.5996 | 25300 | 0.4968 |
|
| 579 |
+
| 8.6336 | 25400 | 0.4951 |
|
| 580 |
+
| 8.6676 | 25500 | 0.4907 |
|
| 581 |
+
| 8.7016 | 25600 | 0.505 |
|
| 582 |
+
| 8.7356 | 25700 | 0.4938 |
|
| 583 |
+
| 8.7695 | 25800 | 0.4953 |
|
| 584 |
+
| 8.8035 | 25900 | 0.4968 |
|
| 585 |
+
| 8.8375 | 26000 | 0.4854 |
|
| 586 |
+
| 8.8715 | 26100 | 0.4847 |
|
| 587 |
+
| 8.9055 | 26200 | 0.4918 |
|
| 588 |
+
| 8.9395 | 26300 | 0.4987 |
|
| 589 |
+
| 8.9735 | 26400 | 0.4918 |
|
| 590 |
+
| 9.0075 | 26500 | 0.5023 |
|
| 591 |
+
| 9.0415 | 26600 | 0.4976 |
|
| 592 |
+
| 9.0755 | 26700 | 0.4947 |
|
| 593 |
+
| 9.1094 | 26800 | 0.4924 |
|
| 594 |
+
| 9.1434 | 26900 | 0.4914 |
|
| 595 |
+
| 9.1774 | 27000 | 0.4976 |
|
| 596 |
+
| 9.2114 | 27100 | 0.4908 |
|
| 597 |
+
| 9.2454 | 27200 | 0.4873 |
|
| 598 |
+
| 9.2794 | 27300 | 0.491 |
|
| 599 |
+
| 9.3134 | 27400 | 0.4912 |
|
| 600 |
+
| 9.3474 | 27500 | 0.4915 |
|
| 601 |
+
| 9.3814 | 27600 | 0.4933 |
|
| 602 |
+
| 9.4154 | 27700 | 0.4949 |
|
| 603 |
+
| 9.4494 | 27800 | 0.4978 |
|
| 604 |
+
| 9.4833 | 27900 | 0.4956 |
|
| 605 |
+
| 9.5173 | 28000 | 0.4854 |
|
| 606 |
+
| 9.5513 | 28100 | 0.4919 |
|
| 607 |
+
| 9.5853 | 28200 | 0.4919 |
|
| 608 |
+
| 9.6193 | 28300 | 0.4979 |
|
| 609 |
+
| 9.6533 | 28400 | 0.4921 |
|
| 610 |
+
| 9.6873 | 28500 | 0.4961 |
|
| 611 |
+
| 9.7213 | 28600 | 0.4918 |
|
| 612 |
+
| 9.7553 | 28700 | 0.4923 |
|
| 613 |
+
| 9.7893 | 28800 | 0.4934 |
|
| 614 |
+
| 9.8232 | 28900 | 0.4871 |
|
| 615 |
+
| 9.8572 | 29000 | 0.4879 |
|
| 616 |
+
| 9.8912 | 29100 | 0.4922 |
|
| 617 |
+
| 9.9252 | 29200 | 0.4921 |
|
| 618 |
+
| 9.9592 | 29300 | 0.4884 |
|
| 619 |
+
| 9.9932 | 29400 | 0.4936 |
|
| 620 |
+
|
| 621 |
+
</details>
|
| 622 |
+
|
| 623 |
+
### Framework Versions
|
| 624 |
+
- Python: 3.12.12
|
| 625 |
+
- Sentence Transformers: 5.1.2
|
| 626 |
+
- Transformers: 4.57.3
|
| 627 |
+
- PyTorch: 2.9.0+cu126
|
| 628 |
+
- Accelerate: 1.12.0
|
| 629 |
+
- Datasets: 4.0.0
|
| 630 |
+
- Tokenizers: 0.22.1
|
| 631 |
+
|
| 632 |
+
## Citation
|
| 633 |
+
|
| 634 |
+
### BibTeX
|
| 635 |
+
|
| 636 |
+
#### Sentence Transformers and SoftmaxLoss
|
| 637 |
+
```bibtex
|
| 638 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 639 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 640 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 641 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 642 |
+
month = "11",
|
| 643 |
+
year = "2019",
|
| 644 |
+
publisher = "Association for Computational Linguistics",
|
| 645 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 646 |
+
}
|
| 647 |
+
```
|
| 648 |
+
|
| 649 |
+
<!--
|
| 650 |
+
## Glossary
|
| 651 |
+
|
| 652 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 653 |
+
-->
|
| 654 |
+
|
| 655 |
+
<!--
|
| 656 |
+
## Model Card Authors
|
| 657 |
+
|
| 658 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 659 |
+
-->
|
| 660 |
+
|
| 661 |
+
<!--
|
| 662 |
+
## Model Card Contact
|
| 663 |
+
|
| 664 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 665 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"dtype": "float32",
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 3072,
|
| 14 |
+
"layer_norm_eps": 1e-12,
|
| 15 |
+
"max_position_embeddings": 512,
|
| 16 |
+
"model_type": "bert",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 12,
|
| 19 |
+
"pad_token_id": 0,
|
| 20 |
+
"position_embedding_type": "absolute",
|
| 21 |
+
"transformers_version": "4.57.3",
|
| 22 |
+
"type_vocab_size": 2,
|
| 23 |
+
"use_cache": true,
|
| 24 |
+
"vocab_size": 28996
|
| 25 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "SentenceTransformer",
|
| 3 |
+
"__version__": {
|
| 4 |
+
"sentence_transformers": "5.1.2",
|
| 5 |
+
"transformers": "4.57.3",
|
| 6 |
+
"pytorch": "2.9.0+cu126"
|
| 7 |
+
},
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
| 11 |
+
},
|
| 12 |
+
"default_prompt_name": null,
|
| 13 |
+
"similarity_fn_name": "cosine"
|
| 14 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2336f5315c5175f6951fb266b8efe4b57b83ba43afdd4f6f330d045a4cc7009e
|
| 3 |
+
size 433263448
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": false,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "[PAD]",
|
| 51 |
+
"sep_token": "[SEP]",
|
| 52 |
+
"strip_accents": null,
|
| 53 |
+
"tokenize_chinese_chars": true,
|
| 54 |
+
"tokenizer_class": "BertTokenizer",
|
| 55 |
+
"unk_token": "[UNK]"
|
| 56 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|