TitoOrt commited on
Commit
627bc94
verified
1 Parent(s): de3a3e6

First attempt, 500k steps

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 262.59 +/- 13.90
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 262.87 +/- 24.14
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d915539b9c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d915539ba60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d915539bb00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d915539bba0>", "_build": "<function ActorCriticPolicy._build at 0x7d915539bc40>", "forward": "<function ActorCriticPolicy.forward at 0x7d915539bce0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d915539bd80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d915539be20>", "_predict": "<function ActorCriticPolicy._predict at 0x7d915539bec0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d915539bf60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d91553a4040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d91553a40e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d9155318e40>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1737708796886010235, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOb1ND0KgiW7ekCgvPqhpDwaQMe5BufOPAAAgD8AAIA/QNkVPomqFj/DcUm9JrKCvp/1eD1dkIA8AAAAAAAAAABzynm+JCFDP+jxvjxC/b++pO1Jvu0yUD4AAAAAAAAAAKZlnT0fPw8/kkgFvl/Nkb6WcAU9zYRxvQAAAAAAAAAAwLG/PY/aKbowrI47BDlTOL7Pp7tIaz65AACAPwAAAAAdAm2+eJtTP7jY870lytG+t1NevudRujwAAAAAAAAAAMA0xL1D4gY/wz1cPmdYir7YomI9QpeXPQAAAAAAAAAAwA2bPVKpAz6B4iW+NetRvmgvw726urw8AAAAAAAAAADNjQu90hizPyR1pr4MkzC+nFmju8JmkL0AAAAAAAAAAM1Q1juWfyI9Jst0vFX6Jb5a4vG8WKI5PQAAAAAAAAAAJuSQPVl0Nz5LRdi8wzxYvrvMUjxC4k+8AAAAAAAAAAD6KS6+nLlFvGNyTLva25W5rlC7PQ5LdzoAAIA/AACAP1b6ar6LcUA/1JywvSCCqr6LEky+WcafPQAAAAAAAAAA1kyWvoLlYz8Rrcu9xhfKvulZg76QxVE+AAAAAAAAAAAzQao8gCWHP4zMC7ybUdW+WCJ0PSmgQLwAAAAAAAAAALMasL2Fkd27TQ7WPBRTfT1kXAO8yvQivAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzwDZDiOvOMAWyUTZQBjAF0lEdAkKPwEdNnG3V9lChoBkdAb/HzJZGKAWgHTY8CaAhHQJCkQzhxYJV1fZQoaAZHQHH8oh2W6bxoB00KAWgIR0CQpJy/sVtXdX2UKGgGR0BxdPQY1pCbaAdNyAFoCEdAkKUowVTJhnV9lChoBkdAcaOF98Z1m2gHTRYBaAhHQJCpRhAnlXB1fZQoaAZHQGuhHPmgam5oB01LAWgIR0CQqYB5HEuQdX2UKGgGR0BwV530PH1faAdNKgFoCEdAkMDLzwtrbnV9lChoBkdAbiL6Mzdk8WgHTT8BaAhHQJDBBL127nR1fZQoaAZHQHFqWH58BuJoB009AmgIR0CQwTdvsJIEdX2UKGgGR0ByCiBZpztDaAdN6wFoCEdAkMFLIDHOr3V9lChoBkdAcApe5WilBWgHTS4BaAhHQJDBd8pkPMB1fZQoaAZHQG3cQ40dilVoB00lAWgIR0CQwcrftQbddX2UKGgGR0Bvm8+eOGTLaAdNLQFoCEdAkMMP3WWhRXV9lChoBkdAczUhje9BbGgHTUkBaAhHQJDDoS5AhSt1fZQoaAZHQG46pSrHU+doB01+AWgIR0CQxQjk+5e7dX2UKGgGR0BvVRz7uUliaAdNWQFoCEdAkMUyt7rs0HV9lChoBkdAbsoEB8x9HGgHTQ4DaAhHQJDFS49X9zh1fZQoaAZHQG03pbUwztVoB03pAWgIR0CQx5X+l0o0dX2UKGgGR0BxT8DYAbQ1aAdNMwFoCEdAkMhQztTkyXV9lChoBkdAb7ceeWfK6mgHTT0BaAhHQJDIcTRIBil1fZQoaAZHQG28p8WsRxtoB00OA2gIR0CQyViQ1aW5dX2UKGgGR0BvR8BuGbkPaAdNEQFoCEdAkMonoC+10HV9lChoBkdAcsGxbjcVQGgHTTADaAhHQJDKfovBacJ1fZQoaAZHQHGSl+Zw4sFoB00qAWgIR0CQy247zTWodX2UKGgGR0BuV0Y2sJY1aAdNaAFoCEdAkMyesLfDUHV9lChoBkdAbYOAJ9iMHmgHTUUBaAhHQJDNjXtjTa11fZQoaAZHQHDAYA0bcXZoB02EAWgIR0CQzfGNrCWNdX2UKGgGR0Bv6FgWrOqvaAdNGQFoCEdAkM4QC0WuYHV9lChoBkdAcPi+bmU4aWgHTZEBaAhHQJDOM0WM0gt1fZQoaAZHQG4hE0aZQYVoB00fAWgIR0CQzn71ZkkKdX2UKGgGR0BvLldLQHAzaAdNYAFoCEdAkM7vD1oQF3V9lChoBkdAcLpv/zasZGgHTScBaAhHQJDRFVbRne11fZQoaAZHQHD/wm/nGKhoB02UAWgIR0CQ0jwkxASndX2UKGgGR0BvN2Mju8braAdNNwFoCEdAkNKAzk6tDHV9lChoBkdAbRnM5fdAPmgHTRYCaAhHQJDTBBRhttR1fZQoaAZHQGu7+7UXpGFoB00rAWgIR0CQ0z8kD6nBdX2UKGgGR0Byi6djG1hLaAdNXgFoCEdAkNPnq7iAD3V9lChoBkdAb6P+NLlFMWgHTQ4BaAhHQJDUVFDv3Jx1fZQoaAZHQG1UMr/bTMJoB01JAWgIR0CQ1VOYYzi0dX2UKGgGR0Btvf0qYqoZaAdNBgFoCEdAkNdPWUbDM3V9lChoBkdAcwPRAKOT7mgHTS0BaAhHQJDXr7N0NjN1fZQoaAZHQHJXk5dWyTpoB02hAWgIR0CQ2DctXgccdX2UKGgGR0BuUJ/mT1TSaAdNPwFoCEdAkNkLzkIX03V9lChoBkdAcD1uuRs/IWgHTVgBaAhHQJDZpxyXD3x1fZQoaAZHQHFmjUExIrhoB01WAWgIR0CQ2bSkTHsDdX2UKGgGR0Buji5PM0P6aAdNPgFoCEdAkNnX8sMAm3V9lChoBkdAbsWTdLxqf2gHTS8BaAhHQJDbfbblA/t1fZQoaAZHQG1IggPmPo5oB000AWgIR0CQ3Lab4Ju3dX2UKGgGR0BshbNW2gFpaAdNJAFoCEdAkNzhpL26CnV9lChoBkdAb9gs8PnSv2gHTSABaAhHQJDc/qoqCpZ1fZQoaAZHQG/JlXA/LTxoB00DAmgIR0CQ3eEORT0hdX2UKGgGR0BtcpyXD3ueaAdNXAFoCEdAkN4soQWepXV9lChoBkdAcGTSgXdj5WgHTVMBaAhHQJDfPv0AcT91fZQoaAZHQHAtLbcoH9poB01aAWgIR0CQ9MKSxJNCdX2UKGgGR0Bw5dpItlI3aAdNGgFoCEdAkPVA8bJfY3V9lChoBkdAcAcSfDk2gmgHTTgBaAhHQJD10t16mfp1fZQoaAZHQGxg0FKTSstoB00dAWgIR0CQ9iuvllshdX2UKGgGR0BwVC2fChvjaAdNFwFoCEdAkPaH+qBEr3V9lChoBkdAcBEa4c3l0mgHTWEBaAhHQJD22ebutwJ1fZQoaAZHQHIu1w5vLoxoB00lAWgIR0CQ9yPWQOnVdX2UKGgGR0BwIbaXa8HwaAdN1QFoCEdAkPfCB06o2nV9lChoBkdAcj95LRKHwmgHTUcBaAhHQJD39hJAdGR1fZQoaAZHQHJcOU6gdwNoB00OAWgIR0CQ+Qfe1rqMdX2UKGgGR0Bw5MGB4D9waAdNLgFoCEdAkPnNtEXtSnV9lChoBkdAbwWYgJTl1mgHTScBaAhHQJD52jVQQ+V1fZQoaAZHQHGVZ1q33HtoB02XAWgIR0CQ+6hsZYPodX2UKGgGR0BwnsmTkhicaAdNSQFoCEdAkPvXbRF7U3V9lChoBkdAcLeOUdJaq2gHTRoBaAhHQJD9iY6XBxh1fZQoaAZHQG2UvTXrdFhoB00pAWgIR0CQ/Zmplz2fdX2UKGgGR0Bw/1tbcGkfaAdNoQFoCEdAkP5o0/GEPHV9lChoBkdAbs29cry1/mgHTSoBaAhHQJD+98E3bVV1fZQoaAZHQHC8WYa5wwVoB00wAWgIR0CQ/4dGiHqNdX2UKGgGR0BwSmJ/G2kSaAdL/2gIR0CQ/4xoZhrndX2UKGgGR0BvoUf3evZAaAdNOwFoCEdAkQCDPGACn3V9lChoBkdAcRYrcCYCyWgHTSwBaAhHQJEAutMfzSV1fZQoaAZHQHJRQF1SwW5oB01pAWgIR0CRAZ8La24NdX2UKGgGR0BwZekcjqwAaAdNGQFoCEdAkQGuMyad+XV9lChoBkdAbftj81n/UGgHTTQBaAhHQJEDYNBnjAB1fZQoaAZHQHCVJzYEnstoB005AWgIR0CRA5Q3PzFudX2UKGgGR0Bx+ckka/ATaAdNAwFoCEdAkQQbtVrAQHV9lChoBkdAcA05X2dupGgHTR0BaAhHQJEGrQE6kqN1fZQoaAZHQG+xle4TbnJoB00rAWgIR0CRCBfvnbItdX2UKGgGR0BxNJhPTG5uaAdL+mgIR0CRCQCrtE5RdX2UKGgGR0BxT6hnJ1aGaAdNagFoCEdAkQmdgKF7D3V9lChoBkdAcmH+Yc/+sGgHTV8BaAhHQJELs3Q2MsJ1fZQoaAZHQHFu7KvFFUhoB00dAWgIR0CRC8sHSncddX2UKGgGR0BySQx0uDjBaAdN9wFoCEdAkQ0wWnCO3nV9lChoBkdAcVZbyH2ys2gHTSQBaAhHQJEOtmBe5Wl1fZQoaAZHQHCYGGh24d9oB005AWgIR0CRD1lg+hXbdX2UKGgGR0BwuwvHtF8YaAdNJgFoCEdAkQ+XlS0jT3V9lChoBkdAcI3XEIgNgGgHTRMDaAhHQJEQW4G2TgV1fZQoaAZHQHFyTXOGCZpoB00fAmgIR0CRFA4fOlfrdX2UKGgGR0BxIem+CbtraAdNAQJoCEdAkRQdLL6k7HV9lChoBkdAcZFi9qUNa2gHTUACaAhHQJEU2PtD2J11fZQoaAZHQG40Vfu1F6RoB00TAWgIR0CRFb9ehPCVdX2UKGgGR0BwBRcPe54GaAdNQgFoCEdAkRYxu89Oh3V9lChoBkdAcRWV6u4gBGgHTS0BaAhHQJEWPq1PWQR1fZQoaAZHQFt+4m1IAfdoB03oA2gIR0CRFm/+bVjJdX2UKGgGR0BwY3/m1YyPaAdNBwFoCEdAkRczqv/za3V9lChoBkdAbwqrQw9JSWgHTR8BaAhHQJEYKO+7Dl51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b180e1aff60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b180e1b4040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b180e1b40e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b180e1b4180>", "_build": "<function ActorCriticPolicy._build at 0x7b180e1b4220>", "forward": "<function ActorCriticPolicy.forward at 