Update README.md
Browse files
README.md
CHANGED
|
@@ -34,9 +34,9 @@ Trying to get better at medical Q & A
|
|
| 34 |
### Model Sources [optional]
|
| 35 |
|
| 36 |
|
| 37 |
-
- **Repository:** [Tonic/mistralmed]
|
| 38 |
-
- **
|
| 39 |
-
- **Demo
|
| 40 |
|
| 41 |
## Uses
|
| 42 |
|
|
@@ -79,7 +79,8 @@ Dataset({
|
|
| 79 |
num_rows: 16407
|
| 80 |
})
|
| 81 |
|
| 82 |
-
|
|
|
|
| 83 |
|
| 84 |
MistralForCausalLM(
|
| 85 |
(model): MistralModel(
|
|
@@ -108,10 +109,6 @@ MistralForCausalLM(
|
|
| 108 |
(lm_head): Linear(in_features=4096, out_features=32000, bias=False)
|
| 109 |
)
|
| 110 |
|
| 111 |
-
#### Preprocessing [optional]
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
|
| 116 |
#### Training Hyperparameters
|
| 117 |
|
|
@@ -136,9 +133,9 @@ config = LoraConfig(
|
|
| 136 |
|
| 137 |
#### Speeds, Sizes, Times [optional]
|
| 138 |
|
| 139 |
-
trainable params: 21260288 || all params: 3773331456 || trainable%: 0.5634354746703705
|
| 140 |
-
TrainOutput(global_step=1000, training_loss=0.47226515007019043, metrics={'train_runtime': 3143.4141, 'train_samples_per_second': 2.545, 'train_steps_per_second': 0.318, 'total_flos': 1.75274075357184e+17, 'train_loss': 0.47226515007019043, 'epoch': 0.49})
|
| 141 |
-
|
| 142 |
|
| 143 |
## Environmental Impact
|
| 144 |
|
|
@@ -146,11 +143,11 @@ TrainOutput(global_step=1000, training_loss=0.47226515007019043, metrics={'train
|
|
| 146 |
|
| 147 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 148 |
|
| 149 |
-
- **Hardware Type:**
|
| 150 |
-
- **Hours used:**
|
| 151 |
-
- **Cloud Provider:**
|
| 152 |
-
- **Compute Region:**
|
| 153 |
-
- **Carbon Emitted:**
|
| 154 |
|
| 155 |
## Training Results
|
| 156 |
|
|
|
|
| 34 |
### Model Sources [optional]
|
| 35 |
|
| 36 |
|
| 37 |
+
- **Repository:** [Tonic/mistralmed](https://huggingface.co/Tonic/mistralmed)
|
| 38 |
+
- **Code :** [github](https://github.com/Josephrp/mistralmed/blob/main/finetuning.py)
|
| 39 |
+
- **Demo :** [Tonic/MistralMed_Chat](https://huggingface.co/Tonic/MistralMed_Chat)
|
| 40 |
|
| 41 |
## Uses
|
| 42 |
|
|
|
|
| 79 |
num_rows: 16407
|
| 80 |
})
|
| 81 |
|
| 82 |
+
|
| 83 |
+
#### Preprocessing [optional]
|
| 84 |
|
| 85 |
MistralForCausalLM(
|
| 86 |
(model): MistralModel(
|
|
|
|
| 109 |
(lm_head): Linear(in_features=4096, out_features=32000, bias=False)
|
| 110 |
)
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
#### Training Hyperparameters
|
| 114 |
|
|
|
|
| 133 |
|
| 134 |
#### Speeds, Sizes, Times [optional]
|
| 135 |
|
| 136 |
+
- trainable params: 21260288 || all params: 3773331456 || trainable%: 0.5634354746703705
|
| 137 |
+
- TrainOutput(global_step=1000, training_loss=0.47226515007019043, metrics={'train_runtime': 3143.4141, 'train_samples_per_second': 2.545, 'train_steps_per_second': 0.318, 'total_flos': 1.75274075357184e+17, 'train_loss': 0.47226515007019043, 'epoch': 0.49})
|
| 138 |
+
|
| 139 |
|
| 140 |
## Environmental Impact
|
| 141 |
|
|
|
|
| 143 |
|
| 144 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 145 |
|
| 146 |
+
- **Hardware Type:** A100
|
| 147 |
+
- **Hours used:** 1
|
| 148 |
+
- **Cloud Provider:** Google
|
| 149 |
+
- **Compute Region:** East1
|
| 150 |
+
- **Carbon Emitted:** 0.09
|
| 151 |
|
| 152 |
## Training Results
|
| 153 |
|