NguyenDinhHieu commited on
Commit
39cb55d
·
verified ·
1 Parent(s): a3d2d5e

EquiFashionModel

Browse files
Files changed (1) hide show
  1. app.py +263 -0
app.py ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import einops
4
+ import gradio as gr
5
+ import numpy as np
6
+ import torch
7
+ import random
8
+ from huggingface_hub import hf_hub_download
9
+
10
+ from pytorch_lightning import seed_everything
11
+ from utils.resize import resize_image, HWC3
12
+ from cldm.model import create_model, load_state_dict
13
+ from cldm.ddim_lle import DDIMSampler as DDIMSampler_LLE
14
+ from cldm.ddim_hlg import DDIMSampler as DDIMSampler_HLG
15
+ from automation_pose_mask.openpose import OpenposeDetector
16
+ from automation_pose_mask.auto_mask import MaskDetector
17
+ from PIL import Image
18
+ from rembg import remove
19
+
20
+ from utils.config import (
21
+ model_yaml,
22
+ category_dict,
23
+ attribute_dict
24
+ )
25
+
26
+ ##########################################
27
+ # Download model files from HF Hub
28
+ ##########################################
29
+
30
+ MODEL_REPO = "NguyenDinhHieu/EquiFashionModel"
31
+
32
+ openpose_body_model_path = hf_hub_download(MODEL_REPO, filename="body_pose_model.pth")
33
+ openpose_hand_model_path = hf_hub_download(MODEL_REPO, filename="hand_pose_model.pth")
34
+ sam_model_path = hf_hub_download(MODEL_REPO, filename="open_clip_pytorch_model.bin")
35
+ my_model_path = hf_hub_download(MODEL_REPO, filename="eqf_final.ckpt")
36
+
37
+ ##########################################
38
+ # Initialize model on GPU once
39
+ ##########################################
40
+
41
+ device = "cuda" if torch.cuda.is_available() else "cpu"
42
+
43
+ apply_openpose = OpenposeDetector(
44
+ body_model_path=openpose_body_model_path,
45
+ hand_model_path=openpose_hand_model_path
46
+ )
47
+
48
+ apply_mask = MaskDetector(sam_model_path=sam_model_path)
49
+
50
+ model = create_model(model_yaml).to(device)
51
+ model.load_state_dict(load_state_dict(my_model_path, location=device))
52
+ model.eval()
53
+
54
+ hlg_sampler = DDIMSampler_HLG(model)
55
+ lle_sampler = DDIMSampler_LLE(model)
56
+
57
+ ##########################################
58
+ # Example images
59
+ ##########################################
60
+
61
+ example_path = os.path.join(os.path.dirname(__file__), "preselected_images")
62
+ example_image_list = [os.path.join(example_path, x) for x in os.listdir(example_path)]
63
+
64
+ ##########################################
65
+ # Utility functions
66
+ ##########################################
67
+
68
+ def pil_to_binary_mask(pil_image, threshold=0):
69
+ np_image = np.array(pil_image)
70
+ grayscale_image = Image.fromarray(np_image).convert("L")
71
+ binary_mask = (np.array(grayscale_image) > threshold).astype(np.uint8) * 255
72
+ return Image.fromarray(binary_mask)
73
+
74
+ def add_white_background(image):
75
+ image = image.convert("RGBA")
76
+ white_bg = Image.new("RGBA", image.size, "WHITE")
77
+ white_bg.paste(image, (0, 0), image)
78
+ return white_bg.convert("RGB")
79
+
80
+ ##########################################
81
+ # HLG PROCESS
82
+ ##########################################
83
+
84
+ def hlg_process(hlg_prompt, input_image, category, a_prompt, n_prompt,
85
+ num_samples, image_resolution, detect_resolution, ddim_steps,
86
+ guess_mode, strength, scale, seed, eta):
87
+
88
+ with torch.no_grad():
89
+ input_image = HWC3(input_image)
90
+ detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution))
91
+ detected_map = HWC3(detected_map)
92
+ img = resize_image(input_image, image_resolution)
93
+ H, W, C = img.shape
94
+
95
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
96
+
97
+ control = torch.from_numpy(detected_map).float().to(device) / 255.0