0x7b180e1b42c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b180e1b4360>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b180e1b4400>", "_predict": "<function ActorCriticPolicy._predict at 0x7b180e1b44a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b180e1b4540>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b180e1b45e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b180e1b4680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b180e1211c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1745497789657959667, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAD6Qwg+wwBzO7l+s7zsmB67u3UdPc+BDrwAAIA/AACAP5oNST3cEMA/VsCNPkygrjx4WDO97uDjOwAAAAAAAAAAZuAGPVz/eLpexjU5mhMDsyfaGLtz2U64AACAPwAAgD/TRH++ELdpPwVOTT7udtq+iUR3vpCBMT0AAAAAAAAAAAD2aj0pUDm6gGR4ur7uPrYbRI06zFeQOQAAgD8AAIA/mv/7PBRO0bgq06A7bTfYNsOjSLrO2766AACAPwAAgD/mOLc+bamKPtBvh75LnF++3A6xvRCREz4AAAAAAAAAAGYIxryFENe7+DmcPOFklTw4Bjc9e2Z7vQAAgD8AAIA/TUBfPeHsnbpNUww87/x5NhUJqjryNGo1AACAPwAAgD9g0g8+j0w4O8JMxLtalbG5c6f1PJm+pLoAAIA/AACAPw0Qzj32UFK60FIiuzqlRrUmD2q7o5i1NAAAgD8AAIA/Wub/PTS8mT5kJ6Q9C8QdvkPyFj2H2kU9AAAAAAAAAAAzfr487GnCuUhLa7p8ERq1LAmJOkVdiTkAAIA/AACAP4YHAz6kEke7fWM2OMfhhbWPon28ys5jtwAAgD8AAIA/s0i3PXolVj7B/hI+A8KBvkpKxzwKvoM9AAAAAAAAAAANYA4+LXyFPoS9OL5Zhn++uLaWvUuRuD0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGgiroOhCdCMAWyUTegDjAF0lEdAh/gVzp5eJHV9lChoBkdAZJ5rpqynk2gHTegDaAhHQIgiN+7UXpJ1fZQoaAZHQGRbTz/ZM+NoB03oA2gIR0CIKRLNfPX1dX2UKGgGR0BgAaxNZeRgaAdN6ANoCEdAiDpg75mAb3V9lChoBkdAXmJmHxjJ+2gHTegDaAhHQIg/qro4dZJ1fZQoaAZHQGL1gQ6IWP9oB03oA2gIR0CIQzQtz0YkdX2UKGgGR0Bkinz4DcM3aAdN6ANoCEdAiE0fsu3+dnV9lChoBkdAYHpQOWjXWmgHTegDaAhHQIhVK1kUbkx1fZQoaAZHQF6v8+RoysVoB03oA2gIR0CIVh6w+t8vdX2UKGgGR0BmjZIpYs/ZaAdN6ANoCEdAiF1z4cm0FHV9lChoBkdAYmat+TeO42gHTegDaAhHQIhiUZzgdfd1fZQoaAZHQGgekzwc5sFoB03oA2gIR0CIdZvlU6xPdX2UKGgGR0Bk0riGWUr1aAdN6ANoCEdAiH70xEfDDXV9lChoBkdAYa+uXeFcp2gHTegDaAhHQIiGfnB+F111fZQoaAZHQGeIgqEvkBFoB03oA2gIR0CIiq7NjbztdX2UKGgGR0Bj2oZCOWB0aAdN6ANoCEdAiIwRdY4hlnV9lChoBkdAZhZo1UEPlWgHTegDaAhHQIiMFGI9C/p1fZQoaAZHQGHCtqHoHLRoB03oA2gIR0CIusLDQ7cPdX2UKGgGR0BiQQZXMhX9aAdN6ANoCEdAiMHm4AjptHV9lChoBkdAZURMdLg4wWgHTegDaAhHQIjROh/RVp91fZQoaAZHQGJk2YfGMn9oB03oA2gIR0CI1TGAkLQYdX2UKGgGR0Bh9tjgAIY4aAdN6ANoCEdAiNeWWY4Qz3V9lChoBkdAZEo36yjYZmgHTegDaAhHQIjgg0Q9RrJ1fZQoaAZHQGRrkH+qBEtoB03oA2gIR0CI57weeWfLdX2UKGgGR0BjAY9q1w5vaAdN6ANoCEdAiOiVPnB+F3V9lChoBkdAZaroxHoX9GgHTegDaAhHQIjvGZb6guh1fZQoaAZHQGT9+gte2NNoB03oA2gIR0CI8z/MnqmkdX2UKGgGR0BnoVxOtW+5aAdN6ANoCEdAiQsltbcGknV9lChoBkdAXxGIWP91l2gHTegDaAhHQIkTtpyp71J1fZQoaAZHQF7GViF0xM5oB03oA2gIR0CJGuamXPZ7dX2UKGgGR0BmGE+zMRpUaAdN6ANoCEdAiR7uvMbFTHV9lChoBkdAZMGhXbM5fmgHTegDaAhHQIkgQV/MGHJ1fZQoaAZHQGgzgIppeu5oB03oA2gIR0CJIEOsDGLldX2UKGgGR0BnZ0QiA2AHaAdN6ANoCEdAiUpa0IC2dHV9lChoBkdAYFo5oXbdrWgHTegDaAhHQIlQvWDpTuR1fZQoaAZHQGC4MVclgMNoB03oA2gIR0CJYWIBRyfddX2UKGgGR0Bjr0FdLQHBaAdN6ANoCEdAiWZrFXJYDHV9lChoBkdAaLF7P6be/GgHTegDaAhHQIlpOZof0Vd1fZQoaAZHQGHRD/lyR0VoB03oA2gIR0CJce1pj+aSdX2UKGgGR0Bm/4PqcEvCaAdN6ANoCEdAiXk1SXMQmXV9lChoBkdAZfNe40/GEWgHTegDaAhHQIl6G9i+cpd1fZQoaAZHQF8mdeIEbHZoB03oA2gIR0CJgOUmD15CdX2UKGgGR0BjaDSuyNXHaAdN6ANoCEdAiYWAJswcpHV9lChoBkdAXpNcC5mRNmgHTegDaAhHQImYPv6TGHZ1fZQoaAZHQF9yNMXaakRoB03oA2gIR0CJoabayrxRdX2UKGgGR0BfQeK4x1xLaAdN6ANoCEdAialgzxgAqHV9lChoBkdAZld5KvmozmgHTegDaAhHQImtzQokRjB1fZQoaAZHQGbM2mHgxahoB03oA2gIR0CJrzQJokAxdX2UKGgGR0Bitex+rlvIaAdN6ANoCEdAia83fyf+THV9lChoBkdAYEL1X/5tWWgHTegDaAhHQIm2XU2DQJJ1fZQoaAZHQGKUgtnPE89oB03oA2gIR0CJ5PgYP5HmdX2UKGgGR0BmkdMCcPOIaAdN6ANoCEdAifRrIxQBP3V9lChoBkdAZvTKPGQ0XWgHTegDaAhHQIn4gOvt+kR1fZQoaAZHQGb2czQ/oq1oB03oA2gIR0CJ+yhIvrWzdX2UKGgGR0Bm9Lel9BrvaAdN6ANoCEdAigVDYywfQ3V9lChoBkdAZO4V0tAcDWgHTegDaAhHQIoOFGEwnIB1fZQoaAZHQGKZ3LFGXoloB03oA2gIR0CKD0EUTL4fdX2UKGgGR0Bh1C8FpwjuaAdN6ANoCEdAihgnKOktVnV9lChoBkdAYpd/echC+mgHTegDaAhHQIoe5d2PkrB1fZQoaAZHQGKGXTmW+oNoB03oA2gIR0CKNla3Zwn6dX2UKGgGR0Bj24AyVObiaAdN6ANoCEdAikAEWAPNFHV9lChoBkdAYNObzbvgFWgHTegDaAhHQIpHnYg7o0R1fZQoaAZHQGBfdO6/ZdxoB03oA2gIR0CKS9DYRNAUdX2UKGgGR0BddawMYuTSaAdN6ANoCEdAik1IAwPAf3V9lChoBkdAZHOVmjCYTmgHTegDaAhHQIpNSYAsCkp1fZQoaAZHQGPrNn5BTn9oB03oA2gIR0CKVNeuV5bAdX2UKGgGR0BgML4+KTB7aAdN6ANoCEdAioHsEq2BrnV9lChoBkdAZrKSIP9UCWgHTegDaAhHQIqURlFtsN51fZQoaAZHQGRtS4OMERtoB03oA2gIR0CKmFwkPczqdX2UKGgGR0BjN5rP+n63aAdN6ANoCEdAipr4qPOpsHV9lChoBkdAYm4rFwT/Q2gHTegDaAhHQIqkWSpzcRF1fZQoaAZHQGHJif6GgzxoB03oA2gIR0CKrHzMA3kxdX2UKGgGR0BdmyOFQEZBaAdN6ANoCEdAiq2M189fTnV9lChoBkdAZ3qbedkJ8mgHTegDaAhHQIq1KxTsIE91fZQoaAZHQGdoleOXE61oB03oA2gIR0CKuhZHuqm1dX2UKGgGR0BMjUZWJaaDaAdLyWgIR0CKyvqt5le4dX2UKGgGR0BgW7GR3eN2aAdN6ANoCEdAis2RmseXA3V9lChoBkdAaGZiIcinpGgHTegDaAhHQIrW2za9K291fZQoaAZHQGS+/Dcdo39oB03oA2gIR0CK348SPEKmdX2UKGgGR0BlLyeqaPS2aAdN6ANoCEdAiuULzPKMenV9lChoBkdAYZcNYKYzBWgHTegDaAhHQIrm2R/3Fkx1fZQoaAZHQGT6HPmgam5oB03oA2gIR0CK5uAmzBykdX2UKGgGR0BnzyCUX531aAdN6ANoCEdAiu/8+A3DN3V9lChoBkdAYjxqOcUdrGgHTegDaAhHQIsbFIPK+zt1fZQoaAZHQGRLtXo1UERoB03oA2gIR0CLKqKgqVhTdX2UKGgGR0Bgm7/CIk7faAdN6ANoCEdAiy7UcfeUIXV9lChoBkdAXjs23rleW2gHTegDaAhHQIsxbWGyon91fZQoaAZHQGTS6OYIBzVoB03oA2gIR0CLOt4nndO7dX2UKGgGR0Bjj3fKp1ifaAdN6ANoCEdAi0T+TV2A5XV9lChoBkdAZLQkoF3Y+WgHTegDaAhHQItGPjABT4t1fZQoaAZHQGKNrAP/aQFoB03oA2gIR0CLVFWmP5pKdX2UKGgGR0BhlHYUWVNYaAdN6ANoCEdAi2S+dsi0OXV9lChoBkdAYvzg4wRGt2gHTegDaAhHQItnEUh3aBZ1fZQoaAZHQGQscbR4QjFoB03oA2gIR0CLb+vysjmkdX2UKGgGR0Bn1ngWJrLyaAdN6ANoCEdAi3dK+SKWLXV9lChoBkdAYmMR15jYqWgHTegDaAhHQIt7XCl7+kx1fZQoaAZHQGduv6sQumJoB03oA2gIR0CLfM9t/FzddX2UKGgGR0Bl+e+49X9zaAdN6ANoCEdAi3zY0/GEPHV9lChoBkdAXue+lCTlk2gHTegDaAhHQIuEKj8DSw51fZQoaAZHQGaJyNGViWpoB03oA2gIR0CLi6X1rZandWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 152, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e28d90dfcbb3e814f6e6be232c7b2296834cd5a751f40d0d6e2b4f7a0bd26dd6
3
- size 148132
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bcab8360f65a75d0d7f5f6dc3153fbec77d40c25dd7136d8195e088e49487b2
3
+ size 148130
ppo-LunarLander-v2/data CHANGED
@@ -4,38 +4,38 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7d915539b9c0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d915539ba60>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d915539bb00>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d915539bba0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7d915539bc40>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7d915539bce0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d915539bd80>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d915539be20>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7d915539bec0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d915539bf60>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d91553a4040>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d91553a40e0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7d9155318e40>"
