WinstonHu commited on
Commit
e5e24c9
·
verified ·
1 Parent(s): 68f37c5

Upload folder xtuner to code/xtuner

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. code/xtuner/.DS_Store +0 -0
  3. code/xtuner/__init__.py +25 -0
  4. code/xtuner/__pycache__/__init__.cpython-311.pyc +0 -0
  5. code/xtuner/__pycache__/entry_point.cpython-311.pyc +0 -0
  6. code/xtuner/__pycache__/registry.cpython-311.pyc +0 -0
  7. code/xtuner/__pycache__/version.cpython-311.pyc +0 -0
  8. code/xtuner/_lite/.DS_Store +0 -0
  9. code/xtuner/_lite/__init__.py +77 -0
  10. code/xtuner/_lite/accelerate/__init__.py +24 -0
  11. code/xtuner/_lite/accelerate/lora.py +5 -0
  12. code/xtuner/_lite/accelerate/ops/__init__.py +4 -0
  13. code/xtuner/_lite/accelerate/ops/moe_permute.py +200 -0
  14. code/xtuner/_lite/accelerate/packed.py +24 -0
  15. code/xtuner/_lite/accelerate/utils.py +62 -0
  16. code/xtuner/_lite/algorithms/.DS_Store +0 -0
  17. code/xtuner/_lite/algorithms/__init__.py +1 -0
  18. code/xtuner/_lite/algorithms/ppo/__init__.py +32 -0
  19. code/xtuner/_lite/algorithms/ppo/dataset.py +153 -0
  20. code/xtuner/_lite/algorithms/ppo/loss.py +119 -0
  21. code/xtuner/_lite/algorithms/ppo/model.py +49 -0
  22. code/xtuner/_lite/algorithms/sft/__init__.py +4 -0
  23. code/xtuner/_lite/algorithms/sft/dataset.py +109 -0
  24. code/xtuner/_lite/chat/.DS_Store +0 -0
  25. code/xtuner/_lite/chat/__init__.py +5 -0
  26. code/xtuner/_lite/chat/backends/__init__.py +1 -0
  27. code/xtuner/_lite/chat/messages/__init__.py +5 -0
  28. code/xtuner/_lite/chat/messages/base.py +32 -0
  29. code/xtuner/_lite/chat/messages/chat.py +202 -0
  30. code/xtuner/_lite/chat/templates/__init__.py +30 -0
  31. code/xtuner/_lite/chat/templates/chat.py +59 -0
  32. code/xtuner/_lite/chat/templates/hybrid.py +206 -0
  33. code/xtuner/_lite/datasets/__init__.py +14 -0
  34. code/xtuner/_lite/datasets/json.py +177 -0
  35. code/xtuner/_lite/datasets/jsonl.py +220 -0
  36. code/xtuner/_lite/datasets/pack.py +257 -0
  37. code/xtuner/_lite/datasets/streaming.py +28 -0
  38. code/xtuner/_lite/datasets/utils/__init__.py +12 -0
  39. code/xtuner/_lite/datasets/utils/convert.py +195 -0
  40. code/xtuner/_lite/datasets/utils/load.py +286 -0
  41. code/xtuner/_lite/datasets/utils/utils.py +66 -0
  42. code/xtuner/_lite/device.py +42 -0
  43. code/xtuner/_lite/modelings/.DS_Store +0 -0
  44. code/xtuner/_lite/modelings/__init__.py +17 -0
  45. code/xtuner/_lite/modelings/internlm2/__init__.py +2 -0
  46. code/xtuner/_lite/modelings/internlm2/configuration_internlm2.py +175 -0
  47. code/xtuner/_lite/modelings/internlm2/modeling_internlm2.py +1899 -0
  48. code/xtuner/_lite/modelings/internlm3/__init__.py +3 -0
  49. code/xtuner/_lite/modelings/internlm3/configuration_internlm3.py +197 -0
  50. code/xtuner/_lite/modelings/internlm3/modeling_internlm3.py +825 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ code/xtuner/model/dynamic_llava/__pycache__/dynamic_qwen.cpython-311.pyc filter=lfs diff=lfs merge=lfs -text
code/xtuner/.DS_Store ADDED
Binary file (12.3 kB). View file
 
code/xtuner/__init__.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import os
3
+
4
+ from mmengine.utils import digit_version
5
+
6
+ from .entry_point import cli
7
+ from .version import __version__, version_info
8
+
9
+ HF_CEPH_HUB = os.getenv('HF_CEPH_HUB', '')
10
+ HF_USE_CEPH = os.getenv('HF_USE_CEPH', 0) or HF_CEPH_HUB != ''
11
+ DS_CEPH_DIR = os.getenv('DS_CEPH_DIR', None)
12
+ if HF_USE_CEPH:
13
+ from .utils.fileio import (patch_hf_auto_from_pretrained,
14
+ patch_hf_save_pretrained)
15
+ patch_hf_auto_from_pretrained(HF_CEPH_HUB)
16
+ patch_hf_save_pretrained()
17
+
18
+ if DS_CEPH_DIR:
19
+ from .utils.fileio import patch_deepspeed_engine
20
+ patch_deepspeed_engine()
21
+
22
+ __all__ = [
23
+ '__version__', 'version_info', 'digit_version', 'cli', 'HF_USE_CEPH',
24
+ 'DS_CEPH_DIR'
25
+ ]
code/xtuner/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (1.08 kB). View file
 
code/xtuner/__pycache__/entry_point.cpython-311.pyc ADDED
Binary file (14.7 kB). View file
 
code/xtuner/__pycache__/registry.cpython-311.pyc ADDED
Binary file (408 Bytes). View file
 
code/xtuner/__pycache__/version.cpython-311.pyc ADDED
Binary file (1.39 kB). View file
 
code/xtuner/_lite/.DS_Store ADDED
Binary file (8.2 kB). View file
 
code/xtuner/_lite/__init__.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import os
3
+ import subprocess
4
+ import sys
5
+
6
+ from loguru import logger
7
+
8
+ from .device import get_device, get_torch_device_module
9
+
10
+ _LOGGER = None
11
+
12
+
13
+ def log_format(debug=False):
14
+ formatter = "[XTuner][{time:YYYY-MM-DD HH:mm:ss}][<level>{level}</level>]"
15
+
16
+ if debug:
17
+ formatter += "[<cyan>{name}</cyan>:"
18
+ formatter += "<cyan>{function}</cyan>:"
19
+ formatter += "<cyan>{line}</cyan>]"
20
+
21
+ formatter += " <level>{message}</level>"
22
+ return formatter
23
+
24
+
25
+ def get_logger(level="INFO"):
26
+ global _LOGGER
27
+ if _LOGGER is None:
28
+ # Remove the original logger in Python to prevent duplicate printing.
29
+ logger.remove()
30
+ logger.add(sys.stderr, level=level, format=log_format(debug=level == "DEBUG"))
31
+ _LOGGER = logger
32
+ return _LOGGER
33
+
34
+
35
+ def get_repo_git_info(repo_path):
36
+ original_directory = os.getcwd()
37
+ os.chdir(repo_path)
38
+
39
+ try:
40
+ branch = (
41
+ subprocess.check_output(
42
+ ["git", "rev-parse", "--abbrev-ref", "HEAD"], stderr=subprocess.STDOUT
43
+ )
44
+ .strip()
45
+ .decode("utf-8")
46
+ )
47
+
48
+ commit_id = (
49
+ subprocess.check_output(
50
+ ["git", "rev-parse", "HEAD"], stderr=subprocess.STDOUT
51
+ )
52
+ .strip()
53
+ .decode("utf-8")
54
+ )
55
+
56
+ remote_url = (
57
+ subprocess.check_output(
58
+ ["git", "remote", "get-url", "origin"], stderr=subprocess.STDOUT
59
+ )
60
+ .strip()
61
+ .decode("utf-8")
62
+ )
63
+
64
+ return branch, commit_id, remote_url
65
+ except subprocess.CalledProcessError:
66
+ return None, None, None
67
+ finally:
68
+ os.chdir(original_directory)
69
+
70
+
71
+ __all__ = [
72
+ "AutoConfig",
73
+ "AutoModelForCausalLM",
74
+ "AutoTokenizer",
75
+ "get_device",
76
+ "get_torch_device_module",
77
+ ]
code/xtuner/_lite/accelerate/__init__.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from .lora import LORA_TARGET_MAP
3
+ from .packed import pack_sequence, unpack_sequence
4
+ from .utils import (
5
+ liger_kernel_is_available,
6
+ lmdeploy_is_available,
7
+ mlu_is_available,
8
+ npu_is_available,
9
+ profile_time_and_memory,
10
+ varlen_attn_is_available,
11
+ )
12
+
13
+ __all__ = [
14
+ "LORA_TARGET_MAP",
15
+ "pack_sequence",
16
+ "packed_sequence",
17
+ "unpack_sequence",
18
+ "liger_kernel_is_available",
19
+ "varlen_attn_is_available",
20
+ "lmdeploy_is_available",
21
+ "npu_is_available",
22
+ "mlu_is_available",
23
+ "profile_time_and_memory",
24
+ ]
code/xtuner/_lite/accelerate/lora.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ LORA_TARGET_MAP = {
3
+ "InternLM2ForCausalLM": ["wqkv", "wo", "w1", "w2", "w3"],
4
+ "CLIPVisionModel": ["q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2"],
5
+ }
code/xtuner/_lite/accelerate/ops/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from .moe_permute import GROUPED_GEMM_INSTALLED, permute_func, unpermute_func
3
+
4
+ __all__ = ["GROUPED_GEMM_INSTALLED", "permute_func", "unpermute_func"]
code/xtuner/_lite/accelerate/ops/moe_permute.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ """Modified from
3
+ https://github.com/fanshiqing/grouped_gemm/blob/v1.1.4/grouped_gemm/ops.py
4
+ Support torch compile."""
5
+ from typing import Optional, Tuple
6
+
7
+ import torch
8
+ from torch import Tensor
9
+
10
+ GROUPED_GEMM_INSTALLED = False
11
+
12
+ try:
13
+ from grouped_gemm import backend
14
+
15
+ GROUPED_GEMM_INSTALLED = True
16
+ except ImportError:
17
+ # install grouped gemm https://github.com/fanshiqing/grouped_gemm/tree/v1.1.4?tab=readme-ov-file#pip-install
18
+ grouped_gmm = None
19
+
20
+
21
+ @torch.library.custom_op("moe::permute", mutates_args=())
22
+ def permute(input_act: Tensor, indices: Tensor, num_topK: int) -> Tuple[Tensor, Tensor]:
23
+ input_max_expanded_token_num = input_act.size(0) * num_topK
24
+ workspace_fw = []
25
+ permuted_act, row_id_map, _ = backend.permute(
26
+ input_act, indices, 0, workspace_fw, input_max_expanded_token_num
27
+ )
28
+ return permuted_act, row_id_map
29
+
30
+
31
+ @permute.register_fake
32
+ def permute_fake(
33
+ input_act: Tensor,
34
+ indices: Tensor,
35
+ num_topK: int,
36
+ ):
37
+ permuted_act = input_act.new_empty(
38
+ (input_act.shape[0] * num_topK, *input_act.shape[1:])
39
+ )
40
+ row_id_map = indices.new_empty((indices.numel(),))
41
+ return permuted_act, row_id_map
42
+
43
+
44
+ @torch.library.custom_op("moe::unpermute", mutates_args=())
45
+ def unpermute(
46
+ input: Tensor, row_id_map: Tensor, prob: Tensor, max_tokens: int, num_topK: int
47
+ ) -> Tensor:
48
+ if not input.is_contiguous():
49
+ input = input.contiguous()
50
+ return backend.unpermute(input, row_id_map, prob, max_tokens, num_topK)
51
+
52
+
53
+ @unpermute.register_fake
54
+ def unpermute_fake(
55
+ input: Tensor, row_id_map: Tensor, prob: Tensor, max_tokens: int, num_topK: int
56
+ ) -> Tensor:
57
+ return input.new_empty((input.shape[0] // num_topK, *input.shape[1:]))
58
+
59
+
60
+ @torch.library.custom_op("moe::unpermute_bwd", mutates_args=())
61
+ def unpermute_bwd(
62
+ input_bwd: Tensor,
63
+ input_fwd: Tensor,
64
+ row_id_map: Tensor,
65
+ prob: Optional[Tensor],
66
+ ) -> Tuple[Tensor, Tensor]:
67
+ if not input_bwd.is_contiguous():
68
+ input_bwd = input_bwd.contiguous()
69
+ topk = input_fwd.shape[0] // input_bwd.shape[0]
70
+ if prob is None:
71
+ prob = torch.ones(
72
+ [input_bwd.size(0), topk], dtype=torch.float32, device=input_bwd.device
73
+ )
74
+ return backend.unpermute_bwd(input_bwd, input_fwd, row_id_map, prob)
75
+
76
+
77
+ @unpermute_bwd.register_fake
78
+ def unpermute_bwd_fake(
79
+ input_bwd: Tensor,
80
+ input_fwd: Tensor,
81
+ row_id_map: Tensor,
82
+ prob: Optional[Tensor],
83
+ ) -> Tuple[Tensor, Tensor]:
84
+ act_grad = torch.empty_like(input_fwd)
85
+ topk = input_fwd.shape[0] // input_bwd.shape[0]
86
+ prob_grad = torch.empty(
87
+ (input_bwd.size(0), topk), dtype=torch.float32, device=input_bwd.device
88
+ )
89
+ return act_grad, prob_grad
90
+
91
+
92
+ if torch.__version__ >= "2.4.0":
93
+ _wrapped_permute = torch.ops.moe.permute
94
+ _wrapped_unpermute = torch.ops.moe.unpermute
95
+ _wrapped_unpermute_bwd = torch.ops.moe.unpermute_bwd
96
+ else:
97
+ _wrapped_permute = permute
98
+ _wrapped_unpermute = unpermute
99
+ _wrapped_unpermute_bwd = unpermute_bwd
100
+
101
+
102
+ class PermuteMoE_topK(torch.autograd.Function):
103
+ @staticmethod
104
+ def forward(
105
+ ctx,
106
+ input_act: Tensor,
107
+ indices: Tensor,
108
+ ):
109
+ if not input_act.numel():
110
+ return input_act, None
111
+
112
+ if indices.dim() == 1:
113
+ indices = indices.view(-1, 1)
114
+ if not input_act.is_contiguous():
115
+ input_act = input_act.contiguous()
116
+ if not indices.is_contiguous():
117
+ indices = indices.contiguous()
118
+
119
+ num_topK = indices.size(1)
120
+
121
+ permuted_act, row_id_map = _wrapped_permute(
122
+ input_act,
123
+ indices,
124
+ num_topK,
125
+ )
126
+
127
+ ctx.row_id_map = row_id_map
128
+ ctx.num_tokens = indices.size(0)
129
+ ctx.num_topK = num_topK
130
+ return permuted_act, row_id_map
131
+
132
+ @staticmethod
133
+ def backward(ctx, permuted_act_grad, *args):
134
+ if not permuted_act_grad.numel():
135
+ return permuted_act_grad, None
136
+
137
+ permuted_act_grad = permuted_act_grad.contiguous()
138
+
139
+ row_id_map = ctx.row_id_map
140
+ num_tokens = ctx.num_tokens
141
+ num_topK = ctx.num_topK
142
+
143
+ unpermuted_act_grad = _wrapped_unpermute(
144
+ permuted_act_grad, row_id_map, torch.tensor([]), num_tokens, num_topK
145
+ )
146
+ return unpermuted_act_grad, None
147
+
148
+
149
+ class UnpermuteMoE_topK(torch.autograd.Function):
150
+ @staticmethod
151
+ def forward(ctx, input_act: Tensor, row_id_map: Tensor, probs: Tensor = None):
152
+ if not input_act.numel():
153
+ ctx.probs = probs
154
+ return input_act
155
+
156
+ if not input_act.is_contiguous():
157
+ input_act = input_act.contiguous()
158
+ if not row_id_map.is_contiguous():
159
+ row_id_map = row_id_map.contiguous()
160
+ if probs is not None and not probs.is_contiguous():
161
+ probs = probs.contiguous()
162
+
163
+ num_tokens = probs.size(0) if probs is not None else input_act.size(0)
164
+ num_topK = probs.size(1) if probs is not None else 1
165
+
166
+ unpermuted_output = _wrapped_unpermute(
167
+ input_act,
168
+ row_id_map,
169
+ probs if probs is not None else torch.tensor([]),
170
+ num_tokens,
171
+ num_topK,
172
+ )
173
+
174
+ ctx.save_for_backward(input_act, row_id_map, probs)
175
+ return unpermuted_output
176
+
177
+ @staticmethod
178
+ def backward(ctx, unpermuted_act_grad):
179
+ if not unpermuted_act_grad.numel():
180
+ return unpermuted_act_grad, None, ctx.probs
181
+
182
+ input_act, row_id_map, probs = ctx.saved_tensors
183
+
184
+ act_grad = None
185
+ if ctx.needs_input_grad[0]:
186
+ act_grad, prob_grad = _wrapped_unpermute_bwd(
187
+ unpermuted_act_grad, input_act, row_id_map, probs
188
+ )
189
+
190
+ if not ctx.needs_input_grad[2]:
191
+ prob_grad = None
192
+ return act_grad, None, prob_grad
193
+
194
+
195
+ def permute_func(input_act, indices):
196
+ return PermuteMoE_topK.apply(input_act, indices)
197
+
198
+
199
+ def unpermute_func(input_act, row_id_map, probs=None):
200
+ return UnpermuteMoE_topK.apply(input_act, row_id_map, probs)
code/xtuner/_lite/accelerate/packed.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from typing import List, Union
3
+
4
+ import torch
5
+
6
+
7
+ def unpack_sequence(packed: torch.Tensor, num_tokens: Union[torch.Tensor, List], dim=1):
8
+ if isinstance(num_tokens, torch.Tensor):
9
+ num_tokens = num_tokens.tolist()
10
+ sequences = torch.split(packed, num_tokens, dim=dim)
11
+ return sequences
12
+
13
+
14
+ def pack_sequence(sequences, dim=1):
15
+ num_tokens = torch.IntTensor([seq.size(dim) for seq in sequences])
16
+ packed = torch.cat(sequences, dim=dim)
17
+ return packed, num_tokens.to(packed.device)
18
+
19
+
20
+ def packed_cumulative_length(num_tokens: torch.Tensor):
21
+ device = num_tokens.device
22
+ _zero_pad = torch.zeros(1, device=device)
23
+ _pad_length = torch.cat([_zero_pad, num_tokens]).int()
24
+ return torch.cumsum(_pad_length, 0).int()
code/xtuner/_lite/accelerate/utils.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import time
3
+ from contextlib import contextmanager
4
+
5
+ from transformers.utils.import_utils import is_flash_attn_2_available
6
+
7
+ from xtuner._lite import get_device, get_logger, get_torch_device_module
8
+
9
+ logger = get_logger()
10
+
11
+
12
+ def npu_is_available():
13
+ return get_device() == "npu"
14
+
15
+
16
+ def mlu_is_available():
17
+ return get_device() == "mlu"
18
+
19
+
20
+ def varlen_attn_is_available():
21
+ return is_flash_attn_2_available() or npu_is_available()
22
+
23
+
24
+ def lmdeploy_is_available():
25
+ available = False
26
+ try:
27
+ import lmdeploy # noqa: F401
28
+
29
+ available = True
30
+ except ImportError:
31
+ available = False
32
+
33