98
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
99
+ control = einops.rearrange(control, 'b h w c -> b c h w')
100
+
101
+ if seed == -1:
102
+ seed = random.randint(0, 4294967294)
103
+ seed_everything(seed)
104
+
105
+ cond = {
106
+ "c_concat": [control],
107
+ "c_crossattn": [model.get_learned_conditioning([hlg_prompt + ', ' + a_prompt] * num_samples)]
108
+ }
109
+ un_cond = {
110
+ "c_concat": None if guess_mode else [control],
111
+ "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]
112
+ }
113
+ shape = (4, H // 8, W // 8)
114
+
115
+ model.control_scales = ([strength] * 13)
116
+
117
+ samples, _ = hlg_sampler.sample(ddim_steps, num_samples, shape, cond,
118
+ verbose=False, eta=eta,
119
+ unconditional_guidance_scale=scale,
120
+ unconditional_conditioning=un_cond)
121
+
122
+ x_samples = model.decode_first_stage(samples)
123
+ x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c')
124
+ * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
125
+
126
+ results = [Image.fromarray(x_samples[i]) for i in range(num_samples)]
127
+ return [add_white_background(remove(img)) for img in results]
128
+
129
+ ##########################################
130
+ # LLE PROCESS
131
+ ##########################################
132
+
133
+ def lle_process(lle_prompt, dict_img_mask, category, a_prompt, n_prompt,
134
+ num_samples, image_resolution, detect_resolution, ddim_steps,
135
+ guess_mode, strength, scale, seed, eta, attribute, selection_mode):
136
+
137
+ input_image = dict_img_mask["background"].convert("RGB")
138
+ input_image = HWC3(np.array(input_image))
139
+
140
+ detected_map, keypoints = apply_openpose(resize_image(input_image, detect_resolution))
141
+ detected_map = HWC3(detected_map)
142
+
143
+ if selection_mode == "Automatically recognize":
144
+ mask = apply_mask(resize_image(input_image, detect_resolution), keypoints,
145
+ category=category, attribute=attribute, sam_mode=True)
146
+ else:
147
+ mask = pil_to_binary_mask(dict_img_mask['layers'][0].convert("RGB"))
148
+
149
+ if mask is not None:
150
+ mask = torch.from_numpy(np.array(mask.convert("L"))).float().to(device) / 255.0
151
+ mask = mask.unsqueeze(0).unsqueeze(0)
152
+
153
+ img = resize_image(input_image, image_resolution)
154
+ H, W, C = img.shape
155
+
156
+ init_img = torch.from_numpy(img).float().to(device) / 127.0 - 1.0
157
+ init_img = einops.rearrange(init_img, 'h w c -> 1 c h w')
158
+ init_img = torch.stack([init_img] * num_samples)
159
+
160
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
161
+ control = torch.from_numpy(detected_map).float().to(device) / 255.0
162
+ control = torch.stack([control]*num_samples)
163
+ control = einops.rearrange(control, 'b h w c -> b c h w')
164
+
165
+ if seed == -1:
166
+ seed = random.randint(0, 4294967294)
167
+ seed_everything(seed)
168
+
169
+ cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([lle_prompt + ', ' + a_prompt] * num_samples)]}
170
+ un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
171
+ shape = (4, H // 8, W // 8)
172
+
173
+ samples, _ = lle_sampler.sample(ddim_steps, num_samples, shape, cond,
174
+ verbose=False, eta=eta,
175
+ unconditional_guidance_scale=scale,
176
+ unconditional_conditioning=un_cond,
177
+ init_img=init_img, mask=mask,
178
+ english_attribute=attribute)
179
+
180
+ x_samples = model.decode_first_stage(samples)
181
+ x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c')
182
+ * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
183
+
184
+ return [Image.fromarray(x_samples[i]) for i in range(num_samples)]
185
+
186
+ ##########################################
187
+ # Send result to attribute editor
188
+ ##########################################
189
+
190