21
  },
22
- "verbose": 0,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1737708796886010235,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOb1ND0KgiW7ekCgvPqhpDwaQMe5BufOPAAAgD8AAIA/QNkVPomqFj/DcUm9JrKCvp/1eD1dkIA8AAAAAAAAAABzynm+JCFDP+jxvjxC/b++pO1Jvu0yUD4AAAAAAAAAAKZlnT0fPw8/kkgFvl/Nkb6WcAU9zYRxvQAAAAAAAAAAwLG/PY/aKbowrI47BDlTOL7Pp7tIaz65AACAPwAAAAAdAm2+eJtTP7jY870lytG+t1NevudRujwAAAAAAAAAAMA0xL1D4gY/wz1cPmdYir7YomI9QpeXPQAAAAAAAAAAwA2bPVKpAz6B4iW+NetRvmgvw726urw8AAAAAAAAAADNjQu90hizPyR1pr4MkzC+nFmju8JmkL0AAAAAAAAAAM1Q1juWfyI9Jst0vFX6Jb5a4vG8WKI5PQAAAAAAAAAAJuSQPVl0Nz5LRdi8wzxYvrvMUjxC4k+8AAAAAAAAAAD6KS6+nLlFvGNyTLva25W5rlC7PQ5LdzoAAIA/AACAP1b6ar6LcUA/1JywvSCCqr6LEky+WcafPQAAAAAAAAAA1kyWvoLlYz8Rrcu9xhfKvulZg76QxVE+AAAAAAAAAAAzQao8gCWHP4zMC7ybUdW+WCJ0PSmgQLwAAAAAAAAAALMasL2Fkd27TQ7WPBRTfT1kXAO8yvQivAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
@@ -45,16 +45,16 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzwDZDiOvOMAWyUTZQBjAF0lEdAkKPwEdNnG3V9lChoBkdAb/HzJZGKAWgHTY8CaAhHQJCkQzhxYJV1fZQoaAZHQHH8oh2W6bxoB00KAWgIR0CQpJy/sVtXdX2UKGgGR0BxdPQY1pCbaAdNyAFoCEdAkKUowVTJhnV9lChoBkdAcaOF98Z1m2gHTRYBaAhHQJCpRhAnlXB1fZQoaAZHQGuhHPmgam5oB01LAWgIR0CQqYB5HEuQdX2UKGgGR0BwV530PH1faAdNKgFoCEdAkMDLzwtrbnV9lChoBkdAbiL6Mzdk8WgHTT8BaAhHQJDBBL127nR1fZQoaAZHQHFqWH58BuJoB009AmgIR0CQwTdvsJIEdX2UKGgGR0ByCiBZpztDaAdN6wFoCEdAkMFLIDHOr3V9lChoBkdAcApe5WilBWgHTS4BaAhHQJDBd8pkPMB1fZQoaAZHQG3cQ40dilVoB00lAWgIR0CQwcrftQbddX2UKGgGR0Bvm8+eOGTLaAdNLQFoCEdAkMMP3WWhRXV9lChoBkdAczUhje9BbGgHTUkBaAhHQJDDoS5AhSt1fZQoaAZHQG46pSrHU+doB01+AWgIR0CQxQjk+5e7dX2UKGgGR0BvVRz7uUliaAdNWQFoCEdAkMUyt7rs0HV9lChoBkdAbsoEB8x9HGgHTQ4DaAhHQJDFS49X9zh1fZQoaAZHQG03pbUwztVoB03pAWgIR0CQx5X+l0o0dX2UKGgGR0BxT8DYAbQ1aAdNMwFoCEdAkMhQztTkyXV9lChoBkdAb7ceeWfK6mgHTT0BaAhHQJDIcTRIBil1fZQoaAZHQG28p8WsRxtoB00OA2gIR0CQyViQ1aW5dX2UKGgGR0BvR8BuGbkPaAdNEQFoCEdAkMonoC+10HV9lChoBkdAcsGxbjcVQGgHTTADaAhHQJDKfovBacJ1fZQoaAZHQHGSl+Zw4sFoB00qAWgIR0CQy247zTWodX2UKGgGR0BuV0Y2sJY1aAdNaAFoCEdAkMyesLfDUHV9lChoBkdAbYOAJ9iMHmgHTUUBaAhHQJDNjXtjTa11fZQoaAZHQHDAYA0bcXZoB02EAWgIR0CQzfGNrCWNdX2UKGgGR0Bv6FgWrOqvaAdNGQFoCEdAkM4QC0WuYHV9lChoBkdAcPi+bmU4aWgHTZEBaAhHQJDOM0WM0gt1fZQoaAZHQG4hE0aZQYVoB00fAWgIR0CQzn71ZkkKdX2UKGgGR0BvLldLQHAzaAdNYAFoCEdAkM7vD1oQF3V9lChoBkdAcLpv/zasZGgHTScBaAhHQJDRFVbRne11fZQoaAZHQHD/wm/nGKhoB02UAWgIR0CQ0jwkxASndX2UKGgGR0BvN2Mju8braAdNNwFoCEdAkNKAzk6tDHV9lChoBkdAbRnM5fdAPmgHTRYCaAhHQJDTBBRhttR1fZQoaAZHQGu7+7UXpGFoB00rAWgIR0CQ0z8kD6nBdX2UKGgGR0Byi6djG1hLaAdNXgFoCEdAkNPnq7iAD3V9lChoBkdAb6P+NLlFMWgHTQ4BaAhHQJDUVFDv3Jx1fZQoaAZHQG1UMr/bTMJoB01JAWgIR0CQ1VOYYzi0dX2UKGgGR0Btvf0qYqoZaAdNBgFoCEdAkNdPWUbDM3V9lChoBkdAcwPRAKOT7mgHTS0BaAhHQJDXr7N0NjN1fZQoaAZHQHJXk5dWyTpoB02hAWgIR0CQ2DctXgccdX2UKGgGR0BuUJ/mT1TSaAdNPwFoCEdAkNkLzkIX03V9lChoBkdAcD1uuRs/IWgHTVgBaAhHQJDZpxyXD3x1fZQoaAZHQHFmjUExIrhoB01WAWgIR0CQ2bSkTHsDdX2UKGgGR0Buji5PM0P6aAdNPgFoCEdAkNnX8sMAm3V9lChoBkdAbsWTdLxqf2gHTS8BaAhHQJDbfbblA/t1fZQoaAZHQG1IggPmPo5oB000AWgIR0CQ3Lab4Ju3dX2UKGgGR0BshbNW2gFpaAdNJAFoCEdAkNzhpL26CnV9lChoBkdAb9gs8PnSv2gHTSABaAhHQJDc/qoqCpZ1fZQoaAZHQG/JlXA/LTxoB00DAmgIR0CQ3eEORT0hdX2UKGgGR0BtcpyXD3ueaAdNXAFoCEdAkN4soQWepXV9lChoBkdAcGTSgXdj5WgHTVMBaAhHQJDfPv0AcT91fZQoaAZHQHAtLbcoH9poB01aAWgIR0CQ9MKSxJNCdX2UKGgGR0Bw5dpItlI3aAdNGgFoCEdAkPVA8bJfY3V9lChoBkdAcAcSfDk2gmgHTTgBaAhHQJD10t16mfp1fZQoaAZHQGxg0FKTSstoB00dAWgIR0CQ9iuvllshdX2UKGgGR0BwVC2fChvjaAdNFwFoCEdAkPaH+qBEr3V9lChoBkdAcBEa4c3l0mgHTWEBaAhHQJD22ebutwJ1fZQoaAZHQHIu1w5vLoxoB00lAWgIR0CQ9yPWQOnVdX2UKGgGR0BwIbaXa8HwaAdN1QFoCEdAkPfCB06o2nV9lChoBkdAcj95LRKHwmgHTUcBaAhHQJD39hJAdGR1fZQoaAZHQHJcOU6gdwNoB00OAWgIR0CQ+Qfe1rqMdX2UKGgGR0Bw5MGB4D9waAdNLgFoCEdAkPnNtEXtSnV9lChoBkdAbwWYgJTl1mgHTScBaAhHQJD52jVQQ+V1fZQoaAZHQHGVZ1q33HtoB02XAWgIR0CQ+6hsZYPodX2UKGgGR0BwnsmTkhicaAdNSQFoCEdAkPvXbRF7U3V9lChoBkdAcLeOUdJaq2gHTRoBaAhHQJD9iY6XBxh1fZQoaAZHQG2UvTXrdFhoB00pAWgIR0CQ/Zmplz2fdX2UKGgGR0Bw/1tbcGkfaAdNoQFoCEdAkP5o0/GEPHV9lChoBkdAbs29cry1/mgHTSoBaAhHQJD+98E3bVV1fZQoaAZHQHC8WYa5wwVoB00wAWgIR0CQ/4dGiHqNdX2UKGgGR0BwSmJ/G2kSaAdL/2gIR0CQ/4xoZhrndX2UKGgGR0BvoUf3evZAaAdNOwFoCEdAkQCDPGACn3V9lChoBkdAcRYrcCYCyWgHTSwBaAhHQJEAutMfzSV1fZQoaAZHQHJRQF1SwW5oB01pAWgIR0CRAZ8La24NdX2UKGgGR0BwZekcjqwAaAdNGQFoCEdAkQGuMyad+XV9lChoBkdAbftj81n/UGgHTTQBaAhHQJEDYNBnjAB1fZQoaAZHQHCVJzYEnstoB005AWgIR0CRA5Q3PzFudX2UKGgGR0Bx+ckka/ATaAdNAwFoCEdAkQQbtVrAQHV9lChoBkdAcA05X2dupGgHTR0BaAhHQJEGrQE6kqN1fZQoaAZHQG+xle4TbnJoB00rAWgIR0CRCBfvnbItdX2UKGgGR0BxNJhPTG5uaAdL+mgIR0CRCQCrtE5RdX2UKGgGR0BxT6hnJ1aGaAdNagFoCEdAkQmdgKF7D3V9lChoBkdAcmH+Yc/+sGgHTV8BaAhHQJELs3Q2MsJ1fZQoaAZHQHFu7KvFFUhoB00dAWgIR0CRC8sHSncddX2UKGgGR0BySQx0uDjBaAdN9wFoCEdAkQ0wWnCO3nV9lChoBkdAcVZbyH2ys2gHTSQBaAhHQJEOtmBe5Wl1fZQoaAZHQHCYGGh24d9oB005AWgIR0CRD1lg+hXbdX2UKGgGR0BwuwvHtF8YaAdNJgFoCEdAkQ+XlS0jT3V9lChoBkdAcI3XEIgNgGgHTRMDaAhHQJEQW4G2TgV1fZQoaAZHQHFyTXOGCZpoB00fAmgIR0CRFA4fOlfrdX2UKGgGR0BxIem+CbtraAdNAQJoCEdAkRQdLL6k7HV9lChoBkdAcZFi9qUNa2gHTUACaAhHQJEU2PtD2J11fZQoaAZHQG40Vfu1F6RoB00TAWgIR0CRFb9ehPCVdX2UKGgGR0BwBRcPe54GaAdNQgFoCEdAkRYxu89Oh3V9lChoBkdAcRWV6u4gBGgHTS0BaAhHQJEWPq1PWQR1fZQoaAZHQFt+4m1IAfdoB03oA2gIR0CRFm/+bVjJdX2UKGgGR0BwY3/m1YyPaAdNBwFoCEdAkRczqv/za3V9lChoBkdAbwqrQw9JSWgHTR8BaAhHQJEYKO+7Dl51ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
- ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
  "dtype": "float32",
59
  "bounded_below": "[ True True True True True True True True]",
60
  "bounded_above": "[ True True True True True True True True]",
@@ -69,7 +69,7 @@
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
- ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b180e1aff60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b180e1b4040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b180e1b40e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b180e1b4180>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b180e1b4220>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b180e1b42c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b180e1b4360>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b180e1b4400>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b180e1b44a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b180e1b4540>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b180e1b45e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b180e1b4680>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b180e1211c0>"
21
  },
22
+ "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 507904,
25