+ return available
34
+
35
+
36
+ def liger_kernel_is_available():
37
+ available = False
38
+ try:
39
+ import liger_kernel # noqa: F401
40
+
41
+ available = True
42
+ except ImportError:
43
+ available = False
44
+
45
+ return available
46
+
47
+
48
+ @contextmanager
49
+ def profile_time_and_memory(desc):
50
+ torch_device = get_torch_device_module()
51
+ start_t = time.time()
52
+ torch_device.reset_peak_memory_stats()
53
+
54
+ yield
55
+
56
+ max_memory = torch_device.max_memory_allocated()
57
+ cost_time = time.time() - start_t
58
+
59
+ logger.success(
60
+ f"{desc} Elapsed time {cost_time:.2f} seconds, "
61
+ f"peak gpu memory {max_memory/1024**3:.1f}G"
62
+ )
code/xtuner/_lite/algorithms/.DS_Store ADDED
Binary file (6.15 kB). View file
 
code/xtuner/_lite/algorithms/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
code/xtuner/_lite/algorithms/ppo/__init__.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from .dataset import (
3
+ InferDataset,
4
+ PPOTokenizeFunction,
5
+ RewardBuffer,
6
+ RewardBufferCollator,
7
+ )
8
+ from .loss import (
9
+ CriticLoss,
10
+ PPOPolicyLoss,
11
+ compute_advantages_and_returns,
12
+ compute_kl_rewards,
13
+ gather_logprobs,
14
+ )
15
+ from .model import build_actor_model, build_reward_model
16
+
17
+ __all__ = [
18
+ "InferDataset",
19
+ "RewardBuffer",
20
+ "RewardBufferCollator",
21
+ "PPOCollator",
22
+ "PPODataset",
23
+ "PPOTokenizeFunction",
24
+ "CriticLoss",
25
+ "PPOPolicyLoss",
26
+ "compute_advantages_and_returns",
27
+ "compute_kl_rewards",
28
+ "compute_rewards",
29
+ "gather_logprobs",
30
+ "build_actor_model",
31
+ "build_reward_model",
32
+ ]
code/xtuner/_lite/algorithms/ppo/dataset.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import json
3
+
4
+ import numpy as np
5
+ import torch
6
+ from torch import nn
7
+
8
+ from xtuner._lite.chat.messages.chat import ChatMsg
9
+ from xtuner._lite.datasets import OPENAI_CONVERT_MAP
10
+
11
+ from ..sft import SftCollator, SftTokenizeFunction
12
+
13
+
14
+ class InferDataset(torch.utils.data.Dataset):
15
+ def __init__(self, prompts, responses):
16
+ super().__init__()
17
+
18
+ assert len(prompts) == len(responses)
19
+ self.prompts = prompts
20
+ self.responses = responses
21
+ self.policies = None
22
+
23
+ def __len__(self):
24
+ return len(self.prompts)
25
+
26
+ def __getitem__(self, item):
27
+ prompt = self.prompts[item]
28
+ response = self.responses[item]
29
+ num_prefill_tokens = len(prompt)
30
+
31
+ input_ids = prompt + response
32
+ labels = [-100] * (num_prefill_tokens - 1) + response + [-100]
33
+
34
+ return {"input_ids": input_ids, "labels": labels, "num_tokens": len(input_ids)}
35
+
36
+
37
+ FASTER = False
38
+
39
+
40
+ class RewardBuffer(torch.utils.data.Dataset):
41
+ def __init__(self, clip_min=-5, clip_max=5, normalize=True, faster=False):
42
+ super().__init__()
43
+
44
+ self.clip_min = clip_min
45
+ self.clip_max = clip_max
46
+
47
+ self.normalize = normalize
48
+
49
+ if self.normalize:
50
+ self.bn = nn.BatchNorm1d(1, momentum=None, affine=False)
51
+ else:
52
+ self.bn = None
53
+
54
+ self._num_action_tokens = 0
55
+ self._num_total_tokens = 0
56
+ self._trajectories = []
57
+
58
+ self._current_mean = 0
59
+
60
+ @property
61
+ def running_mean(self):
62
+ return self.bn.running_mean.item()
63
+
64
+ @property
65
+ def current_mean(self):
66
+ return self._current_mean
67
+
68
+ @property
69
+ def num_action_tokens(self):
70
+ return self._num_action_tokens.item()
71
+
72
+ @property
73
+ def num_total_tokens(self):
74
+ return self._num_total_tokens
75
+
76
+ def update(self, trajectories):
77
+ rewards = [data["reward"] for data in trajectories]
78
+
79
+ for i in range(len(trajectories)):
80
+ trajectories[i]["ori_reward"] = trajectories[i]["reward"]
81
+
82
+ rewards = torch.tensor(rewards)
83
+
84
+ self._current_mean = rewards.mean().item()
85
+
86
+ rewards = rewards.clip(self.clip_min, self.clip_max)
87
+
88
+ if self.normalize:
89
+ self.bn.train()
90
+ _ = self.bn(rewards.unsqueeze(-1))
91
+ self.bn.eval()
92
+ rewards = self.bn(rewards.unsqueeze(-1))
93
+
94
+ for i in range(len(trajectories)):
95
+ trajectories[i]["reward"] = rewards[i].item()
96
+
97
+ num_total_tokens = 0
98
+ num_action_tokens = 0
99
+ for data in trajectories:
100
+ labels = np.array(data["labels"])
101
+ num_total_tokens += labels.size
102
+ num_action_tokens += (labels >= 0).sum()
103
+
104
+ self._num_action_tokens = num_action_tokens
105
+ self._num_total_tokens = num_total_tokens
106
+
107
+ self._trajectories = trajectories
108
+
109
+ def dump_jsonl(self, path, tokenizer, debug=False):
110
+ with open(path, "w", encoding="utf8") as f:
111
+ for data in self._trajectories:
112
+ json_line = {
113
+ "num_tokens": data["num_tokens"],
114
+ "reward": data["ori_reward"],
115
+ "sequence": tokenizer.decode(data["input_ids"]),
116
+ }
117
+
118
+ if debug:
119
+ json_line["input_ids"] = data["input_ids"]
120
+ json_line["labels"] = data["labels"]
121
+
122
+ json_str = json.dumps(json_line, ensure_ascii=False)
123
+ f.write(json_str + "\n")
124
+
125
+ def __len__(self):
126
+ return len(self._trajectories)
127
+
128
+ def __getitem__(self, item):
129
+ return self._trajectories[item]
130
+
131
+
132
+ class PPOTokenizeFunction(SftTokenizeFunction):
133
+ def __init__(self, tokenizer, chat_template, raw_format="openai", sys_prompt=None):
134
+ super().__init__(tokenizer, chat_template, raw_format)
135
+ self.sys_prompt = sys_prompt
136
+
137
+ def __call__(self, item):
138
+ formatter = OPENAI_CONVERT_MAP[self.raw_format]
139
+ msg = formatter(item)
140
+ if self.sys_prompt is not None:
141
+ sys_msg = ChatMsg(role="system", content=self.sys_prompt)
142
+ msg.messages = [sys_msg] + msg.messages
143
+ tokenized = msg.tokenize(self.tokenizer, self.chat_template)
144
+
145
+ return tokenized
146
+
147
+
148
+ class RewardBufferCollator(SftCollator):
149
+ def __call__(self, instances):
150
+ data = super().__call__(instances)
151
+ data["rewards"] = [item["reward"] for item in instances]
152
+
153
+ return data
code/xtuner/_lite/algorithms/ppo/loss.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import torch
3
+ from torch.nn import functional as F
4
+
5
+ from xtuner._lite import get_logger
6
+
7
+ logger = get_logger()
8
+
9
+
10
+ def gather_logprobs(logits, labels):
11
+ log_probs = F.log_softmax(logits, dim=-1)
12
+ log_probs_labels = log_probs.gather(dim=-1, index=labels.unsqueeze(-1))
13
+ return log_probs_labels.squeeze(-1)
14
+
15
+
16
+ @torch.no_grad()
17
+ def compute_kl_rewards(logprobs, ref_logprobs, reward_score, kl_coef=0.01):
18
+ assert logprobs.ndim == 1
19
+ last_mask = torch.zeros_like(logprobs, dtype=torch.int)
20
+ last_mask[-1] = 1
21
+
22
+ kl = ref_logprobs - logprobs
23
+ kl_reward = kl_coef * kl * (1 - last_mask)
24
+
25
+ last_reward = reward_score * last_mask
26
+
27
+ rewards = kl_reward + last_reward
28
+
29
+ return rewards
30
+
31
+
32
+ @torch.no_grad()
33
+ def compute_advantages_and_returns(values, rewards, gamma=1.0, gae_lambda=0.99):
34
+ # Adopted from https://github.com/CarperAI/trlx/blob/main/trlx/models/modeling_ppo.py#L134 # noqa: E501
35
+ """Function that computes advantages and returns from rewards and values.
36
+ Calculated as in the original PPO paper: https://arxiv.org/abs/1707.06347
37
+ Note that rewards may include a KL divergence loss term.
38
+
39
+ Advantages looks like this:
40
+ Adv1 = R1 + γ * λ * R2 + γ^2 * λ^2 * R3 + ...
41
+ - V1 + γ * (1 - λ) V2 + γ^2 * λ * (1 - λ) V3 + ...
42
+
43
+ Returns looks like this:
44
+ Ret1 = R1 + γ * λ * R2 + γ^2 * λ^2 * R3 + ...
45
+ + γ * (1 - λ) V2 + γ^2 * λ * (1 - λ) V3 + ...
46
+ """
47
+ lastgaelam = 0
48
+ advantages_reversed = []
49
+
50
+ assert values.numel() == rewards.numel(), f"{values.numel()}, {rewards.numel()}"
51
+ length = rewards.numel()
52
+
53
+ for t in reversed(range(0, length)):
54
+ nextvalues = values[t + 1] if t < length - 1 else 0.0
55
+ # Since old_rewards and old_values are masked with action_mask,
56
+ # i.e. they have 0's at pad tokens,
57
+ # delta will be 0 if current t is at a pad token,
58
+ # so will lastgaelam
59
+ delta = rewards[t] + gamma * nextvalues - values[t]
60
+ lastgaelam = delta + gamma * gae_lambda * lastgaelam
61
+ advantages_reversed.append(lastgaelam)
62
+
63
+ advantages = torch.stack(advantages_reversed[::-1], dim=0)
64
+ returns = advantages + values
65
+ return advantages.detach(), returns
66
+
67
+
68
+ class CriticLoss(torch.nn.Module):
69
+ """Loss function for critic model."""
70
+
71
+ def __init__(self, cliprange_value: float = 0.5, loss_type: str = "per_seq"):
72
+ super().__init__()
73
+ self.cliprange_value = cliprange_value
74
+ self.loss_type = loss_type
75
+
76
+ assert self.loss_type in ["per_token", "per_seq"]
77
+
78
+ def critic_loss_fn(self, values, old_values, returns, loss_factor=None):
79
+ values_clipped = old_values + (values - old_values).clamp(
80
+ -self.cliprange_value, self.cliprange_value
81
+ )
82
+ vf_loss1 = (values_clipped - returns) ** 2
83
+ vf_loss2 = (values - returns) ** 2
84
+ if self.loss_type == "per_seq":
85
+ vf_loss = torch.max(vf_loss1, vf_loss2).mean(-1)
86
+ elif self.loss_type == "per_token":
87
+ assert loss_factor is not None
88
+ vf_loss = torch.sum(torch.max(vf_loss1, vf_loss2) * loss_factor)
89
+ return 0.5 * vf_loss
90
+
91
+ def forward(self, values: torch.Tensor, old_values, returns, loss_factor=None):
92
+ loss = self.critic_loss_fn(
93
+ values=values,
94
+ old_values=old_values,
95
+ returns=returns,
96
+ loss_factor=loss_factor,
97
+ )
98
+ return loss
99
+
100
+
101
+ class PPOPolicyLoss(torch.nn.Module):
102
+ """Loss function for policy model."""
103
+
104
+ def __init__(self, cliprange: float = 0.2, loss_type: str = "per_seq"):
105
+ super().__init__()
106
+ self.cliprange = cliprange
107
+ self.loss_type = loss_type
108
+ assert self.loss_type in ["per_token", "per_seq"]
109
+
110
+ def forward(self, logprobs, old_logprobs, advantages, loss_factor=None):
111
+ ratio = (logprobs - old_logprobs).exp()
112
+ pg_loss1 = -ratio * advantages
113
+ pg_loss2 = -ratio.clamp(1 - self.cliprange, 1 + self.cliprange) * advantages
114
+ if self.loss_type == "per_seq":
115
+ pg_loss = torch.max(pg_loss1, pg_loss2).mean(dim=-1)
116
+ elif self.loss_type == "per_token":
117
+ assert loss_factor is not None
118
+ pg_loss = torch.sum(torch.max(pg_loss1, pg_loss2)) * loss_factor
119
+ return pg_loss
code/xtuner/_lite/algorithms/ppo/model.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import torch
3
+ from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
4
+ from transformers.utils.import_utils import (
5
+ is_flash_attn_2_available,
6
+ is_torch_sdpa_available,
7
+ )
8
+
9
+ from xtuner._lite.accelerate import LoadWoInit
10
+
11
+
12
+ def build_actor_model(model_path, dtype=torch.float32, trust_remote_code=True):
13
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
14
+ if is_flash_attn_2_available():
15
+ config.attn_implementation = "flash_attention_2"
16
+ elif is_torch_sdpa_available():
17
+ config.attn_implementation = "sdpa"
18
+
19
+ with LoadWoInit():
20
+ policy = AutoModelForCausalLM.from_pretrained(
21
+ model_path,
22
+ attn_implementation="flash_attention_2",
23
+ torch_dtype=dtype,
24
+ trust_remote_code=trust_remote_code,
25
+ )
26
+
27
+ return policy
28
+
29
+
30
+ def build_reward_model(model_path, dtype=torch.float32, trust_remote_code=True):
31
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
32
+ if is_flash_attn_2_available():
33
+ config.attn_implementation = "flash_attention_2"
34
+ elif is_torch_sdpa_available():
35
+ config.attn_implementation = "sdpa"
36
+
37
+ config.use_cache = False
38
+ config.torch_dtype = dtype
39
+ with LoadWoInit():
40
+ reward = AutoModel.from_pretrained(
41
+ model_path,
42
+ attn_implementation="flash_attention_2",
43
+ torch_dtype=dtype,
44
+ trust_remote_code=trust_remote_code,
45
+ )
46
+
47
+ reward.model.use_cache = False
48
+
49
+ return reward
code/xtuner/_lite/algorithms/sft/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from .dataset import SftCollator, SftTokenizeFunction
3
+
4
+ __all__ = ["SftCollator", "SftTokenizeFunction"]
code/xtuner/_lite/algorithms/sft/dataset.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import torch
3
+ from torch.nn.utils.rnn import pad_sequence
4
+
5
+ from xtuner._lite import get_logger
6
+ from xtuner._lite.datasets import OPENAI_CONVERT_MAP
7
+
8
+ logger = get_logger()
9
+
10
+
11
+ class SftTokenizeFunction:
12
+ def __init__(self, tokenizer, chat_template, raw_format="openai"):
13
+ self.tokenizer = tokenizer
14
+ self.chat_template = chat_template
15
+ self.raw_format = raw_format
16
+
17
+ def __call__(self, item):
18
+ formatter = OPENAI_CONVERT_MAP[self.raw_format]
19
+ msg = formatter(item)
20
+ tokenized = msg.tokenize(self.tokenizer, self.chat_template)
21
+ return tokenized
22
+
23
+
24
+ class SftCollator:
25
+ def __init__(
26
+ self, pad_token_id=0, ignore_id=-100, pack_batch=False, max_length=None
27
+ ):
28
+ self.pack_batch = pack_batch
29
+ self.pad_token_id = pad_token_id
30
+ self.ignore_id = ignore_id
31
+ self.max_length = max_length
32
+
33
+ def __call__(self, instances):
34
+ _instances = []
35
+ for ins in instances:
36
+ if isinstance(ins, list):
37
+ _instances.extend(ins)
38
+ else:
39
+ _instances.append(ins)
40
+
41
+ instances = _instances
42
+
43
+ input_ids = []
44
+ labels = []
45
+ num_tokens = []
46
+
47
+ for data in instances:
48
+ _input_ids = data["input_ids"]
49
+ _labels = data["labels"]
50
+ _num_tokens = data["num_tokens"]
51
+
52
+ # TODO remove list
53
+ if isinstance(_num_tokens, list):
54
+ assert len(_num_tokens) == 1
55
+ _num_tokens = _num_tokens[0]
56
+
57
+ assert isinstance(_num_tokens, int)
58
+
59
+ if self.max_length:
60
+ _input_ids = _input_ids[: self.max_length]
61
+ _labels = _labels[: self.max_length]
62
+ _num_tokens = min(_num_tokens, self.max_length)
63
+
64
+ input_ids.append(torch.LongTensor(_input_ids))
65
+ labels.append(torch.LongTensor(_labels))
66
+ num_tokens.append(_num_tokens)
67
+
68
+ attention_mask = [torch.ones_like(ids) for ids in input_ids]
69
+ num_tokens = torch.IntTensor(num_tokens)
70
+
71
+ if len(instances) > 1 and self.pack_batch:
72
+ input_ids = torch.cat(input_ids, dim=0).unsqueeze(0)
73
+ labels = torch.cat(labels, dim=0).unsqueeze(0)
74
+ attention_mask = torch.cat(attention_mask, dim=0).unsqueeze(0)
75
+
76
+ elif len(instances) > 1 and not self.pack_batch:
77
+ input_ids = pad_sequence(
78
+ input_ids, batch_first=True, padding_value=self.pad_token_id
79
+ )
80
+ labels = pad_sequence(
81
+ labels, batch_first=True, padding_value=self.ignore_id
82
+ )
83
+ attention_mask = pad_sequence(
84
+ attention_mask, batch_first=True, padding_value=0
85
+ )
86
+ else:
87
+ input_ids = torch.stack(input_ids)
88
+ labels = torch.stack(labels)
89
+ attention_mask = torch.stack(attention_mask)
90
+
91
+ if input_ids.shape != labels.shape:
92
+ logger.error(f"[instances] {instances}")
93
+ logger.error(f"[num_tokens] {num_tokens}")
94
+ logger.error(f"[input_ids] {input_ids}")
95
+ logger.error(f"[labels] {labels}")
96
+ raise RuntimeError(
97
+ "The shape of input_ids and labels must be "
98
+ f"equal, but found {input_ids.shape} and "
99
+ f"{labels.shape}."