+ def result2input(images):
191
+ return {"background": images[-1], "layers": None, "composite": None}
192
+
193
+ ##########################################
194
+ # FULL UI
195
+ ##########################################
196
+
197
+ def create_hfddm():
198
+ with gr.Blocks().queue() as app:
199
+
200
+ category = gr.Radio(list(category_dict.values()), value=list(category_dict.values())[0], label="Clothing Category")
201
+
202
+ with gr.Row():
203
+ with gr.Column():
204
+ with gr.Tab("Draft Design"):
205
+ hlg_prompt = gr.Textbox(label="High-level design prompt")
206
+ hlg_input_image = gr.Image(sources=("upload", "webcam"), type="numpy", value=example_image_list[0], label="Reference pose")
207
+ gr.Examples(inputs=hlg_input_image, examples=example_image_list)
208
+ hlg_run = gr.Button("Generate")
209
+
210
+ with gr.Tab("Attribute Editing"):
211
+ lle_prompt = gr.Textbox(label="Attribute prompt")
212
+ lle_input_image = gr.ImageEditor(sources='upload', type="pil", label="Edit regions", value=example_image_list[0])
213
+ gr.Examples(inputs=lle_input_image, examples=example_image_list)
214
+ selection_mode = gr.Radio(["Automatically recognize", "User interface"], label="Mask Selection", value="Automatically recognize")
215
+
216
+ current_tab = {}
217
+ lle_run = {}
218
+ for tab_elem in attribute_dict.values():
219
+ with gr.Tab(tab_elem):
220
+ current_tab[tab_elem] = gr.Label(value=tab_elem, visible=False)
221
+ lle_run[tab_elem] = gr.Button("Generate")
222
+
223
+ with gr.Column():
224
+ result_gallery = gr.Gallery(label="Result", show_label=False, elem_id="gallery", selected_index=0, interactive=False)
225
+ send2llg = gr.Button("Send to Attribute Editing")
226
+
227
+ with gr.Accordion("Advanced Options", open=False):
228
+ num_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=2, step=1)
229
+ image_resolution = gr.Slider(label="Resolution", minimum=256, maximum=768, value=512, step=64)
230
+ strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
231
+ guess_mode = gr.Checkbox(label='Guess Mode', value=False)
232
+ detect_resolution = gr.Slider(label="Pose Detection Resolution", minimum=128, maximum=1024, value=512, step=1)
233
+ ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=10, step=1, visible=False)
234
+ scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
235
+ seed = gr.Slider(label="Seed", minimum=-1, maximum=4294967294, value=11, step=1)
236
+ eta = gr.Number(label="ETA (DDIM)", value=0.0)
237
+ a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, masterpiece, 8k, white background')
238
+ n_prompt = gr.Textbox(label="Negative Prompt", value='worst quality, low quality, bad anatomy, watermark, signature, blurry')
239
+
240
+ hlg_run.click(fn=hlg_process, inputs=[hlg_prompt, hlg_input_image, category, a_prompt, n_prompt,
241
+ num_samples, image_resolution, detect_resolution, ddim_steps,
242
+ guess_mode, strength, scale, seed, eta], outputs=[result_gallery])
243
+
244
+ for tab_elem in attribute_dict.values():
245
+ lle_run[tab_elem].click(fn=lle_process, inputs=[lle_prompt, lle_input_image, category, a_prompt, n_prompt,
246
+ num_samples, image_resolution, detect_resolution,
247
+ ddim_steps, guess_mode, strength, scale, seed, eta,
248
+ current_tab[tab_elem], selection_mode], outputs=[result_gallery])
249
+
250
+ send2llg.click(fn=result2input, inputs=result_gallery, outputs=lle_input_image)
251
+
252
+ return app
253
+
254
+ hfddm_block = create_hfddm()
255
+
256
+ demo = gr.Blocks(title="AI Fashion Design", theme=gr.themes.Monochrome(secondary_hue="orange", neutral_hue="gray")).queue()
257
+
258
+ with demo:
259
+ gr.Markdown("# **AI Fashion Design** 👗")
260
+ with gr.Tab("Fashion Design"):
261
+ hfddm_block.render()
262
+
263
+ demo.launch()