+ "_total_timesteps": 500000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1745497789657959667,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAD6Qwg+wwBzO7l+s7zsmB67u3UdPc+BDrwAAIA/AACAP5oNST3cEMA/VsCNPkygrjx4WDO97uDjOwAAAAAAAAAAZuAGPVz/eLpexjU5mhMDsyfaGLtz2U64AACAPwAAgD/TRH++ELdpPwVOTT7udtq+iUR3vpCBMT0AAAAAAAAAAAD2aj0pUDm6gGR4ur7uPrYbRI06zFeQOQAAgD8AAIA/mv/7PBRO0bgq06A7bTfYNsOjSLrO2766AACAPwAAgD/mOLc+bamKPtBvh75LnF++3A6xvRCREz4AAAAAAAAAAGYIxryFENe7+DmcPOFklTw4Bjc9e2Z7vQAAgD8AAIA/TUBfPeHsnbpNUww87/x5NhUJqjryNGo1AACAPwAAgD9g0g8+j0w4O8JMxLtalbG5c6f1PJm+pLoAAIA/AACAPw0Qzj32UFK60FIiuzqlRrUmD2q7o5i1NAAAgD8AAIA/Wub/PTS8mT5kJ6Q9C8QdvkPyFj2H2kU9AAAAAAAAAAAzfr487GnCuUhLa7p8ERq1LAmJOkVdiTkAAIA/AACAP4YHAz6kEke7fWM2OMfhhbWPon28ys5jtwAAgD8AAIA/s0i3PXolVj7B/hI+A8KBvkpKxzwKvoM9AAAAAAAAAAANYA4+LXyFPoS9OL5Zhn++uLaWvUuRuD0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGgiroOhCdCMAWyUTegDjAF0lEdAh/gVzp5eJHV9lChoBkdAZJ5rpqynk2gHTegDaAhHQIgiN+7UXpJ1fZQoaAZHQGRbTz/ZM+NoB03oA2gIR0CIKRLNfPX1dX2UKGgGR0BgAaxNZeRgaAdN6ANoCEdAiDpg75mAb3V9lChoBkdAXmJmHxjJ+2gHTegDaAhHQIg/qro4dZJ1fZQoaAZHQGL1gQ6IWP9oB03oA2gIR0CIQzQtz0YkdX2UKGgGR0Bkinz4DcM3aAdN6ANoCEdAiE0fsu3+dnV9lChoBkdAYHpQOWjXWmgHTegDaAhHQIhVK1kUbkx1fZQoaAZHQF6v8+RoysVoB03oA2gIR0CIVh6w+t8vdX2UKGgGR0BmjZIpYs/ZaAdN6ANoCEdAiF1z4cm0FHV9lChoBkdAYmat+TeO42gHTegDaAhHQIhiUZzgdfd1fZQoaAZHQGgekzwc5sFoB03oA2gIR0CIdZvlU6xPdX2UKGgGR0Bk0riGWUr1aAdN6ANoCEdAiH70xEfDDXV9lChoBkdAYa+uXeFcp2gHTegDaAhHQIiGfnB+F111fZQoaAZHQGeIgqEvkBFoB03oA2gIR0CIiq7NjbztdX2UKGgGR0Bj2oZCOWB0aAdN6ANoCEdAiIwRdY4hlnV9lChoBkdAZhZo1UEPlWgHTegDaAhHQIiMFGI9C/p1fZQoaAZHQGHCtqHoHLRoB03oA2gIR0CIusLDQ7cPdX2UKGgGR0BiQQZXMhX9aAdN6ANoCEdAiMHm4AjptHV9lChoBkdAZURMdLg4wWgHTegDaAhHQIjROh/RVp91fZQoaAZHQGJk2YfGMn9oB03oA2gIR0CI1TGAkLQYdX2UKGgGR0Bh9tjgAIY4aAdN6ANoCEdAiNeWWY4Qz3V9lChoBkdAZEo36yjYZmgHTegDaAhHQIjgg0Q9RrJ1fZQoaAZHQGRrkH+qBEtoB03oA2gIR0CI57weeWfLdX2UKGgGR0BjAY9q1w5vaAdN6ANoCEdAiOiVPnB+F3V9lChoBkdAZaroxHoX9GgHTegDaAhHQIjvGZb6guh1fZQoaAZHQGT9+gte2NNoB03oA2gIR0CI8z/MnqmkdX2UKGgGR0BnoVxOtW+5aAdN6ANoCEdAiQsltbcGknV9lChoBkdAXxGIWP91l2gHTegDaAhHQIkTtpyp71J1fZQoaAZHQF7GViF0xM5oB03oA2gIR0CJGuamXPZ7dX2UKGgGR0BmGE+zMRpUaAdN6ANoCEdAiR7uvMbFTHV9lChoBkdAZMGhXbM5fmgHTegDaAhHQIkgQV/MGHJ1fZQoaAZHQGgzgIppeu5oB03oA2gIR0CJIEOsDGLldX2UKGgGR0BnZ0QiA2AHaAdN6ANoCEdAiUpa0IC2dHV9lChoBkdAYFo5oXbdrWgHTegDaAhHQIlQvWDpTuR1fZQoaAZHQGC4MVclgMNoB03oA2gIR0CJYWIBRyfddX2UKGgGR0Bjr0FdLQHBaAdN6ANoCEdAiWZrFXJYDHV9lChoBkdAaLF7P6be/GgHTegDaAhHQIlpOZof0Vd1fZQoaAZHQGHRD/lyR0VoB03oA2gIR0CJce1pj+aSdX2UKGgGR0Bm/4PqcEvCaAdN6ANoCEdAiXk1SXMQmXV9lChoBkdAZfNe40/GEWgHTegDaAhHQIl6G9i+cpd1fZQoaAZHQF8mdeIEbHZoB03oA2gIR0CJgOUmD15CdX2UKGgGR0BjaDSuyNXHaAdN6ANoCEdAiYWAJswcpHV9lChoBkdAXpNcC5mRNmgHTegDaAhHQImYPv6TGHZ1fZQoaAZHQF9yNMXaakRoB03oA2gIR0CJoabayrxRdX2UKGgGR0BfQeK4x1xLaAdN6ANoCEdAialgzxgAqHV9lChoBkdAZld5KvmozmgHTegDaAhHQImtzQokRjB1fZQoaAZHQGbM2mHgxahoB03oA2gIR0CJrzQJokAxdX2UKGgGR0Bitex+rlvIaAdN6ANoCEdAia83fyf+THV9lChoBkdAYEL1X/5tWWgHTegDaAhHQIm2XU2DQJJ1fZQoaAZHQGKUgtnPE89oB03oA2gIR0CJ5PgYP5HmdX2UKGgGR0BmkdMCcPOIaAdN6ANoCEdAifRrIxQBP3V9lChoBkdAZvTKPGQ0XWgHTegDaAhHQIn4gOvt+kR1fZQoaAZHQGb2czQ/oq1oB03oA2gIR0CJ+yhIvrWzdX2UKGgGR0Bm9Lel9BrvaAdN6ANoCEdAigVDYywfQ3V9lChoBkdAZO4V0tAcDWgHTegDaAhHQIoOFGEwnIB1fZQoaAZHQGKZ3LFGXoloB03oA2gIR0CKD0EUTL4fdX2UKGgGR0Bh1C8FpwjuaAdN6ANoCEdAihgnKOktVnV9lChoBkdAYpd/echC+mgHTegDaAhHQIoe5d2PkrB1fZQoaAZHQGKGXTmW+oNoB03oA2gIR0CKNla3Zwn6dX2UKGgGR0Bj24AyVObiaAdN6ANoCEdAikAEWAPNFHV9lChoBkdAYNObzbvgFWgHTegDaAhHQIpHnYg7o0R1fZQoaAZHQGBfdO6/ZdxoB03oA2gIR0CKS9DYRNAUdX2UKGgGR0BddawMYuTSaAdN6ANoCEdAik1IAwPAf3V9lChoBkdAZHOVmjCYTmgHTegDaAhHQIpNSYAsCkp1fZQoaAZHQGPrNn5BTn9oB03oA2gIR0CKVNeuV5bAdX2UKGgGR0BgML4+KTB7aAdN6ANoCEdAioHsEq2BrnV9lChoBkdAZrKSIP9UCWgHTegDaAhHQIqURlFtsN51fZQoaAZHQGRtS4OMERtoB03oA2gIR0CKmFwkPczqdX2UKGgGR0BjN5rP+n63aAdN6ANoCEdAipr4qPOpsHV9lChoBkdAYm4rFwT/Q2gHTegDaAhHQIqkWSpzcRF1fZQoaAZHQGHJif6GgzxoB03oA2gIR0CKrHzMA3kxdX2UKGgGR0BdmyOFQEZBaAdN6ANoCEdAiq2M189fTnV9lChoBkdAZ3qbedkJ8mgHTegDaAhHQIq1KxTsIE91fZQoaAZHQGdoleOXE61oB03oA2gIR0CKuhZHuqm1dX2UKGgGR0BMjUZWJaaDaAdLyWgIR0CKyvqt5le4dX2UKGgGR0BgW7GR3eN2aAdN6ANoCEdAis2RmseXA3V9lChoBkdAaGZiIcinpGgHTegDaAhHQIrW2za9K291fZQoaAZHQGS+/Dcdo39oB03oA2gIR0CK348SPEKmdX2UKGgGR0BlLyeqaPS2aAdN6ANoCEdAiuULzPKMenV9lChoBkdAYZcNYKYzBWgHTegDaAhHQIrm2R/3Fkx1fZQoaAZHQGT6HPmgam5oB03oA2gIR0CK5uAmzBykdX2UKGgGR0BnzyCUX531aAdN6ANoCEdAiu/8+A3DN3V9lChoBkdAYjxqOcUdrGgHTegDaAhHQIsbFIPK+zt1fZQoaAZHQGRLtXo1UERoB03oA2gIR0CLKqKgqVhTdX2UKGgGR0Bgm7/CIk7faAdN6ANoCEdAiy7UcfeUIXV9lChoBkdAXjs23rleW2gHTegDaAhHQIsxbWGyon91fZQoaAZHQGTS6OYIBzVoB03oA2gIR0CLOt4nndO7dX2UKGgGR0Bjj3fKp1ifaAdN6ANoCEdAi0T+TV2A5XV9lChoBkdAZLQkoF3Y+WgHTegDaAhHQItGPjABT4t1fZQoaAZHQGKNrAP/aQFoB03oA2gIR0CLVFWmP5pKdX2UKGgGR0BhlHYUWVNYaAdN6ANoCEdAi2S+dsi0OXV9lChoBkdAYvzg4wRGt2gHTegDaAhHQItnEUh3aBZ1fZQoaAZHQGQscbR4QjFoB03oA2gIR0CLb+vysjmkdX2UKGgGR0Bn1ngWJrLyaAdN6ANoCEdAi3dK+SKWLXV9lChoBkdAYmMR15jYqWgHTegDaAhHQIt7XCl7+kx1fZQoaAZHQGduv6sQumJoB03oA2gIR0CLfM9t/FzddX2UKGgGR0Bl+e+49X9zaAdN6ANoCEdAi3zY0/GEPHV9lChoBkdAXue+lCTlk2gHTegDaAhHQIuEKj8DSw51fZQoaAZHQGaJyNGViWpoB03oA2gIR0CLi6X1rZandWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 152,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
58
  "dtype": "float32",
59
  "bounded_below": "[ True True True True True True True True]",
60
  "bounded_above": "[ True True True True True True True True]",
 
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e27a371bed754eb2337238366448911ea0e1ba2ea34c2a34de6519f44ff3bb70
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e6a1772e3249ba73d61edbb72d0b0efc159114983c37b69b803472534a4dc00
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5375dd3192962fa41956e01545428c3c0e437f001ba65caad08f03e60b67df33
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62d5b02ee1c8a3120ebb7acaa3faa2c2ca72936c450eee8352048bdd85161e2f
3
  size 43762
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,9 +1,9 @@
1
- - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
- - Python: 3.11.11
3
  - Stable-Baselines3: 2.0.0a5
4
- - PyTorch: 2.5.1+cu121
5
  - GPU Enabled: True
6
- - Numpy: 1.26.4
7
- - Cloudpickle: 3.1.0
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
 
1
+ - OS: Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025
2
+ - Python: 3.11.12
3
  - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.6.0+cu124
5
  - GPU Enabled: True
6
+ - Numpy: 2.0.2
7
+ - Cloudpickle: 3.1.1
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 262.5920689, "std_reward": 13.899024713835164, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-24T09:19:56.619257"}
 
1
+ {"mean_reward": 262.8682792, "std_reward": 24.143141659742305, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-04-24T12:44:29.580170"}