100
+ )
101
+
102
+ data_dict = {
103
+ "input_ids": input_ids,
104
+ "labels": labels,
105
+ "num_tokens": num_tokens,
106
+ "attention_mask": attention_mask.bool(),
107
+ }
108
+
109
+ return data_dict
code/xtuner/_lite/chat/.DS_Store ADDED
Binary file (6.15 kB). View file
 
code/xtuner/_lite/chat/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from .messages import ChatMessages
3
+ from .templates import CHAT_TEMPLATE_MAP, ChatTemplate, HybridChatTemplate
4
+
5
+ __all__ = ["ChatMessages", "CHAT_TEMPLATE_MAP", "ChatTemplate", "HybridChatTemplate"]
code/xtuner/_lite/chat/backends/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
code/xtuner/_lite/chat/messages/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from .base import BaseMessages
3
+ from .chat import ChatMessages
4
+
5
+ __all__ = ["BaseMessages", "ChatMessages"]
code/xtuner/_lite/chat/messages/base.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from abc import abstractclassmethod, abstractmethod
3
+ from typing import Dict
4
+
5
+ from pydantic import BaseModel
6
+ from transformers import PreTrainedTokenizer
7
+
8
+ from ..templates import ChatTemplate
9
+
10
+
11
+ class BaseMessages(BaseModel):
12
+ @abstractmethod
13
+ def add(self, role: str, content):
14
+ pass
15
+
16
+ @abstractmethod
17
+ def pop(self):
18
+ pass
19
+
20
+ @abstractmethod
21
+ def get_prompt(self, chat_template: ChatTemplate) -> str:
22
+ pass
23
+
24
+ @abstractmethod
25
+ def tokenize(
26
+ self, tokenizer: PreTrainedTokenizer, chat_template: ChatTemplate
27
+ ) -> Dict:
28
+ pass
29
+
30
+ @abstractclassmethod
31
+ def from_dict(cls, item: Dict) -> "BaseMessages":
32
+ pass
code/xtuner/_lite/chat/messages/chat.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import copy
3
+ from typing import Dict, List, Literal, Optional, Union
4
+
5
+ from pydantic import BaseModel
6
+ from transformers import PreTrainedTokenizer
7
+
8
+ from xtuner._lite import get_logger
9
+ from xtuner.utils import IGNORE_INDEX
10
+
11
+ from ..templates import ChatTemplate, HybridChatTemplate
12
+ from .base import BaseMessages
13
+
14
+ logger = get_logger()
15
+
16
+
17
+ class TextContentItem(BaseModel):
18
+ type: Literal["text"] = "text"
19
+ text: str
20
+
21
+ def apply_chat_template(self, chat_template: HybridChatTemplate) -> str:
22
+ return self.text
23
+
24
+
25
+ class ImageContentItem(BaseModel):
26
+ type: Literal["image_url"] = "image_url"
27
+ image_url: str
28
+
29
+ def apply_chat_template(self, chat_template: HybridChatTemplate) -> str:
30
+ return chat_template.image_token
31
+
32
+
33
+ MultModalContentType = Union[TextContentItem, ImageContentItem]
34
+ ContentType = Union[str, List[MultModalContentType]]
35
+
36
+
37
+ class ChatMsg(BaseModel):
38
+ role: Literal["assistant", "user", "system"]
39
+ content: ContentType
40
+ loss: Optional[bool] = None
41
+
42
+ def __init__(self, *args, **kwargs):
43
+ super().__init__(*args, **kwargs)
44
+ if self.loss is None:
45
+ if self.role == "system":
46
+ self.loss = False
47
+ elif self.role == "user":
48
+ self.loss = False
49
+ elif self.role == "assistant":
50
+ self.loss = True
51
+ else:
52
+ raise NotImplementedError
53
+
54
+ def collect_img_urls(self) -> List[str]:
55
+ img_urls = []
56
+ if isinstance(self.content, list):
57
+ for item in self.content:
58
+ if isinstance(item, ImageContentItem):
59
+ img_urls.append(item.image_url)
60
+ return img_urls
61
+
62
+ def get_prompt(self, chat_template: ChatTemplate) -> str:
63
+ if isinstance(self.content, str):
64
+ text = self.content
65
+ elif isinstance(self.content, list):
66
+ text = ""
67
+ for i, item in enumerate(self.content):
68
+ if i == 0:
69
+ text += item.apply_chat_template(chat_template)
70
+ else:
71
+ text += "\n" + item.apply_chat_template(chat_template)
72
+ else:
73
+ raise NotImplementedError
74
+
75
+ if self.role == "system":
76
+ prompt = chat_template.decorate_system(text)
77
+ elif self.role == "user":
78
+ prompt = chat_template.decorate_user(text)
79
+ elif self.role == "assistant":
80
+ prompt = chat_template.decorate_assistant(text)
81
+ else:
82
+ raise NotImplementedError
83
+
84
+ return prompt
85
+
86
+ def tokenize(
87
+ self,
88
+ tokenizer: PreTrainedTokenizer,
89
+ chat_template: ChatTemplate,
90
+ ):
91
+ decorated = self.get_prompt(chat_template)
92
+
93
+ token_ids = tokenizer.encode(decorated, add_special_tokens=False)
94
+
95
+ if self.loss:
96
+ label_ids = copy.deepcopy(token_ids)
97
+ else:
98
+ label_ids = [IGNORE_INDEX] * len(token_ids)
99
+
100
+ return {
101
+ "input_ids": token_ids,
102
+ "labels": label_ids,
103
+ }
104
+
105
+
106
+ class ChatMessages(BaseMessages):
107
+ messages: List[ChatMsg]
108
+
109
+ def add(self, role, content, loss=False):
110
+ self.messages.append(ChatMsg(role=role, content=content, loss=loss))
111
+
112
+ def pop(self):
113
+ return self.messages.pop()
114
+
115
+ def get_prompt(self, chat_template: ChatTemplate) -> str:
116
+ prompt = ""
117
+
118
+ for msg in self.messages:
119
+ prompt += msg.get_prompt(chat_template)
120
+ if msg.role == "assistant":
121
+ prompt += chat_template.sep
122
+ return prompt
123
+
124
+ def tokenize(
125
+ self, tokenizer: PreTrainedTokenizer, chat_template: ChatTemplate
126
+ ) -> Dict:
127
+ input_ids = tokenizer.encode("", add_special_tokens=True)
128
+ labels = [IGNORE_INDEX for _ in input_ids]
129
+ image_urls = []
130
+
131
+ for msg in self.messages:
132
+ res = msg.tokenize(tokenizer, chat_template)
133
+ token_ids, label_ids = res["input_ids"], res["labels"]
134
+
135
+ input_ids.extend(token_ids)
136
+ labels.extend(label_ids)
137
+
138
+ image_urls.extend(msg.collect_img_urls())
139
+
140
+ if msg.role == "assistant":
141
+ sep = chat_template.sep
142
+ sep_tokens = tokenizer.encode(sep, add_special_tokens=False)
143
+ input_ids.extend(sep_tokens)
144
+ labels.extend([IGNORE_INDEX] * len(sep_tokens))
145
+
146
+ if len(input_ids) != len(labels):
147
+ logger.error(f"[messages] {self.messages}")
148
+ logger.error(f"[input_ids] {input_ids}")
149
+ logger.error(f"[labels] {labels}")
150
+ raise RuntimeError(
151
+ "The lengths of input_ids and labels must be "
152
+ f"equal, but found {len(input_ids)} and "
153
+ f"{len(labels)}."
154
+ )
155
+
156
+ training_data = {
157
+ "input_ids": input_ids,
158
+ "labels": labels,
159
+ "num_tokens": len(input_ids),
160
+ }
161
+
162
+ if len(image_urls) > 0:
163
+ training_data["image_urls"] = image_urls
164
+
165
+ return training_data
166
+
167
+ @classmethod
168
+ def from_str(cls, prompt: str) -> "ChatMessages":
169
+ msg = ChatMsg(role="user", content=prompt)
170
+ return cls(messages=[msg])
171
+
172
+ @classmethod
173
+ def from_dict(cls, item: dict) -> "ChatMessages":
174
+ """
175
+ item
176
+ {
177
+ 'messages':[
178
+ {'role':'user', 'content':'hello'},
179
+ {'role':'assistant', 'content':'hello!'},
180
+ ],
181
+ }
182
+ """
183
+ return cls(**item)
184
+
185
+
186
+ if __name__ == "__main__":
187
+ data = {
188
+ "messages": [
189
+ {"role": "user", "content": "hello"},
190
+ {"role": "assistant", "content": "hello!"},
191
+ ]
192
+ }
193
+
194
+ messages = ChatMessages.from_dict(data)
195
+ chat_template = ChatTemplate(
196
+ system="<|im_start|>system\n{system}<|im_end|>\n",
197
+ user="<|im_start|>user\n{user}<|im_end|>\n<|im_start|>assistant\n",
198
+ assistant="{assistant}<|im_end|>\n",
199
+ stop_words=["<|im_end|>"],
200
+ )
201
+
202
+ print(messages.get_prompt(chat_template))
code/xtuner/_lite/chat/templates/__init__.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from .chat import ChatTemplate
3
+ from .hybrid import HybridChatTemplate
4
+
5
+ CHAT_TEMPLATE_MAP = {
6
+ "internlm2": HybridChatTemplate(
7
+ system="<|im_start|>system\n{system}<|im_end|>\n",
8
+ user="<|im_start|>user\n{user}<|im_end|>\n<|im_start|>assistant\n",
9
+ assistant="{assistant}<|im_end|>",
10
+ stop_words=["<|im_end|>"],
11
+ ),
12
+ "qwen2": HybridChatTemplate(
13
+ system="<|im_start|>system\n{system}<|im_end|>\n",
14
+ user="<|im_start|>user\n{user}<|im_end|>\n<|im_start|>assistant\n",
15
+ assistant="{assistant}<|im_end|>",
16
+ stop_words=["<|im_end|>", "<|endoftext|>"],
17
+ ),
18
+ "llama3": HybridChatTemplate(
19
+ system=("<|start_header_id|>system<|end_header_id|>\n\n{system}" "<|eot_id|>"),
20
+ user=(
21
+ "<|start_header_id|>user<|end_header_id|>\n\n{user}<|eot_id|>"
22
+ "<|start_header_id|>assistant<|end_header_id|>\n\n"
23
+ ),
24
+ assistant="{assistant}<|eot_id|>",
25
+ sep="",
26
+ stop_words=["<|eot_id|>"],
27
+ ),
28
+ }
29
+
30
+ __all__ = ["ChatTemplate", "HybridChatTemplate"]
code/xtuner/_lite/chat/templates/chat.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from typing import List
3
+
4
+ from pydantic import BaseModel, field_validator
5
+
6
+
7
+ class ChatTemplate(BaseModel):
8
+ """Define a Pydantic data model for a hybrid chat with attributes for
9
+ system, user and assistant chat as well as function and interpreter calls
10
+ and results."""
11
+
12
+ # Normal Chat
13
+ system: str # System message format
14
+ user: str # User message format
15
+ assistant: str # Assistant message format
16
+ stop_words: List[str] # List of stop words
17
+ sep: str = "\n"
18
+
19
+ def decorate_system(self, text: str) -> str:
20
+ """Decorate text with the `system` template."""
21
+ return self.system.format(system=text)
22
+
23
+ def decorate_assistant(self, text: str) -> str:
24
+ """Decorate text with the `assistant` template."""
25
+ return self.assistant.format(assistant=text)
26
+
27
+ def decorate_user(self, text: str) -> str:
28
+ """Decorate text with the `user` template."""
29
+ return self.user.format(user=text)
30
+
31
+ @field_validator("system")
32
+ def check_system(cls, v: str) -> str:
33
+ """Validate that `system` contains '{system}'.
34
+
35
+ If not, raises a ValueError.
36
+ """
37
+ if v is not None and "{system}" not in v:
38
+ raise ValueError("system must contain the keyword '{system}'")
39
+ return v
40
+
41
+ @field_validator("user")
42
+ def check_user(cls, v: str) -> str:
43
+ """Validate that `user` contains '{user}'.
44
+
45
+ If not, raises a ValueError.
46
+ """
47
+ if v is not None and "{user}" not in v:
48
+ raise ValueError("user must contain the keyword '{user}'")
49
+ return v
50
+
51
+ @field_validator("assistant")
52
+ def check_assistant(cls, v: str) -> str:
53
+ """Validate that `assistant` contains '{assistant}'.
54
+
55
+ If not, raises a ValueError.
56
+ """
57
+ if v is not None and "{assistant}" not in v:
58
+ raise ValueError("assistant must contain the keyword '{assistant}'")
59
+ return v
code/xtuner/_lite/chat/templates/hybrid.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from typing import Dict, List, Optional
3
+
4
+ from pydantic import BaseModel, field_validator
5
+
6
+
7
+ class HybridChatTemplate(BaseModel):
8
+ """Define a Pydantic data model for a hybrid chat with attributes for
9
+ system, user and assistant chat as well as function and interpreter calls
10
+ and results."""
11
+
12
+ # Normal Chat
13
+ system: str # System message format
14
+ user: str # User message format
15
+ assistant: str # Assistant message format
16
+ stop_words: List[str] # List of stop words
17
+ sep: str = "\n"
18
+
19
+ # Multimodal Chat
20
+ # Predefined token and index for images
21
+ image_token: str = "<image>"
22
+ image_token_index: int = -100
23
+
24
+ # Agent Chat
25
+
26
+ # Interpreter and function related strings
27
+ files: Optional[str] = None
28
+
29
+ functions: Optional[str] = None # Function description format
30
+ function_call: Optional[str] = None # Function call format
31
+ function_result: Optional[str] = None # Function result format
32
+
33
+ code_interpreter: Optional[str] = None
34
+ code_interpreter_call: Optional[str] = None # Interpreter call format
35
+ code_interpreter_result: Optional[str] = None # Interpreter result format
36
+
37
+ function_token: Optional[str] = None
38
+ code_interpreter_token: Optional[str] = None
39
+ action_start_token: Optional[str] = None
40
+ action_end_token: Optional[str] = None
41
+
42
+ @property
43
+ def mm_token_maps(self) -> Dict[str, int]:
44
+ """Return a dictionary that maps multimodal tokens to corresponding
45
+ token indexes."""
46
+ return {self.image_token: self.image_token_index}
47
+
48
+ def decorate_system(self, text: str) -> str:
49
+ """Decorate text with the `system` template."""
50
+ return self.system.format(system=text)
51
+
52
+ def decorate_assistant(self, text: str) -> str:
53
+ """Decorate text with the `assistant` template."""
54
+ return self.assistant.format(assistant=text)
55
+
56
+ def decorate_user(self, text: str) -> str:
57
+ """Decorate text with the `user` template."""
58
+ return self.user.format(user=text)
59
+
60
+ def decorate_files(self, text: str) -> str:
61
+ """Decorate text with the `functions` template."""
62
+ return self.files.format(files=text)
63
+
64
+ def decorate_functions(self, text: str) -> str:
65
+ """Decorate text with the `functions` template."""
66
+ return self.functions.format(functions=text)
67
+
68
+ def decorate_function_call(self, text: str, func: str) -> str:
69
+ """Decorate text with the `function_call` template."""
70
+ return self.function_call.format(assistant=text, function_call=func)
71
+
72
+ def decorate_function_result(self, text: str) -> str:
73
+ """Decorate text with the `function_result` template."""
74
+ return self.function_result.format(function_result=text)
75
+
76
+ def decorate_code_interpreter(self, text: str) -> str:
77
+ """Decorate text with the `code_interpreter` template."""
78
+ return self.code_interpreter.format(code_interpreter=text)
79
+
80
+ def decorate_code_interpreter_call(self, text: str, func: str) -> str:
81
+ """Decorate text with the `code_interpreter_call` template."""
82
+ return self.code_interpreter_call.format(
83
+ assistant=text, code_interpreter_call=func
84
+ )
85
+
86
+ def decorate_code_interpreter_result(self, text: str) -> str:
87
+ """Decorate text with the `code_interpreter_result` template."""
88
+ return self.code_interpreter_result.format(code_interpreter_result=text)
89
+
90
+ @field_validator("system")
91
+ def check_system(cls, v: str) -> str:
92
+ """Validate that `system` contains '{system}'.
93
+
94
+ If not, raises a ValueError.
95
+ """
96
+ if v is not None and "{system}" not in v:
97
+ raise ValueError("system must contain the keyword '{system}'")
98
+ return v
99
+
100
+ @field_validator("user")
101
+ def check_user(cls, v: str) -> str:
102
+ """Validate that `user` contains '{user}'.
103
+
104
+ If not, raises a ValueError.
105
+ """
106
+ if v is not None and "{user}" not in v:
107
+ raise ValueError("user must contain the keyword '{user}'")
108
+ return v
109
+
110
+ @field_validator("assistant")
111
+ def check_assistant(cls, v: str) -> str:
112
+ """Validate that `assistant` contains '{assistant}'.
113
+
114
+ If not, raises a ValueError.
115
+ """
116
+ if v is not None and "{assistant}" not in v:
117
+ raise ValueError("assistant must contain the keyword '{assistant}'")
118
+ return v
119
+
120
+ @field_validator("function_call")
121
+ def check_function_call(cls, v: str) -> str:
122
+ """Validate that `function_call` contains '{function_call}'.
123
+
124
+ If not, raises a ValueError.
125
+ """
126
+ if v is not None and "{function_call}" not in v and "{assistant}" not in v:
127
+ raise ValueError(
128
+ "function_call must contain the keywords '{function_call}'"
129
+ )
130
+ if v is not None and "{assistant}" not in v:
131
+ raise ValueError(
132
+ "function_call must contain the keyword '{assistant}' and "
133
+ "'{function_call}'"
134
+ )
135
+ return v
136
+
137
+ @field_validator("function_result")
138
+ def check_function_result(cls, v: str) -> str:
139
+ """Validate that `function_result` contains '{function_result}'.
140
+
141
+ If not, raises a ValueError.
142
+ """
143
+ if v is not None and "{function_result}" not in v:
144
+ raise ValueError(
145
+ "function_result must contain the keyword '{function_result}'"
146
+ )
147
+ return v
148
+
149
+ @field_validator("functions")
150
+ def check_functions(cls, v: str) -> str:
151
+ """Validate that `functions` contains '{functions}'.
152
+
153
+ If not, raises a ValueError.
154
+ """
155
+ if v is not None and "{functions}" not in v:
156
+ raise ValueError("functions must contain the keyword '{functions}'")
157
+ return v
158
+
159
+ @field_validator("code_interpreter")
160
+ def check_code_interpreter(cls, v: str) -> str:
161
+ """Validate that `code_interpreter` contains '{code_interpreter}'.
162
+
163
+ If not, raises a ValueError.
164
+ """
165
+ if v is not None and "{code_interpreter}" not in v:
166
+ raise ValueError(
167
+ "code_interpreter must contain the keyword " "'{code_interpreter}'"
168
+ )
169
+ return v
170
+
171
+ @field_validator("code_interpreter_call")
172
+ def check_code_interpreter_call(cls, v: str) -> str:
173
+ """Validate that `code_interpreter_call` contains
174
+ '{code_interpreter_call}'.
175
+
176
+ If not, raises a ValueError.
177
+ """
178
+ if (
179
+ v is not None
180
+ and "{code_interpreter_call}" not in v
181
+ and "{assistant}" not in v
182
+ ):
183
+ raise ValueError(
184
+ "code_interpreter_call must contain the keywords "
185
+ "'{assistant}' and '{code_interpreter_call}'"
186
+ )
187
+ if v is not None and "{assistant}" not in v:
188
+ raise ValueError(
189
+ "code_interpreter_call must contain the keywords "
190
+ "'{assistant}' and '{code_interpreter_call}'"
191
+ )
192
+ return v
193
+
194
+ @field_validator("code_interpreter_result")
195
+ def check_code_interpreter_result(cls, v: str) -> str:
196
+ """Validate that `code_interpreter_result` contains
197
+ '{code_interpreter_result}'.
198
+
199
+ If not, raises a ValueError.
200
+ """
201
+ if v is not None and "{code_interpreter_result}" not in v:
202
+ raise ValueError(
203
+ "code_interpreter_result must contain the keyword "
204
+ "'{code_interpreter_result}'"
205
+ )
206
+ return v
code/xtuner/_lite/datasets/__init__.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from .json import JsonDataset
3
+ from .jsonl import JsonlDataset
4
+ from .pack import SoftPackDataset
5
+ from .utils import DATASET_CLS_MAP, OPENAI_CONVERT_MAP, load_datasets
6
+
7
+ __all__ = [
8
+ "JsonDataset",
9
+ "JsonlDataset",
10
+ "SoftPackDataset",
11
+ "DATASET_CLS_MAP",
12
+ "OPENAI_CONVERT_MAP",
13
+ "load_datasets",
14
+ ]
code/xtuner/_lite/datasets/json.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import hashlib
3
+ import inspect
4
+ import json
5
+ import math
6
+ import os
7
+ import random
8
+ from concurrent.futures import ProcessPoolExecutor
9
+
10
+ import numpy as np
11
+ import torch
12
+ from mmengine import mkdir_or_exist
13
+ from torch import distributed as dist
14
+ from tqdm import tqdm
15
+
16
+ from xtuner._lite import get_logger
17
+
18
+ logger = get_logger()
19
+
20
+
21
+ def calculate_json_sha256(file_path):
22
+ with open(file_path, "rb") as f:
23
+ data = f.read()
24
+
25
+ hash_object = hashlib.sha256(data)
26
+ hash_hex = hash_object.hexdigest()
27
+ return hash_hex
28
+
29
+
30
+ def calculate_tokenize_fn_sha256(tokenize_fn):
31
+ """Calculate SHA-256 hash for an instance method's source code."""
32
+ # Get the source code of the method
33
+ fn_source = inspect.getsource(tokenize_fn.__call__)
34
+ return hashlib.sha256(fn_source.encode("utf-8")).hexdigest()
35
+
36
+
37
+ class JsonDataset(torch.utils.data.Dataset):
38
+ def __init__(
39
+ self, path, sample_ratio=1.0, tokenize_fn=None, cache_dir=None, max_length=None
40
+ ):
41
+ super().__init__()
42
+
43
+ self.tokenize_fn = tokenize_fn
44
+ self.path = path
45
+ self.tokenizer_workers = int(os.environ.get("XTUNER_TOKENIZE_WORKERS", 8))
46
+
47
+ if cache_dir:
48
+ if os.path.exists(cache_dir):
49
+ assert os.path.isdir(cache_dir)
50
+ else:
51
+ mkdir_or_exist(cache_dir)
52
+
53
+ file_hash = calculate_json_sha256(path)
54
+ file_cache_dir = os.path.join(cache_dir, file_hash)
55
+
56
+ if file_hash not in os.listdir(cache_dir):
57
+ mkdir_or_exist(file_cache_dir)
58
+
59
+ if self.tokenize_fn:
60
+ tok_hash = calculate_tokenize_fn_sha256(tokenize_fn)
61
+ tok_cache_dir = os.path.join(file_cache_dir, tok_hash)
62
+ if tok_hash not in os.listdir(file_cache_dir):
63
+ mkdir_or_exist(tok_cache_dir)
64
+
65
+ if "num_tokens.npy" in os.listdir(tok_cache_dir):
66
+ _cached_file = os.path.join(tok_cache_dir, "num_tokens.npy")
67
+ num_tokens = np.load(_cached_file)
68
+ else:
69
+ num_tokens = self.count_tokens(tok_cache_dir)
70
+ else:
71
+ num_tokens = None
72
+
73
+ else:
74
+ num_tokens = None
75
+
76
+ with open(self.path) as f:
77
+ dataset = json.load(f)
78
+
79
+ _sampled = [i for i in range(len(dataset))]
80
+
81
+ if max_length is not None:
82
+ assert isinstance(max_length, int)
83
+ _filtered = [
84
+ x for i, x in enumerate(_sampled) if num_tokens[i] < max_length
85
+ ]
86
+
87
+ if len(_filtered) < len(_sampled):
88
+ missed_num = len(_sampled) - len(_filtered)
89
+ logger.warning(
90
+ f"{path} has {missed_num} prompt length>{max_length}, discard."
91
+ )
92
+
93
+ _sampled = _filtered
94
+
95
+ _target_num_samples = int(len(_sampled) * sample_ratio)
96
+ self.sampled = _sampled * int(sample_ratio)
97
+ self.sampled.extend(
98
+ random.sample(_sampled, _target_num_samples - len(self.sampled))
99
+ )
100
+
101
+ if num_tokens is not None:
102
+ num_tokens = num_tokens[self.sampled]
103
+
104
+ self.num_tokens = num_tokens
105
+ self.dataset = None
106
+
107
+ def count_tokens(self, cache_dir=None):
108
+ dataset = []
109
+
110
+ with open(self.path) as f:
111
+ dataset = json.load(f)
112
+
113
+ num_samples = len(dataset)
114
+
115
+ if dist.is_available():
116
+ world_size = dist.get_world_size()
117
+ rank = dist.get_rank()
118
+ else:
119
+ world_size = 1
120
+ rank = 0
121
+
122
+ num_per_rank = math.ceil(num_samples / world_size)
123
+
124
+ start = rank * num_per_rank
125
+ end = (rank + 1) * num_per_rank
126
+ dataset_shard = dataset[start:end]
127
+
128
+ desc = f"[Rank {rank}] {self.path}"
129
+ chunk_size = min(1024, max(1, len(dataset_shard) // self.tokenizer_workers))
130
+ with ProcessPoolExecutor(max_workers=self.tokenizer_workers) as executor:
131
+ tokenized = list(
132
+ tqdm(
133
+ executor.map(self.tokenize_fn, dataset_shard, chunksize=chunk_size),
134
+ desc=desc,
135
+ total=len(dataset_shard),
136
+ )
137
+ )
138
+
139
+ _num_tokens = [data["num_tokens"] for data in tokenized]
140
+ _num_tokens = np.array(_num_tokens)
141
+
142
+ if dist.is_available():
143
+ num_tokens = [None] * world_size
144
+ dist.all_gather_object(num_tokens, _num_tokens)
145
+ num_tokens = np.concatenate(num_tokens, axis=0)
146
+ else:
147
+ num_tokens = _num_tokens
148
+
149
+ if rank == 0 and cache_dir:
150
+ save_path = os.path.join(cache_dir, "num_tokens.npy")
151
+ np.save(save_path, num_tokens)
152
+
153
+ return num_tokens
154
+
155
+ def __len__(self):
156
+ return len(self.sampled)
157
+
158
+ def __getitem__(self, item):
159
+ """Returns a dict containing packed data in the given item.
160
+
161
+ Args:
162
+ item: An index to retrieve packed data.
163
+
164
+ Returns:
165
+ A dict including packed input_ids, labels, and cumulative_len.
166
+ """
167
+ if self.dataset is None:
168
+ with open(self.path) as f:
169
+ self.dataset = json.load(f)
170
+
171
+ raw_data = self.dataset[self.sampled[item]]
172
+
173
+ if self.tokenize_fn:
174
+ tokenized_data = self.tokenize_fn(raw_data)
175
+ return tokenized_data
176
+ else:
177
+ return raw_data
code/xtuner/_lite/datasets/jsonl.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import hashlib
3
+ import json
4
+ import math
5
+ import multiprocessing
6
+ import os
7
+ import random
8
+ from abc import ABC, abstractmethod
9
+ from concurrent.futures import ProcessPoolExecutor
10
+ from typing import Any, Callable, TypedDict
11
+
12
+ import numpy as np
13
+ import torch
14
+ from mmengine import mkdir_or_exist
15
+ from torch import distributed as dist
16
+ from tqdm import tqdm
17
+
18
+ from xtuner._lite import get_logger
19
+
20
+ logger = get_logger()
21
+
22
+
23
+ def calculate_jsonl_sha256(path):
24
+ with open(path, "rb") as f:
25
+ file_hash = hashlib.sha256()
26
+ file_hash.update(f.read())
27
+ return file_hash.hexdigest()
28
+
29
+
30
+ CacheObj = TypedDict("CachedObj", {"num_tokens": int}, total=False)
31
+
32
+
33
+ class CachableTokenizeFunction(ABC):
34
+ @abstractmethod
35
+ def __call__(self, item: Any) -> CacheObj:
36
+ raise NotImplementedError
37
+
38
+ @abstractmethod
39
+ def hash(self) -> str:
40
+ raise NotImplementedError
41
+
42
+
43
+ class JsonlDataset(torch.utils.data.Dataset):
44
+ def __init__(
45
+ self,
46
+ path,
47
+ sample_ratio: float = 1.0,
48
+ tokenize_fn: Callable[[Any], CacheObj] | None = None,
49
+ cache_dir: str | None = None,
50
+ max_length: int | None = None,
51
+ ):
52
+ super().__init__()
53
+
54
+ self.tokenize_fn = tokenize_fn
55
+ self.path = path
56
+ self.tokenizer_workers = int(os.environ.get("XTUNER_TOKENIZE_WORKERS", 8))
57
+
58
+ if cache_dir and isinstance(tokenize_fn, CachableTokenizeFunction):
59
+ if os.path.exists(cache_dir):
60
+ assert os.path.isdir(cache_dir)
61
+ else:
62
+ mkdir_or_exist(cache_dir)
63
+
64
+ file_hash = calculate_jsonl_sha256(path)
65
+ file_cache_dir = os.path.join(cache_dir, file_hash)
66
+
67
+ if file_hash not in os.listdir(cache_dir):
68
+ mkdir_or_exist(file_cache_dir)
69
+
70
+ if "offsets.npy" in os.listdir(file_cache_dir):
71
+ _cached_file = os.path.join(file_cache_dir, "offsets.npy")
72
+ offsets = np.load(_cached_file)
73
+ else:
74
+ offsets = self.count_offsets(file_cache_dir)
75
+
76
+ if self.tokenize_fn:
77
+ tok_hash = tokenize_fn.hash()
78
+ tok_cache_dir = os.path.join(file_cache_dir, tok_hash)
79
+ if tok_hash not in os.listdir(file_cache_dir):
80
+ mkdir_or_exist(tok_cache_dir)
81
+
82
+ if "num_tokens.npy" in os.listdir(tok_cache_dir):
83
+ _cached_file = os.path.join(tok_cache_dir, "num_tokens.npy")
84
+ num_tokens = np.load(_cached_file)
85
+ else:
86
+ num_tokens = self.count_tokens(offsets, tok_cache_dir)
87
+ else:
88
+ num_tokens = None
89
+
90
+ offsets = offsets
91
+ num_tokens = num_tokens
92
+
93
+ else:
94
+ offsets = self.count_offsets()
95
+ num_tokens = None
96
+ if max_length is not None:
97
+ assert self.tokenize_fn
98
+ num_tokens = self.count_tokens(offsets)
99
+
100
+ _sampled = [i for i in range(len(offsets))]
101
+
102
+ if max_length is not None:
103
+ assert isinstance(max_length, int)
104
+ _filtered = [
105
+ x for i, x in enumerate(_sampled) if num_tokens[i] < max_length
106
+ ]
107
+
108
+ if len(_filtered) < len(_sampled):
109
+ missed_num = len(_sampled) - len(_filtered)
110
+ logger.warning(
111
+ f"{path} has {missed_num} prompt length>{max_length}, discard."
112
+ )
113
+
114
+ _sampled = _filtered
115
+
116
+ _target_num_samples = int(len(_sampled) * sample_ratio)
117
+ self.sampled = _sampled * int(sample_ratio)
118
+ self.sampled.extend(
119
+ random.sample(_sampled, _target_num_samples - len(self.sampled))
120
+ )
121
+
122
+ if num_tokens is not None:
123
+ num_tokens = num_tokens[self.sampled]
124
+
125
+ self.num_tokens = num_tokens
126
+ self.offsets = offsets[self.sampled]
127
+
128
+ def count_offsets(self, cache_dir=None):
129
+ offsets = [0]
130
+ with open(self.path) as f:
131
+ lines = f.readlines()
132
+ for line in lines[:-1]:
133
+ offsets.append(offsets[-1] + len(line.encode()))
134
+
135
+ offsets = np.array(offsets)
136
+
137
+ if dist.get_rank() == 0 and cache_dir:
138
+ save_path = os.path.join(cache_dir, "offsets.npy")
139
+ np.save(save_path, offsets)
140
+
141
+ return offsets
142
+
143
+ def _tokenize_by_offset(self, offset):
144
+ with open(self.path) as f:
145
+ f.seek(offset)
146
+ data = json.loads(f.readline())
147
+ return self.tokenize_fn(data)
148
+
149
+ def count_tokens(self, offsets, cache_dir=None):
150
+ num_samples = len(offsets)
151
+
152
+ if dist.is_available():
153
+ world_size = dist.get_world_size()
154
+ rank = dist.get_rank()
155
+ else:
156
+ world_size = 1
157
+ rank = 0
158
+
159
+ num_per_rank = math.ceil(num_samples / world_size)
160
+
161
+ start = rank * num_per_rank
162
+ end = (rank + 1) * num_per_rank
163
+ offsets_shard = offsets[start:end]
164
+
165
+ desc = f"[Rank {rank}] {self.path}"
166
+ chunk_size = min(1024, max(1, len(offsets_shard) // self.tokenizer_workers))
167
+
168
+ mp_context = multiprocessing.get_context("fork")
169
+ with ProcessPoolExecutor(
170
+ max_workers=self.tokenizer_workers, mp_context=mp_context
171
+ ) as executor:
172
+ tokenized = list(
173
+ tqdm(
174
+ executor.map(
175
+ self._tokenize_by_offset, offsets_shard, chunksize=chunk_size
176
+ ),
177
+ desc=desc,
178
+ total=len(offsets_shard),
179
+ )
180
+ )
181
+
182
+ _num_tokens = [data["num_tokens"] for data in tokenized]
183
+ _num_tokens = np.array(_num_tokens)
184
+
185
+ if dist.is_available():
186
+ num_tokens = [None] * world_size
187
+ dist.all_gather_object(num_tokens, _num_tokens)
188
+ num_tokens = np.concatenate(num_tokens, axis=0)
189
+ else:
190
+ num_tokens = _num_tokens
191
+
192
+ if rank == 0 and cache_dir:
193
+ save_path = os.path.join(cache_dir, "num_tokens.npy")
194
+ np.save(save_path, num_tokens)
195
+
196
+ return num_tokens
197
+
198
+ def __len__(self):
199
+ return len(self.offsets)
200
+
201
+ def __getitem__(self, item):
202
+ """Returns a dict containing packed data in the given item.
203
+
204
+ Args:
205
+ item: An index to retrieve packed data.
206
+
207
+ Returns:
208
+ A dict including packed input_ids, labels, and cumulative_len.
209
+ """
210
+ with open(self.path) as f:
211
+ f.seek(self.offsets[item])
212
+ line = f.readline()
213
+
214
+ raw_data = json.loads(line)
215
+
216
+ if self.tokenize_fn:
217
+ tokenized_data = self.tokenize_fn(raw_data)
218
+ return tokenized_data
219
+ else:
220
+ return raw_data
code/xtuner/_lite/datasets/pack.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import bisect
3
+ import itertools
4
+ import random
5
+
6
+ import numpy as np
7
+ import torch
8
+ from datasets import Dataset, concatenate_datasets
9
+ from torch.utils.data import ConcatDataset
10
+
11
+
12
+ class SoftPackDataset(torch.utils.data.Dataset):
13
+ def __init__(self, datasets, target=2048, blend=False, sort=False):
14
+ if blend:
15
+ num_tokens = [np.concatenate([dset.num_tokens for dset in datasets])]
16
+ datasets = [ConcatDataset(datasets)]
17
+ else:
18
+ num_tokens = [dset.num_tokens for dset in datasets]
19
+ self.datasets = datasets
20
+ self.target = target
21
+
22
+ pack_infos = []
23
+ for i, dataset in enumerate(self.datasets):
24
+ _infos = self.get_pack_infos(dataset, i, num_tokens[i])
25
+ pack_infos.append(_infos)
26
+ self.pack_infos = concatenate_datasets(pack_infos)
27
+
28
+ @property
29
+ def longest(self):
30
+ return self.pack_infos["longest"]
31
+
32
+ def get_pack_infos(self, dataset, dataset_id, num_tokens):
33
+ # _ori_lens = dataset['num_tokens']
34
+ inds = [i for i in range(len(dataset))]
35
+ random.shuffle(inds)
36
+
37
+ item_buffer = []
38
+ length_buffer = []
39
+ longest = 0
40
+
41
+ pack_infos = []
42
+ for shfl_i in inds:
43
+ if num_tokens[shfl_i] + sum(length_buffer) <= self.target:
44
+ item_buffer.append(shfl_i)
45
+ length_buffer.append(num_tokens[shfl_i])
46
+ longest = max(longest, num_tokens[shfl_i])
47
+ else:
48
+ if len(item_buffer) > 0:
49
+ info = {
50
+ "dataset_id": dataset_id,
51
+ "indices": item_buffer,
52
+ "longest": int(longest),
53
+ }
54
+ pack_infos.append(info)
55
+
56
+ item_buffer = [shfl_i]
57
+ length_buffer = [num_tokens[shfl_i]]
58
+ longest = num_tokens[shfl_i]
59
+
60
+ if len(item_buffer) > 0:
61
+ info = {
62
+ "dataset_id": dataset_id,
63
+ "indices": item_buffer,
64
+ "longest": int(longest),
65
+ }
66
+
67
+ pack_infos.append(info)
68
+
69
+ pack_infos = Dataset.from_list(pack_infos)
70
+
71
+ return pack_infos
72
+
73
+ def __len__(self):
74
+ return len(self.pack_infos)
75
+
76
+ def __getitem__(self, item):
77
+ indices = self.pack_infos[item]["indices"]
78
+ dataset_id = self.pack_infos[item]["dataset_id"]
79
+ return [self.datasets[dataset_id][i] for i in indices]
80
+
81
+
82
+ class HardPackDataset(torch.utils.data.Dataset):
83
+ def __init__(self, datasets, target=2048, blend=True, sort=False):
84
+ if blend:
85
+ num_tokens = [np.concatenate([dset.num_tokens for dset in datasets])]
86
+ datasets = [ConcatDataset(datasets)]
87
+ else:
88
+ num_tokens = [dset.num_tokens for dset in datasets]
89
+ self.datasets = datasets
90
+ self.target = target
91
+
92
+ pack_infos = []
93
+ for i, dataset in enumerate(self.datasets):
94
+ _info = self.get_pack_info(dataset, i, num_tokens[i])
95
+ pack_infos.append(_info)
96
+
97
+ _ranges_left = []
98
+ _ranges_right = []
99
+ _num_packed_samples = []
100
+ _indices = []
101
+ _max_length_per_pack = []
102
+ _dataset_id = []
103
+ for info in pack_infos:
104
+ _ranges_left.extend(info["ranges_left"])
105
+ _ranges_right.extend(info["ranges_right"])
106
+ _num_packed_samples.append(info["num_packed_samples"])
107
+ _indices.extend(info["indices"])
108
+ _max_length_per_pack.extend(info["max_length_per_pack"])
109
+ _dataset_id.extend(info["dataset_id"])
110
+
111
+ self.pack_infos = {
112
+ "ranges_left": _ranges_left,
113
+ "ranges_right": _ranges_right,
114
+ "num_packed_samples": _num_packed_samples,
115
+ "indices": _indices,
116
+ "max_length_per_pack": _max_length_per_pack,
117
+ "dataset_id": _dataset_id,
118
+ }
119
+
120
+ @classmethod
121
+ def _cal_max_length(cls, begin, end, shfl_item_rngs_left, shfl_item_rngs_right):
122
+ left = bisect.bisect(shfl_item_rngs_right, begin)
123
+ right = bisect.bisect(shfl_item_rngs_left, end)
124
+ max_length = 0
125
+ for i in range(left, right):
126
+ item_begin = shfl_item_rngs_left[i]
127
+ item_end = shfl_item_rngs_right[i]
128
+ inner_l = max(begin, item_begin) - item_begin
129
+ inner_r = min(end, item_end) - item_begin
130
+ trunc_size = inner_r - inner_l
131
+ max_length = max(max_length, trunc_size)
132
+ return max_length
133
+
134
+ def get_pack_info(self, dataset, dataset_id, num_tokens):
135
+ # The number of data items after packing
136
+ num_packed_samples = int(num_tokens.sum() / self.target)
137
+
138
+ # Shuffle the order of the original dataset
139
+ # The packing will proceed according to the order after shuffle.
140
+ # Assume the following conditions hold:
141
+ # (1) shfl_inds = [3, 1, 2, 0]
142
+ # (2) self._ori_lens[3] + self._ori_lens[1] = max_length
143
+ # (3) self._ori_lens[2] + self._ori_lens[0] = max_length
144
+ # Ultimately, dataset[3] and dataset[1] will be combined into a new
145
+ # data, and dataset[2] and dataset[0] will be combined into a new data.
146
+ inds = [i for i in range(len(dataset))]
147
+ # if seed is not None:
148
+ # random.seed(seed)
149
+ random.shuffle(inds)
150
+ shfl_inds = inds
151
+
152
+ # shuffled cumulative lengths
153
+ shfl_lens = [num_tokens[i] for i in shfl_inds]
154
+ shfl_acc_lens = list(itertools.accumulate(shfl_lens))
155
+
156
+ shfl_item_rngs_left = [0] + shfl_acc_lens[:-1]
157
+ shfl_item_rngs_right = shfl_acc_lens
158
+
159
+ max_length_per_pack = []
160
+ belong_dataset_ids = []
161
+ for i in range(num_packed_samples):
162
+ begin = i * self.target
163
+ end = (i + 1) * self.target
164
+ max_length_per_pack.append(
165
+ self._cal_max_length(
166
+ begin, end, shfl_item_rngs_left, shfl_item_rngs_right
167
+ )
168
+ )
169
+ belong_dataset_ids.append(dataset_id)
170
+
171
+ pack_infos = {
172
+ "ranges_left": shfl_item_rngs_left,
173
+ "ranges_right": shfl_item_rngs_right,
174
+ "num_packed_samples": num_packed_samples,
175
+ "indices": shfl_inds,
176
+ "dataset_id": belong_dataset_ids,
177
+ "max_length_per_pack": max_length_per_pack,
178
+ }
179
+
180
+ # pack_infos = Dataset.from_list(pack_infos)
181
+
182
+ return pack_infos
183
+
184
+ def _pack_ids_and_labels_in_range(self, begin: int, end: int):
185
+ """Packs ids and labels in a given range using bisection method.
186
+
187
+ Args:
188
+ begin: Index indicating the beginning of the range.
189
+ end: Index indicating the end of the range.
190
+
191
+ Returns:
192
+ A tuple containing packed ids, labels, and cumulative lengths.
193
+ """
194
+
195
+ # Use binary search to find dataset positions that fall within begin
196
+ # and end range
197
+ left = bisect.bisect(self.pack_infos["ranges_left"], begin)
198
+ right = bisect.bisect(self.pack_infos["ranges_right"], end)
199
+
200
+ trunc_input_ids = []
201
+ trunc_labels = []
202
+ trunc_sizes = []
203
+
204
+ for i in range(left, right):
205
+ # Determine the real range we will cut in current original item
206
+ item_begin = self.pack_infos["ranges_left"][i]
207
+ item_end = self.pack_infos["ranges_right"][i]
208
+
209
+ # Calculate exact positions within current dataset item
210
+ inner_l = max(begin, item_begin) - item_begin
211
+ inner_r = min(end, item_end) - item_begin
212
+
213
+ # Get original data and labels
214
+ ori_idx = self.pack_infos["indices"][i]
215
+ ori_dataset_id = self.pack_infos["dataset_id"][i]
216
+ ori_input_ids = self.datasets[ori_dataset_id][ori_idx]["input_ids"]
217
+ ori_labels = self.datasets[ori_dataset_id][ori_idx]["labels"]
218
+
219
+ # Add original data and labels from calculated positions
220
+ # to trunc_ids and trunc_labels
221
+ trunc_input_ids.extend(ori_input_ids[inner_l:inner_r])
222
+ trunc_labels.extend(ori_labels[inner_l:inner_r])
223
+ trunc_sizes.append(inner_r - inner_l)
224
+
225
+ # return populated lists of truncated ids, labels and their cumulative
226
+ # lengths
227
+ return trunc_input_ids, trunc_labels, trunc_sizes
228
+
229
+ def __len__(self):
230
+ return len(self.pack_infos["indices"])
231
+
232
+ def __getitem__(self, item):
233
+ """Returns a dict containing packed data in the given item.
234
+
235
+ Args:
236
+ item: An index to retrieve packed data.
237
+
238
+ Returns:
239
+ A dict including packed input_ids, labels, and cumulative_len.
240
+ """
241
+ # The cumulative length from the start position of this data
242
+ begin = item * self.target
243
+ # The cumulative length from the end position of this data
244
+ end = (item + 1) * self.target
245
+
246
+ # Extract data within the range from the shuffled original dataset.
247
+ _res = self._pack_ids_and_labels_in_range(begin, end)
248
+ packed_input_ids, packed_labels, num_tokens = _res
249
+ assert self.target == len(packed_input_ids) == len(packed_labels)
250
+
251
+ packed = {
252
+ "input_ids": packed_input_ids,
253
+ "labels": packed_labels,
254
+ "num_tokens": num_tokens,
255
+ }
256
+
257
+ return packed
code/xtuner/_lite/datasets/streaming.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+
3
+
4
+ class Streaming:
5
+ def __init__(self, file, max_epoch=1):
6
+ self.file = file
7
+ self.offset = 0
8
+ self.epoch = 1
9
+ self.max_epoch = max_epoch
10
+
11
+ def __iter__(self):
12
+ return self
13
+
14
+ def __next__(self):
15
+ with open(self.file) as f:
16
+ f.seek(self.offset)
17
+ line = f.readline()
18
+
19
+ if not line and self.epoch < self.max_epoch:
20
+ self.offset = 0
21
+ self.epoch += 1
22
+ return next(self)
23
+
24
+ elif not line and self.epoch == self.max_epoch:
25
+ raise StopIteration
26
+
27
+ self.offset = f.tell()
28
+ return line
code/xtuner/_lite/datasets/utils/__init__.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from .convert import OPENAI_CONVERT_MAP
3
+ from .load import DATASET_CLS_MAP, load_datasets
4
+ from .utils import apply_exif_orientation, move_data_to_device
5
+
6
+ __all__ = [
7
+ "OPENAI_CONVERT_MAP",
8
+ "DATASET_CLS_MAP",
9
+ "load_datasets",
10
+ "apply_exif_orientation",
11
+ "move_data_to_device",
12
+ ]
code/xtuner/_lite/datasets/utils/convert.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import re
3
+
4
+ from xtuner._lite.chat import ChatMessages
5
+
6
+
7
+ class XTunerFormat2Openai:
8
+ @classmethod
9
+ def source_format(cls):
10
+ data = {
11
+ "conversation": [
12
+ {"system": "SYSTEM", "input": "INPUT", "output": "OUTPUT"},
13
+ {"input": "INPUT", "output": "OUTPUT"},
14
+ ]
15
+ }
16
+ return data
17
+
18
+ @classmethod
19
+ def target_format(cls):
20
+ data = {
21
+ "messages": [
22
+ {"role": "system", "content": "SYSTEM"},
23
+ {"role": "user", "content": "INPUT"},
24
+ {"role": "assistant", "content": "OUTPUT"},
25
+ {"role": "user", "content": "INPUT"},
26
+ {"role": "assistant", "content": "OUTPUT"},
27
+ ]
28
+ }
29
+ return data
30
+
31
+ @staticmethod
32
+ def convert(data):
33
+ ROLE_MAPPING = {"system": "system", "input": "user", "output": "assistant"}
34
+ messages = []
35
+ for single_turn_conversation in data["conversation"]:
36
+ for role, content in single_turn_conversation.items():
37
+ messages.append({"role": ROLE_MAPPING[role], "content": content})
38
+ return ChatMessages.from_dict({"messages": messages})
39
+
40
+
41
+ class Alpaca2Openai:
42
+ @classmethod
43
+ def source_format(cls):
44
+ data = {
45
+ "instruction": "INSTRUCTION",
46
+ "input": "INPUT",
47
+ "output": "OUTPUT",
48
+ }
49
+ return data
50
+
51
+ @classmethod
52
+ def target_format(cls):
53
+ data = {
54
+ "messages": [
55
+ {"role": "user", "content": "INSTRUCTION\nINPUT"},
56
+ {"role": "assistant", "content": "OUTPUT"},
57
+ ]
58
+ }
59
+ return data
60
+
61
+ @staticmethod
62
+ def convert(data):
63
+ if data.get("output") == "<nooutput>":
64
+ return ChatMessages.from_dict({"messages": []})
65
+ else:
66
+ return ChatMessages.from_dict(
67
+ {
68
+ "messages": [
69
+ {
70
+ "role": "user",
71
+ "content": f"{data['instruction']}\n{data['input']}",
72
+ },
73
+ {"role": "assistant", "content": f"{data['output']}"},
74
+ ]
75
+ }
76
+ )
77
+
78
+
79
+ def llava_to_openai(data):
80
+ image_token = "<image>"
81
+ conversations = data["conversations"]
82
+ messages = []
83
+
84
+ if "image" in data:
85
+ image_urls = data["image"]
86
+ if isinstance(image_urls, str):
87
+ image_urls = [image_urls]
88
+ else:
89
+ image_urls = None
90
+
91
+ while conversations and conversations[0]["from"] == "gpt":
92
+ # Skip the first one if it is from gpt
93
+ conversations = conversations[1:]
94
+
95
+ image_id = 0
96
+ for convs in conversations:
97
+ if convs["from"] == "human":
98
+ pattern = f"({image_token})"
99
+ chunks = re.split(pattern, convs["value"])
100
+
101
+ text_content = []
102
+ img_content = []
103
+
104
+ for chunk in chunks:
105
+ if chunk == image_token:
106
+ url = image_urls[image_id]
107
+ if not isinstance(url, str):
108
+ raise TypeError(data)
109
+ # assert , image_url
110
+ item = dict(type="image_url", image_url=url)
111
+ img_content.append(item)
112
+ image_id += 1
113
+ elif len(chunk.strip()):
114
+ item = dict(type="text", text=chunk.strip())
115
+ text_content.append(item)
116
+
117
+ msg = {"role": "user", "content": img_content + text_content}
118
+ messages.append(msg)
119
+
120
+ elif convs["from"] == "gpt":
121
+ msg = {"role": "assistant", "content": convs["value"]}
122
+ messages.append(msg)
123
+ else:
124
+ raise NotImplementedError
125
+
126
+ return ChatMessages.from_dict({"messages": messages})
127
+
128
+
129
+ def llava_to_openai_interleave(data):
130
+ image_token = "<image>"
131
+ conversations = data["conversations"]
132
+ messages = []
133
+
134
+ if "image" in data:
135
+ image_urls = data["image"]
136
+ if isinstance(image_urls, str):
137
+ image_urls = [image_urls]
138
+ else:
139
+ image_urls = None
140
+
141
+ while conversations and conversations[0]["from"] == "gpt":
142
+ # Skip the first one if it is from gpt
143
+ conversations = conversations[1:]
144
+
145
+ image_id = 0
146
+ for convs in conversations:
147
+ if convs["from"] == "human":
148
+ pattern = f"({image_token})"
149
+ chunks = re.split(pattern, convs["value"])
150
+
151
+ content = []
152
+
153
+ for chunk in chunks:
154
+ if chunk == image_token:
155
+ url = image_urls[image_id]
156
+ if not isinstance(url, str):
157
+ raise TypeError(data)
158
+ # assert , image_url
159
+ item = dict(type="image_url", image_url=url)
160
+ content.append(item)
161
+ image_id += 1
162
+ elif len(chunk.strip()):
163
+ item = dict(type="text", text=chunk.strip())
164
+ content.append(item)
165
+
166
+ msg = {"role": "user", "content": content}
167
+ messages.append(msg)
168
+
169
+ elif convs["from"] == "gpt":
170
+ msg = {"role": "assistant", "content": convs["value"]}
171
+ messages.append(msg)
172
+ else:
173
+ raise NotImplementedError
174
+
175
+ return ChatMessages.from_dict({"messages": messages})
176
+
177
+
178
+ def official_openai(data):
179
+ if "messages" in data:
180
+ return ChatMessages.from_dict(data)
181
+ elif "message_data" in data:
182
+ return ChatMessages.from_dict({"messages": data["message_data"]})
183
+ elif "dialogs" in data:
184
+ return ChatMessages.from_dict({"messages": data["dialogs"]})
185
+ else:
186
+ return ChatMessages.from_dict({"messages": data})
187
+
188
+
189
+ OPENAI_CONVERT_MAP = {
190
+ "llava": llava_to_openai,
191
+ "llava_interleave": llava_to_openai_interleave,
192
+ "alpaca": Alpaca2Openai.convert,
193
+ "xtuner": XTunerFormat2Openai.convert,
194
+ "openai": official_openai,
195
+ }
code/xtuner/_lite/datasets/utils/load.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import json
3
+ import math
4
+ import os
5
+ import random
6
+ import re
7
+
8
+ from torch import distributed as dist
9
+ from tqdm import tqdm
10
+
11
+ from xtuner._lite import get_logger
12
+
13
+ from ..json import JsonDataset
14
+ from ..jsonl import JsonlDataset
15
+
16
+ logger = get_logger()
17
+
18
+ DATASET_CLS_MAP = {".jsonl": JsonlDataset, ".json": JsonDataset}
19
+
20
+
21
+ def load_hf_dataset(path, split="train", sample_ratio=1.0, cache_dir=None, map_fn=None):
22
+ from datasets import load_dataset
23
+
24
+ dataset = load_dataset(path)[split]
25
+
26
+ if map_fn:
27
+ dataset = dataset.map(map_fn, num_proc=8)
28
+
29
+ if sample_ratio != 1:
30
+ ori_samples = len(dataset)
31
+ target_samples = int(sample_ratio * ori_samples)
32
+ indices = random.choices([i for i in range(ori_samples)], k=target_samples)
33
+ dataset = dataset.select(indices)
34
+
35
+ dataset = dataset.to_list()
36
+
37
+ # if init_fn:
38
+ # dataset = init_fn(dataset)
39
+
40
+ # if cache_dir and isinstance(dataset, CacheDataset):
41
+ # dataset.cache(cache_dir)
42
+
43
+ return dataset
44
+
45
+
46
+ def load_from_cache(cache_dir, init_fn):
47
+ if dist.is_available():
48
+ world_size = dist.get_world_size()
49
+ rank = dist.get_rank()
50
+ else:
51
+ world_size = 1
52
+ rank = 0
53
+
54
+ sub_cache_dirs = []
55
+ for _path in tqdm(os.listdir(cache_dir)):
56
+ path = os.path.join(cache_dir, _path)
57
+ if os.path.isdir(path):
58
+ sub_cache_dirs.append(path)
59
+
60
+ num_dsets = len(sub_cache_dirs)
61
+ avg_num = math.ceil(num_dsets / world_size)
62
+ start = rank * avg_num
63
+ end = min((rank + 1) * avg_num, num_dsets)
64
+ desc = f"[Rank {rank}] Loading Cached Dataset"
65
+
66
+ rank_datasets = []
67
+ for ind in tqdm(range(start, end), desc=desc):
68
+ dset = init_fn(sub_cache_dirs[ind])
69
+ rank_datasets.append(dset)
70
+
71
+ if dist.is_available() and world_size > 1:
72
+ dist.barrier()
73
+ buffers = [None] * world_size
74
+ dist.all_gather_object(buffers, rank_datasets)
75
+ world_datasets = []
76
+ for dsets_per_rank in buffers:
77
+ world_datasets.extend(dsets_per_rank)
78
+
79
+ assert len(world_datasets) == num_dsets
80
+ else:
81
+ world_datasets = rank_datasets
82
+
83
+ return world_datasets
84
+
85
+
86
+ def load_local_datasets(
87
+ paths,
88
+ file_types,
89
+ file_pattern=None,
90
+ cache_dir=None,
91
+ sample_ratios=1.0,
92
+ map_fns=None,
93
+ max_length=None,
94
+ ):
95
+ if isinstance(paths, str):
96
+ paths = [paths]
97
+
98
+ if isinstance(sample_ratios, (tuple, list)):
99
+ if len(sample_ratios) == 1:
100
+ sample_ratios = list(sample_ratios) * len(paths)
101
+
102
+ if len(sample_ratios) != len(paths):
103
+ raise RuntimeError(
104
+ f"There are {len(paths)} paths, but only "
105
+ f"{len(sample_ratios)} sample ratios were set."
106
+ )
107
+
108
+ if map_fns is None:
109
+ map_fns = [None] * len(paths)
110
+
111
+ if isinstance(map_fns, (tuple, list)):
112
+ if len(map_fns) == 1:
113
+ map_fns = list(map_fns) * len(paths)
114
+
115
+ if len(map_fns) != len(paths):
116
+ raise RuntimeError(
117
+ f"There are {len(paths)} paths, but only"
118
+ f"{len(map_fns)} map fns were set."
119
+ )
120
+
121
+ files = []
122
+ file_sample_ratios = []
123
+ file_map_fns = []
124
+
125
+ for pid, path in enumerate(paths):
126
+ if os.path.isdir(path):
127
+ dir_files = []
128
+ for root, dirs, _files in os.walk(path, followlinks=True):
129
+ dirs.sort()
130
+ for relative_path in sorted(_files):
131
+ suffix = os.path.splitext(relative_path)[-1]
132
+ absolute_path = os.path.join(root, relative_path)
133
+ if file_pattern is not None:
134
+ if bool(re.match(file_pattern, absolute_path)):
135
+ dir_files.append(absolute_path)
136
+ elif suffix in file_types:
137
+ dir_files.append(absolute_path)
138
+
139
+ _num_dir_files = len(dir_files)
140
+ if _num_dir_files == 0:
141
+ raise RuntimeError(
142
+ f"There are no files with the suffix {file_types}" f"in `{path}`."
143
+ )
144
+
145
+ logger.info(f"Found {len(dir_files)} files in {path}")
146
+ files.extend(dir_files)
147
+ file_sample_ratios.extend([sample_ratios[pid]] * _num_dir_files)
148
+ file_map_fns.extend([map_fns[pid]] * _num_dir_files)
149
+
150
+ elif os.path.isfile(path):
151
+ files.append(path)
152
+ file_sample_ratios.append(sample_ratios[pid])
153
+ file_map_fns.append(map_fns[pid])
154
+
155
+ else:
156
+ raise RuntimeError(f"`{path}` not found.")
157
+
158
+ num_files = len(files)
159
+
160
+ datasets = []
161
+ for i in range(num_files):
162
+ _path = files[i]
163
+ _ratio = file_sample_ratios[i]
164
+ _map_fn = file_map_fns[i]
165
+ _suffix = os.path.splitext(_path)[-1]
166
+
167
+ dataset_cls = DATASET_CLS_MAP[_suffix]
168
+ _dataset = dataset_cls(_path, _ratio, _map_fn, cache_dir, max_length)
169
+ datasets.append(_dataset)
170
+
171
+ return datasets
172
+
173
+
174
+ def load_datasets(
175
+ paths,
176
+ sources="local",
177
+ sample_ratios=1.0,
178
+ file_types=DATASET_CLS_MAP.keys(),
179
+ file_pattern=None,
180
+ cache_dir=None,
181
+ map_fns=None,
182
+ max_length=None,
183
+ ):
184
+ if isinstance(paths, str):
185
+ paths = [paths]
186
+
187
+ num_paths = len(paths)
188
+
189
+ if isinstance(sample_ratios, (float, int)):
190
+ sample_ratios = [sample_ratios] * num_paths
191
+
192
+ if isinstance(sample_ratios, (tuple, list)):
193
+ if len(sample_ratios) == 1:
194
+ sample_ratios = list(sample_ratios) * num_paths
195
+
196
+ if len(sample_ratios) != num_paths:
197
+ raise RuntimeError(
198
+ f"There are {num_paths} paths, but only "
199
+ f"{len(sample_ratios)} sample ratios were set."
200
+ )
201
+
202
+ if isinstance(sources, str):
203
+ sources = [sources]
204
+
205
+ if isinstance(sources, (tuple, list)):
206
+ if len(sources) == 1:
207
+ sources = list(sources) * num_paths
208
+
209
+ if len(sources) != num_paths:
210
+ raise RuntimeError(
211
+ f"There are {num_paths} paths, but only "
212
+ f"{len(sources)} sources were set."
213
+ )
214
+
215
+ if not isinstance(map_fns, (tuple, list)):
216
+ map_fns = [map_fns] * num_paths
217
+
218
+ if isinstance(map_fns, (tuple, list)):
219
+ if len(map_fns) == 1:
220
+ map_fns = list(map_fns) * num_paths
221
+
222
+ if len(map_fns) != num_paths:
223
+ raise RuntimeError(
224
+ f"There are {num_paths} paths, but only"
225
+ f"{len(map_fns)} map fns were set."
226
+ )
227
+
228
+ local_inds = [i for i, src in enumerate(sources) if src == "local"]
229
+ local_paths = [paths[ind] for ind in local_inds]
230
+ local_map_fns = [map_fns[ind] for ind in local_inds]
231
+ local_sample_ratios = [sample_ratios[ind] for ind in local_inds]
232
+
233
+ hf_inds = [i for i, src in enumerate(sources) if src == "huggingface"]
234
+ hf_paths = [paths[ind] for ind in hf_inds]
235
+ hf_map_fns = [map_fns[ind] for ind in hf_inds]
236
+ hf_sample_ratios = [sample_ratios[ind] for ind in hf_inds]
237
+
238
+ datasets = []
239
+ if len(local_inds):
240
+ local_datasets = load_local_datasets(
241
+ local_paths,
242
+ file_types,
243
+ file_pattern,
244
+ cache_dir,
245
+ local_sample_ratios,
246
+ local_map_fns,
247
+ max_length,
248
+ )
249
+ datasets.extend(local_datasets)
250
+
251
+ if len(hf_inds):
252
+ cached_infos = {}
253
+ for i in range(len(hf_inds)):
254
+ if cache_dir:
255
+ digits = len(str(abs(len(hf_inds))))
256
+ cache_id = f"cache-hf-{i+1:0{digits}}-of-" f"{len(hf_inds):0{digits}}"
257
+ sub_cache_dir = os.path.join(cache_dir, cache_id)
258
+ else:
259
+ sub_cache_dir = None
260
+ dset = load_hf_dataset(
261
+ hf_paths[i],
262
+ sample_ratio=hf_sample_ratios[i],
263
+ map_fn=hf_map_fns[i],
264
+ cache_dir=sub_cache_dir,
265
+ max_length=max_length,
266
+ )
267
+ datasets.append(dset)
268
+ breakpoint()
269
+ if cache_dir:
270
+ infos = {
271
+ "path": hf_paths[i],
272
+ "num_samples": dset.num_samples,
273
+ "num_tokens": dset.total_tokens,
274
+ }
275
+ cached_infos[cache_id] = infos
276
+
277
+ if cache_dir:
278
+ _path = os.path.join(cache_dir, "hf_infos.json")
279
+ with open(_path, "w") as f:
280
+ json.dump(cached_infos, f)
281
+
282
+ return datasets
283
+
284
+
285
+ def load_ms_dataset():
286
+ pass
code/xtuner/_lite/datasets/utils/utils.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ from collections.abc import Mapping
3
+
4
+ import torch
5
+ from PIL import Image
6
+
7
+ _EXIF_ORIENT = 274 # exif 'Orientation' tag
8
+
9
+
10
+ def apply_exif_orientation(image):
11
+ """Applies the exif orientation correctly.
12
+
13
+ This code exists per the bug:
14
+ https://github.com/python-pillow/Pillow/issues/3973
15
+ with the function `ImageOps.exif_transpose`. The Pillow source raises errors with
16
+ various methods, especially `tobytes`
17
+
18
+ Function based on:
19
+ https://github.com/wkentaro/labelme/blob/v4.5.4/labelme/utils/image.py#L59
20
+ https://github.com/python-pillow/Pillow/blob/7.1.2/src/PIL/ImageOps.py#L527
21
+
22
+ Args:
23
+ image (PIL.Image): a PIL image
24
+
25
+ Returns:
26
+ (PIL.Image): the PIL image with exif orientation applied, if applicable
27
+ """
28
+ if not hasattr(image, "getexif"):
29
+ return image
30
+
31
+ try:
32
+ exif = image.getexif()
33
+ except Exception: # https://github.com/facebookresearch/detectron2/issues/1885
34
+ exif = None
35
+
36
+ if exif is None:
37
+ return image
38
+
39
+ orientation = exif.get(_EXIF_ORIENT)
40
+
41
+ method = {
42
+ 2: Image.FLIP_LEFT_RIGHT,
43
+ 3: Image.ROTATE_180,
44
+ 4: Image.FLIP_TOP_BOTTOM,
45
+ 5: Image.TRANSPOSE,
46
+ 6: Image.ROTATE_270,
47
+ 7: Image.TRANSVERSE,
48
+ 8: Image.ROTATE_90,
49
+ }.get(orientation)
50
+
51
+ if method is not None:
52
+ return image.transpose(method)
53
+ return image
54
+
55
+
56
+ def move_data_to_device(data, device="cuda"):
57
+ """Prepares one `data` before feeding it to the model, be it a tensor or a
58
+ nested list/dictionary of tensors."""
59
+ if isinstance(data, Mapping):
60
+ return type(data)({k: move_data_to_device(v) for k, v in data.items()})
61
+ elif isinstance(data, (tuple, list)):
62
+ return type(data)(move_data_to_device(v) for v in data)
63
+ elif isinstance(data, torch.Tensor):
64
+ kwargs = {"device": device}
65
+ return data.to(non_blocking=True, **kwargs)
66
+ return data
code/xtuner/_lite/device.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import torch
3
+
4
+
5
+ def get_device():
6
+ device = None
7
+ if torch.cuda.is_available():
8
+ device = "cuda"
9
+ else:
10
+ try:
11
+ import torch_npu # noqa: F401
12
+
13
+ device = "npu"
14
+ except ImportError:
15
+ pass
16
+ try:
17
+ import torch_mlu # noqa: F401
18
+
19
+ device = "mlu"
20
+ except ImportError:
21
+ pass
22
+
23
+ if device is None:
24
+ raise NotImplementedError(
25
+ "Supports only CUDA or NPU. If your device is CUDA or NPU, "
26
+ "please make sure that your environmental settings are "
27
+ "configured correctly."
28
+ )
29
+
30
+ return device
31
+
32
+
33
+ def get_torch_device_module():
34
+ device = get_device()
35
+ if device == "cuda":
36
+ return torch.cuda
37
+ elif device == "npu":
38
+ return torch.npu
39
+ elif device == "mlu":
40
+ return torch.mlu
41
+ else:
42
+ raise NotImplementedError
code/xtuner/_lite/modelings/.DS_Store ADDED
Binary file (6.15 kB). View file
 
code/xtuner/_lite/modelings/__init__.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .internlm2 import InternLM2Config, InternLM2ForCausalLM
2
+ from .internlm3 import InternLM3Config, InternLM3ForCausalLM, InternLM3Tokenizer
3
+ from .llava.modeling_llava import LlavaForConditionalGeneration
4
+ from .llava.configuration_llava import EnhancedLlavaConfig
5
+ from .llava.processing_llava import LlavaProcessor
6
+
7
+ def register_remote_code():
8
+ from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
9
+ AutoConfig.register('internlm2', InternLM2Config, exist_ok=True)
10
+ AutoModelForCausalLM.register(
11
+ InternLM2Config, InternLM2ForCausalLM, exist_ok=True)
12
+
13
+ AutoConfig.register('internlm3', InternLM3Config, exist_ok=True)
14
+ AutoModelForCausalLM.register(
15
+ InternLM3Config, InternLM3ForCausalLM, exist_ok=True)
16
+ AutoTokenizer.register(
17
+ InternLM3Config, InternLM3Tokenizer, exist_ok=True)
code/xtuner/_lite/modelings/internlm2/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .configuration_internlm2 import InternLM2Config
2
+ from .modeling_internlm2 import InternLM2ForCausalLM
code/xtuner/_lite/modelings/internlm2/configuration_internlm2.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+ Args:
35
+ vocab_size (`int`, *optional*, defaults to 32000):
36
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
37
+ `inputs_ids` passed when calling [`InternLM2Model`]
38
+ hidden_size (`int`, *optional*, defaults to 4096):
39
+ Dimension of the hidden representations.
40
+ intermediate_size (`int`, *optional*, defaults to 11008):
41
+ Dimension of the MLP representations.
42
+ num_hidden_layers (`int`, *optional*, defaults to 32):
43
+ Number of hidden layers in the Transformer decoder.
44
+ num_attention_heads (`int`, *optional*, defaults to 32):
45
+ Number of attention heads for each attention layer in the Transformer decoder.
46
+ num_key_value_heads (`int`, *optional*):
47
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
48
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
49
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
50
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
51
+ by meanpooling all the original heads within that group. For more details checkout [this
52
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
53
+ `num_attention_heads`.
54
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
55
+ The non-linear activation function (function or string) in the decoder.
56
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
57
+ The maximum sequence length that this model might ever be used with. InternLM2 supports up to 32768 tokens.
58
+ initializer_range (`float`, *optional*, defaults to 0.02):
59
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
61
+ The epsilon used by the rms normalization layers.
62
+ use_cache (`bool`, *optional*, defaults to `True`):
63
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
64
+ relevant if `config.is_decoder=True`.
65
+ pad_token_id (`int`, *optional*):
66
+ Padding token id.
67
+ bos_token_id (`int`, *optional*, defaults to 1):
68
+ Beginning of stream token id.
69
+ eos_token_id (`int`, *optional*, defaults to 2):
70
+ End of stream token id.
71
+ pretraining_tp (`int`, *optional*, defaults to 1):
72
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
73
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism)
74
+ to understand more about it. This value is necessary to ensure exact reproducibility
75
+ of the pretraining results. Please refer to [this
76
+ issue](https://github.com/pytorch/pytorch/issues/76232).
77
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
78
+ Whether to tie weight embeddings
79
+ rope_theta (`float`, *optional*, defaults to 10000.0):
80
+ The base period of the RoPE embeddings.
81
+ rope_scaling (`Dict`, *optional*):
82
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
83
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
84
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
85
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
86
+ these scaling strategies behave:
87
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
88
+ experimental feature, subject to breaking API changes in future versions.
89
+ """
90
+ _auto_class = 'AutoConfig'
91
+ model_type = 'internlm2'
92
+ keys_to_ignore_at_inference = ['past_key_values']
93
+
94
+ def __init__( # pylint: disable=W0102
95
+ self,
96
+ vocab_size=103168,
97
+ hidden_size=4096,
98
+ intermediate_size=11008,
99
+ num_hidden_layers=32,
100
+ num_attention_heads=32,
101
+ num_key_value_heads=None,
102
+ hidden_act='silu',
103
+ max_position_embeddings=2048,
104
+ initializer_range=0.02,
105
+ rms_norm_eps=1e-6,
106
+ use_cache=True,
107
+ pad_token_id=0,
108
+ bos_token_id=1,
109
+ eos_token_id=2,
110
+ pretraining_tp=1,
111
+ tie_word_embeddings=False,
112
+ bias=True,
113
+ rope_theta=10000,
114
+ rope_scaling=None,
115
+ attn_implementation=None,
116
+ **kwargs,
117
+ ):
118
+ self.vocab_size = vocab_size
119
+ self.max_position_embeddings = max_position_embeddings
120
+ self.hidden_size = hidden_size
121
+ self.intermediate_size = intermediate_size
122
+ self.num_hidden_layers = num_hidden_layers
123
+ self.num_attention_heads = num_attention_heads
124
+ self.bias = bias
125
+
126
+ if num_key_value_heads is None:
127
+ num_key_value_heads = num_attention_heads
128
+ self.num_key_value_heads = num_key_value_heads
129
+
130
+ self.hidden_act = hidden_act
131
+ self.initializer_range = initializer_range
132
+ self.rms_norm_eps = rms_norm_eps
133
+ self.pretraining_tp = pretraining_tp
134
+ self.use_cache = use_cache
135
+ self.rope_theta = rope_theta
136
+ self.rope_scaling = rope_scaling
137
+ self._rope_scaling_validation()
138
+ self.attn_implementation = attn_implementation
139
+ if self.attn_implementation is None:
140
+ self.attn_implementation = 'eager'
141
+
142
+ super().__init__(
143
+ pad_token_id=pad_token_id,
144
+ bos_token_id=bos_token_id,
145
+ eos_token_id=eos_token_id,
146
+ tie_word_embeddings=tie_word_embeddings,
147
+ **kwargs,
148
+ )
149
+
150
+ def _rope_scaling_validation(self):
151
+ """
152
+ Validate the `rope_scaling` configuration.
153
+ """
154
+ if self.rope_scaling is None:
155
+ return
156
+
157
+ if not isinstance(self.rope_scaling,
158
+ dict) or len(self.rope_scaling) != 2:
159
+ raise ValueError(
160
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
161
+ f'got {self.rope_scaling}')
162
+ rope_scaling_type = self.rope_scaling.get('type', None)
163
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
164
+ if rope_scaling_type is None or rope_scaling_type not in [
165
+ 'linear', 'dynamic'
166
+ ]:
167
+ raise ValueError(
168
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
169
+ )
170
+ if (rope_scaling_factor is None
171
+ or not isinstance(rope_scaling_factor,
172
+ (float, int)) or rope_scaling_factor < 1.0):
173
+ raise ValueError(
174
+ f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
175
+ f'of type {type(rope_scaling_factor)}')
code/xtuner/_lite/modelings/internlm2/modeling_internlm2.py ADDED
@@ -0,0 +1,1899 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch InternLM2.5 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from einops import rearrange
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+ from transformers.activations import ACT2FN
29
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
30
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
31
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
32
+ CausalLMOutputWithPast,
33
+ QuestionAnsweringModelOutput,
34
+ SequenceClassifierOutputWithPast,
35
+ TokenClassifierOutput)
36
+ from transformers.modeling_utils import PreTrainedModel
37
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
38
+ from transformers.utils import (add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ is_flash_attn_greater_or_equal_2_10, logging,
41
+ replace_return_docstrings)
42
+
43
+ try:
44
+ from transformers.generation.streamers import BaseStreamer
45
+ except Exception:
46
+ BaseStreamer = None
47
+
48
+ from .configuration_internlm2 import InternLM2Config
49
+
50
+ try:
51
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
52
+ from flash_attn.bert_padding import (index_first_axis, pad_input,
53
+ unpad_input)
54
+ except:
55
+ pass
56
+
57
+ logger = logging.get_logger(__name__)
58
+
59
+ _CONFIG_FOR_DOC = 'InternLM2Config'
60
+
61
+
62
+ def _get_unpad_data(attention_mask):
63
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
64
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
65
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
66
+ cu_seqlens = F.pad(
67
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # pylint: disable=E1102
68
+ return (
69
+ indices,
70
+ cu_seqlens,
71
+ max_seqlen_in_batch,
72
+ )
73
+
74
+
75
+ class InternLM2RMSNorm(nn.Module):
76
+ """InternLM2RMSNorm is equivalent to T5LayerNorm."""
77
+
78
+ def __init__(self, hidden_size, eps=1e-6):
79
+ super().__init__()
80
+ self.weight = nn.Parameter(torch.ones(hidden_size))
81
+ self.variance_epsilon = eps
82
+
83
+ def forward(self, hidden_states):
84
+ input_dtype = hidden_states.dtype
85
+ hidden_states = hidden_states.to(torch.float32)
86
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
87
+ hidden_states = hidden_states * torch.rsqrt(variance +
88
+ self.variance_epsilon)
89
+ return self.weight * hidden_states.to(input_dtype)
90
+
91
+
92
+ ALL_LAYERNORM_LAYERS.append(InternLM2RMSNorm)
93
+
94
+
95
+ class InternLM2RotaryEmbedding(nn.Module):
96
+ """Rotary Position Embedding for the InternLM2 model. Credits to the Reddit user /u/lucidrains."""
97
+
98
+ def __init__(self,
99
+ dim,
100
+ max_position_embeddings=2048,
101
+ base=10000,
102
+ device=None,
103
+ scaling_factor=1.0):
104
+ super().__init__()
105
+ self.scaling_factor = scaling_factor
106
+ self.dim = dim
107
+ self.max_position_embeddings = max_position_embeddings
108
+ self.base = base
109
+ inv_freq = 1.0 / (
110
+ self.base
111
+ **(torch.arange(0, self.dim, 2,
112
+ dtype=torch.int64).float().to(device) / self.dim))
113
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
114
+ # For BC we register cos and sin cached
115
+ self.max_seq_len_cached = max_position_embeddings
116
+
117
+ @torch.no_grad()
118
+ def forward(self, x, position_ids):
119
+ # x: [bs, num_attention_heads, seq_len, head_size]
120
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(
121
+ position_ids.shape[0], -1, 1)
122
+ position_ids_expanded = position_ids[:, None, :].float()
123
+ # Force float32 since bfloat16 loses precision on long contexts
124
+ # See https://github.com/huggingface/transformers/pull/29285
125
+ device_type = x.device.type
126
+ device_type = device_type if isinstance(
127
+ device_type, str) and device_type != 'mps' else 'cpu'
128
+ with torch.autocast(device_type=device_type, enabled=False):
129
+ freqs = (inv_freq_expanded.float()
130
+ @ position_ids_expanded.float()).transpose(1, 2)
131
+ emb = torch.cat((freqs, freqs), dim=-1)
132
+ cos = emb.cos()
133
+ sin = emb.sin()
134
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
135
+
136
+
137
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
138
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
139
+
140
+ def forward(self, x, position_ids):
141
+ # difference to the original RoPE: a scaling factor is aplied to the position ids
142
+ position_ids = position_ids.float() / self.scaling_factor
143
+ cos, sin = super().forward(x, position_ids)
144
+ return cos, sin
145
+
146
+
147
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
148
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
149
+ Credits to the Reddit users /u/bloc97 and /u/emozilla"""
150
+
151
+ def forward(self, x, position_ids):
152
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
153
+ seq_len = torch.max(position_ids) + 1
154
+ if seq_len > self.max_position_embeddings:
155
+ base = self.base * ((self.scaling_factor * seq_len /
156
+ self.max_position_embeddings) -
157
+ (self.scaling_factor - 1))**(
158
+ self.dim / (self.dim - 2))
159
+ inv_freq = 1.0 / (
160
+ base
161
+ **(torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(
162
+ x.device) / self.dim))
163
+ self.register_buffer(
164
+ 'inv_freq', inv_freq,
165
+ persistent=False) # TODO joao: this may break with compilation
166
+
167
+ cos, sin = super().forward(x, position_ids)
168
+ return cos, sin
169
+
170
+
171
+ def rotate_half(x):
172
+ """Rotates half the hidden dims of the input."""
173
+ x1 = x[..., :x.shape[-1] // 2]
174
+ x2 = x[..., x.shape[-1] // 2:]
175
+ return torch.cat((-x2, x1), dim=-1)
176
+
177
+
178
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): # pylint: disable=unused-argument
179
+ """Applies Rotary Position Embedding to the query and key tensors.
180
+ Args:
181
+ q (`torch.Tensor`): The query tensor.
182
+ k (`torch.Tensor`): The key tensor.
183
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
184
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
185
+ position_ids (`torch.Tensor`, *optional*):
186
+ Deprecated and unused.
187
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
188
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
189
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
190
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
191
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
192
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
193
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
194
+ Returns:
195
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
196
+ """
197
+ cos = cos.unsqueeze(unsqueeze_dim)
198
+ sin = sin.unsqueeze(unsqueeze_dim)
199
+ q_embed = (q * cos) + (rotate_half(q) * sin)
200
+ k_embed = (k * cos) + (rotate_half(k) * sin)
201
+ return q_embed, k_embed
202
+
203
+
204
+ class InternLM2MLP(nn.Module):
205
+ """MLP for InternLM2 model."""
206
+
207
+ def __init__(self, config):
208
+ super().__init__()
209
+ self.config = config
210
+ self.hidden_size = config.hidden_size
211
+ self.intermediate_size = config.intermediate_size
212
+ self.w1 = nn.Linear(
213
+ self.hidden_size, self.intermediate_size, bias=False)
214
+ self.w3 = nn.Linear(
215
+ self.hidden_size, self.intermediate_size, bias=False)
216
+ self.w2 = nn.Linear(
217
+ self.intermediate_size, self.hidden_size, bias=False)
218
+ self.act_fn = ACT2FN[config.hidden_act]
219
+
220
+ def forward(self, x):
221
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
222
+
223
+ return down_proj
224
+
225
+
226
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
227
+ """
228
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
229
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
230
+ """
231
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
232
+ if n_rep == 1:
233
+ return hidden_states
234
+ hidden_states = hidden_states[:, :,
235
+ None, :, :].expand(batch,
236
+ num_key_value_heads,
237
+ n_rep, slen, head_dim)
238
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen,
239
+ head_dim)
240
+
241
+
242
+ class InternLM2Attention(nn.Module):
243
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
244
+
245
+ def __init__(self,
246
+ config: InternLM2Config,
247
+ layer_idx: Optional[int] = None):
248
+ super().__init__()
249
+ self.config = config
250
+ self.layer_idx = layer_idx
251
+ if layer_idx is None:
252
+ logger.warning_once(
253
+ f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will '
254
+ 'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` '
255
+ 'when creating this class.')
256
+
257
+ self.hidden_size = config.hidden_size
258
+ self.num_heads = config.num_attention_heads
259
+ self.head_dim = self.hidden_size // self.num_heads
260
+ self.num_key_value_heads = config.num_key_value_heads
261
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
262
+ self.max_position_embeddings = config.max_position_embeddings
263
+ self.rope_theta = config.rope_theta
264
+ self.is_causal = True
265
+
266
+ if (self.head_dim * self.num_heads) != self.hidden_size:
267
+ raise ValueError(
268
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
269
+ f' and `num_heads`: {self.num_heads}).')
270
+
271
+ self.wqkv = nn.Linear(
272
+ self.hidden_size,
273
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
274
+ bias=config.bias,
275
+ )
276
+ self.wo = nn.Linear(
277
+ self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
278
+
279
+ self._init_rope()
280
+
281
+ def _init_rope(self):
282
+ if self.config.rope_scaling is None:
283
+ self.rotary_emb = InternLM2RotaryEmbedding(
284
+ self.head_dim,
285
+ max_position_embeddings=self.max_position_embeddings,
286
+ base=self.rope_theta,
287
+ )
288
+ else:
289
+ scaling_type = self.config.rope_scaling['type']
290
+ scaling_factor = self.config.rope_scaling['factor']
291
+ if scaling_type == 'linear':
292
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
293
+ self.head_dim,
294
+ max_position_embeddings=self.max_position_embeddings,
295
+ scaling_factor=scaling_factor,
296
+ base=self.rope_theta,
297
+ )
298
+ elif scaling_type == 'dynamic':
299
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
300
+ self.head_dim,
301
+ max_position_embeddings=self.max_position_embeddings,
302
+ scaling_factor=scaling_factor,
303
+ base=self.rope_theta,
304
+ )
305
+ else:
306
+ raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
307
+
308
+ def forward(
309
+ self,
310
+ hidden_states: torch.Tensor,
311
+ attention_mask: Optional[torch.Tensor] = None,
312
+ position_ids: Optional[torch.LongTensor] = None,
313
+ past_key_value: Optional[Cache] = None,
314
+ output_attentions: bool = False,
315
+ use_cache: bool = False, # pylint: disable=unused-argument
316
+ cache_position: Optional[torch.LongTensor] = None,
317
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor],
318
+ Optional[Tuple[torch.Tensor]]]:
319
+ bsz, q_len, _ = hidden_states.size()
320
+
321
+ if self.config.pretraining_tp > 1:
322
+ # split qkv_states by tp size
323
+ key_value_slicing = (self.num_key_value_heads *
324
+ self.head_dim) // self.config.pretraining_tp
325
+ qkv_slices = self.wqkv.weight.split(key_value_slicing, dim=0)
326
+ qkv_states = torch.cat(
327
+ [
328
+ F.linear(hidden_states, qkv_slice)
329
+ for qkv_slice in qkv_slices
330
+ ],
331
+ dim=-1 # pylint: disable=E1102
332
+ )
333
+ else:
334
+ qkv_states = self.wqkv(hidden_states)
335
+
336
+ qkv_states = rearrange(
337
+ qkv_states,
338
+ 'b q (h gs d) -> b q h gs d',
339
+ gs=2 + self.num_key_value_groups,
340
+ d=self.head_dim,
341
+ )
342
+
343
+ query_states = qkv_states[..., :self.num_key_value_groups, :]
344
+ query_states = rearrange(query_states,
345
+ 'b q h gs d -> b q (h gs) d').transpose(1, 2)
346
+ key_states = qkv_states[..., -2, :].transpose(1, 2)
347
+ value_states = qkv_states[..., -1, :].transpose(1, 2)
348
+
349
+ cos, sin = self.rotary_emb(value_states, position_ids)
350
+ query_states, key_states = apply_rotary_pos_emb(
351
+ query_states, key_states, cos, sin, position_ids)
352
+
353
+ if past_key_value is not None:
354
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
355
+ cache_kwargs = {
356
+ 'sin': sin,
357
+ 'cos': cos,
358
+ 'cache_position': cache_position
359
+ }
360
+ key_states, value_states = past_key_value.update(
361
+ key_states, value_states, self.layer_idx, cache_kwargs)
362
+
363
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
364
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
365
+
366
+ attn_weights = torch.matmul(query_states, key_states.transpose(
367
+ 2, 3)) / math.sqrt(self.head_dim)
368
+
369
+ if attention_mask is not None: # no matter the length, we just slice it
370
+ causal_mask = attention_mask[:, :, :, :key_states.shape[-2]]
371
+ attn_weights = attn_weights + causal_mask
372
+
373
+ # upcast attention to fp32
374
+ attn_weights = nn.functional.softmax(
375
+ attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
376
+ attn_output = torch.matmul(attn_weights, value_states)
377
+
378
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
379
+ raise ValueError(
380
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
381
+ f' {attn_output.size()}')
382
+
383
+ attn_output = attn_output.transpose(1, 2).contiguous()
384
+
385
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
386
+
387
+ if self.config.pretraining_tp > 1:
388
+ attn_output = attn_output.split(
389
+ self.hidden_size // self.config.pretraining_tp, dim=2)
390
+ o_proj_slices = self.wo.weight.split(
391
+ self.hidden_size // self.config.pretraining_tp, dim=1)
392
+ attn_output = sum([
393
+ F.linear(attn_output[i], o_proj_slices[i]) # pylint: disable=E1102
394
+ for i in range(self.config.pretraining_tp)
395
+ ])
396
+ else:
397
+ attn_output = self.wo(attn_output)
398
+
399
+ if not output_attentions:
400
+ attn_weights = None
401
+
402
+ return attn_output, attn_weights, past_key_value
403
+
404
+
405
+ class InternLM2FlashAttention2(InternLM2Attention):
406
+ """
407
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
408
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
409
+ flash attention and deal with padding tokens in case the input contains any of them.
410
+ """
411
+
412
+ def __init__(self, *args, **kwargs):
413
+ super().__init__(*args, **kwargs)
414
+
415
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
416
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement,
417
+ # that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
418
+ # Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
419
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1)
420
+ # produces a wrong mask (top-left).
421
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10(
422
+ )
423
+
424
+ def forward(
425
+ self,
426
+ hidden_states: torch.Tensor,
427
+ attention_mask: Optional[torch.LongTensor] = None,
428
+ position_ids: Optional[torch.LongTensor] = None,
429
+ past_key_value: Optional[Cache] = None,
430
+ output_attentions: bool = False,
431
+ use_cache: bool = False,
432
+ cache_position: Optional[torch.LongTensor] = None,
433
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor],
434
+ Optional[Tuple[torch.Tensor]]]:
435
+ if isinstance(past_key_value, StaticCache):
436
+ raise ValueError(
437
+ '`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` '
438
+ 'make sure to use `sdpa` in the mean time, and open an issue at '
439
+ 'https://github.com/huggingface/transformers')
440
+
441
+ output_attentions = False
442
+
443
+ bsz, q_len, _ = hidden_states.size()
444
+
445
+ qkv_states = self.wqkv(hidden_states)
446
+
447
+ qkv_states = rearrange(
448
+ qkv_states,
449
+ 'b q (h gs d) -> b q h gs d',
450
+ gs=2 + self.num_key_value_groups,
451
+ d=self.head_dim,
452
+ )
453
+
454
+ query_states = qkv_states[..., :self.num_key_value_groups, :]
455
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
456
+ key_states = qkv_states[..., -2, :]
457
+ value_states = qkv_states[..., -1, :]
458
+
459
+ query_states = query_states.transpose(1, 2)
460
+ key_states = key_states.transpose(1, 2)
461
+ value_states = value_states.transpose(1, 2)
462
+
463
+ cos, sin = self.rotary_emb(value_states, position_ids)
464
+ query_states, key_states = apply_rotary_pos_emb(
465
+ query_states, key_states, cos, sin)
466
+
467
+ if past_key_value is not None:
468
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
469
+ cache_kwargs = {
470
+ 'sin': sin,
471
+ 'cos': cos,
472
+ 'cache_position': cache_position
473
+ }
474
+ key_states, value_states = past_key_value.update(
475
+ key_states, value_states, self.layer_idx, cache_kwargs)
476
+
477
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout
478
+ # [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
479
+ # to be able to avoid many of these transpose/reshape/view.
480
+ query_states = query_states.transpose(1, 2)
481
+ key_states = key_states.transpose(1, 2)
482
+ value_states = value_states.transpose(1, 2)
483
+
484
+ # dropout_rate = self.attention_dropout if self.training else 0.0
485
+ dropout_rate = 0.0
486
+
487
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
488
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
489
+ # cast them back in the correct dtype just to be sure everything works as expected.
490
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
491
+ # in fp32. (InternLM2RMSNorm handles it correctly)
492
+
493
+ input_dtype = query_states.dtype
494
+ if input_dtype == torch.float32:
495
+ if torch.is_autocast_enabled():
496
+ target_dtype = torch.get_autocast_gpu_dtype()
497
+ # Handle the case where the model is quantized
498
+ elif hasattr(self.config, '_pre_quantization_dtype'):
499
+ target_dtype = self.config._pre_quantization_dtype
500
+ else:
501
+ target_dtype = self.wqkv.weight.dtype
502
+
503
+ logger.warning_once(
504
+ f'The input hidden states seems to be silently casted in float32, this might be related to'
505
+ f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
506
+ f' {target_dtype}.')
507
+
508
+ query_states = query_states.to(target_dtype)
509
+ key_states = key_states.to(target_dtype)
510
+ value_states = value_states.to(target_dtype)
511
+
512
+ attn_output = self._flash_attention_forward(
513
+ query_states,
514
+ key_states,
515
+ value_states,
516
+ attention_mask,
517
+ q_len,
518
+ dropout=dropout_rate)
519
+
520
+ attn_output = attn_output.reshape(bsz, q_len,
521
+ self.hidden_size).contiguous()
522
+ attn_output = self.wo(attn_output)
523
+
524
+ if not output_attentions:
525
+ attn_weights = None
526
+
527
+ return attn_output, attn_weights, past_key_value # pylint: disable=E0606
528
+
529
+ def _flash_attention_forward(self,
530
+ query_states,
531
+ key_states,
532
+ value_states,
533
+ attention_mask,
534
+ query_length,
535
+ dropout=0.0,
536
+ softmax_scale=None):
537
+ """
538
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
539
+ first unpad the input, then computes the attention scores and pad the final attention scores.
540
+ Args:
541
+ query_states (`torch.Tensor`):
542
+ Input query states to be passed to Flash Attention API
543
+ key_states (`torch.Tensor`):
544
+ Input key states to be passed to Flash Attention API
545
+ value_states (`torch.Tensor`):
546
+ Input value states to be passed to Flash Attention API
547
+ attention_mask (`torch.Tensor`):
548
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
549
+ position of padding tokens and 1 for the position of non-padding tokens.
550
+ dropout (`float`):
551
+ Attention dropout
552
+ softmax_scale (`float`, *optional*):
553
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
554
+ """
555
+ if not self._flash_attn_uses_top_left_mask:
556
+ causal = self.is_causal
557
+ else:
558
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1.
559
+ # For details, please see the comment in InternLM2FlashAttention2 __init__.
560
+ causal = self.is_causal and query_length != 1
561
+
562
+ # Contains at least one padding token in the sequence
563
+ if attention_mask is not None:
564
+ batch_size = query_states.shape[0]
565
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
566
+ query_states, key_states, value_states, attention_mask,
567
+ query_length)
568
+
569
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
570
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
571
+
572
+ attn_output_unpad = flash_attn_varlen_func( # pylint: disable=E0606
573
+ query_states,
574
+ key_states,
575
+ value_states,
576
+ cu_seqlens_q=cu_seqlens_q,
577
+ cu_seqlens_k=cu_seqlens_k,
578
+ max_seqlen_q=max_seqlen_in_batch_q,
579
+ max_seqlen_k=max_seqlen_in_batch_k,
580
+ dropout_p=dropout,
581
+ softmax_scale=softmax_scale,
582
+ causal=causal,
583
+ )
584
+
585
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size,
586
+ query_length) # pylint: disable=E0606
587
+ else:
588
+ attn_output = flash_attn_func( # pylint: disable=E0606
589
+ query_states,
590
+ key_states,
591
+ value_states,
592
+ dropout,
593
+ softmax_scale=softmax_scale,
594
+ causal=causal)
595
+
596
+ return attn_output
597
+
598
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask,
599
+ query_length):
600
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(
601
+ attention_mask)
602
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
603
+
604
+ key_layer = index_first_axis( # pylint: disable=E0606
605
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
606
+ head_dim), indices_k)
607
+ value_layer = index_first_axis( # pylint: disable=E0606
608
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
609
+ head_dim), indices_k)
610
+ if query_length == kv_seq_len:
611
+ query_layer = index_first_axis( # pylint: disable=E0606
612
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads,
613
+ head_dim), indices_k)
614
+ cu_seqlens_q = cu_seqlens_k
615
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
616
+ indices_q = indices_k
617
+ elif query_length == 1:
618
+ max_seqlen_in_batch_q = 1
619
+ cu_seqlens_q = torch.arange(
620
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
621
+ ) # There is a memcpy here, that is very bad.
622
+ indices_q = cu_seqlens_q[:-1]
623
+ query_layer = query_layer.squeeze(1)
624
+ else:
625
+ # The -q_len: slice assumes left padding.
626
+ attention_mask = attention_mask[:, -query_length:]
627
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( # pylint: disable=E0606
628
+ query_layer, attention_mask)
629
+
630
+ return (
631
+ query_layer,
632
+ key_layer,
633
+ value_layer,
634
+ indices_q,
635
+ (cu_seqlens_q, cu_seqlens_k),
636
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
637
+ )
638
+
639
+
640
+ # Copied from transformers.models.llama.modeling_llama.LllamaSdpaAttention with Llama->InternLM2
641
+ class InternLM2SdpaAttention(InternLM2Attention):
642
+ """
643
+ InternLM2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
644
+ `InternLM2Attention` as the weights of the module stays untouched. The only changes are on the forward pass
645
+ to adapt to SDPA API.
646
+ """
647
+
648
+ # Adapted from InternLM2Attention.forward
649
+ def forward(
650
+ self,
651
+ hidden_states: torch.Tensor,
652
+ attention_mask: Optional[torch.Tensor] = None,
653
+ position_ids: Optional[torch.LongTensor] = None,
654
+ past_key_value: Optional[Cache] = None,
655
+ output_attentions: bool = False,
656
+ use_cache: bool = False,
657
+ cache_position: Optional[torch.LongTensor] = None,
658
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor],
659
+ Optional[Tuple[torch.Tensor]]]:
660
+ if output_attentions:
661
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"`
662
+ # once this is implemented.
663
+ logger.warning_once(
664
+ 'InternLM2Model uses InternLM2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` '
665
+ 'does not support `output_attentions=True`. Falling back to the manual attention implementation, '
666
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. '
667
+ 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
668
+ )
669
+ return super().forward(
670
+ hidden_states=hidden_states,
671
+ attention_mask=attention_mask,
672
+ position_ids=position_ids,
673
+ past_key_value=past_key_value,
674
+ output_attentions=output_attentions,
675
+ use_cache=use_cache,
676
+ cache_position=cache_position,
677
+ )
678
+
679
+ bsz, q_len, _ = hidden_states.size()
680
+
681
+ qkv_states = self.wqkv(hidden_states)
682
+
683
+ qkv_states = rearrange(
684
+ qkv_states,
685
+ 'b q (h gs d) -> b q h gs d',
686
+ gs=2 + self.num_key_value_groups,
687
+ d=self.head_dim,
688
+ )
689
+
690
+ query_states = qkv_states[..., :self.num_key_value_groups, :]
691
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
692
+ key_states = qkv_states[..., -2, :]
693
+ value_states = qkv_states[..., -1, :]
694
+
695
+ query_states = query_states.transpose(1, 2)
696
+ key_states = key_states.transpose(1, 2)
697
+ value_states = value_states.transpose(1, 2)
698
+
699
+ cos, sin = self.rotary_emb(value_states, position_ids)
700
+ query_states, key_states = apply_rotary_pos_emb(
701
+ query_states, key_states, cos, sin)
702
+
703
+ if past_key_value is not None:
704
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
705
+ cache_kwargs = {
706
+ 'sin': sin,
707
+ 'cos': cos,
708
+ 'cache_position': cache_position
709
+ }
710
+ key_states, value_states = past_key_value.update(
711
+ key_states, value_states, self.layer_idx, cache_kwargs)
712
+
713
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
714
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
715
+
716
+ causal_mask = attention_mask
717
+ if attention_mask is not None:
718
+ causal_mask = causal_mask[:, :, :, :key_states.shape[-2]]
719
+
720
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with
721
+ # custom attn_mask, Reference: https://github.com/pytorch/pytorch/issues/112577.
722
+ if query_states.device.type == 'cuda' and causal_mask is not None:
723
+ query_states = query_states.contiguous()
724
+ key_states = key_states.contiguous()
725
+ value_states = value_states.contiguous()
726
+
727
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of
728
+ # an inline conditional assignment in SDPA to support both torch.compile's dynamic shapes and full graph
729
+ # options. An inline conditional prevents dynamic shapes from compiling.
730
+ is_causal = bool(causal_mask is None and q_len > 1)
731
+
732
+ attn_output = torch.nn.functional.scaled_dot_product_attention( # pylint: disable=E1102
733
+ query_states,
734
+ key_states,
735
+ value_states,
736
+ attn_mask=causal_mask,
737
+ dropout_p=0.0,
738
+ is_causal=is_causal,
739
+ )
740
+
741
+ attn_output = attn_output.transpose(1, 2).contiguous()
742
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
743
+
744
+ attn_output = self.wo(attn_output)
745
+
746
+ return attn_output, None, past_key_value
747
+
748
+
749
+ INTERNLM2_ATTENTION_CLASSES = {
750
+ 'eager': InternLM2Attention,
751
+ 'flash_attention_2': InternLM2FlashAttention2,
752
+ 'sdpa': InternLM2SdpaAttention,
753
+ }
754
+
755
+
756
+ # Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM2
757
+ class InternLM2DecoderLayer(nn.Module):
758
+ """InternLM2 Decoder Layer. This module is a single layer of the InternLM2 model."""
759
+
760
+ def __init__(self, config: InternLM2Config, layer_idx: int):
761
+ super().__init__()
762
+ self.hidden_size = config.hidden_size
763
+ self.layer_idx = layer_idx
764
+
765
+ self.attention = INTERNLM2_ATTENTION_CLASSES[
766
+ config.attn_implementation](
767
+ config=config, layer_idx=layer_idx)
768
+
769
+ self.feed_forward = InternLM2MLP(config)
770
+ self.attention_norm = InternLM2RMSNorm(
771
+ config.hidden_size, eps=config.rms_norm_eps)
772
+ self.ffn_norm = InternLM2RMSNorm(
773
+ config.hidden_size, eps=config.rms_norm_eps)
774
+
775
+ def forward(
776
+ self,
777
+ hidden_states: torch.Tensor,
778
+ attention_mask: Optional[torch.Tensor] = None,
779
+ position_ids: Optional[torch.LongTensor] = None,
780
+ past_key_value: Optional[Cache] = None,
781
+ output_attentions: Optional[bool] = False,
782
+ use_cache: Optional[bool] = False,
783
+ cache_position: Optional[torch.LongTensor] = None,
784
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
785
+ torch.FloatTensor]]]:
786
+ """
787
+ Args:
788
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
789
+ attention_mask (`torch.FloatTensor`, *optional*):
790
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
791
+ query_sequence_length, key_sequence_length)` if default attention is used.
792
+ output_attentions (`bool`, *optional*):
793
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
794
+ returned tensors for more detail.
795
+ use_cache (`bool`, *optional*):
796
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
797
+ (see `past_key_values`).
798
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
799
+ """
800
+ residual = hidden_states
801
+
802
+ hidden_states = self.attention_norm(hidden_states)
803
+
804
+ # Self Attention
805
+ hidden_states, self_attn_weights, present_key_value = self.attention(
806
+ hidden_states=hidden_states,
807
+ attention_mask=attention_mask,
808
+ position_ids=position_ids,
809
+ past_key_value=past_key_value,
810
+ output_attentions=output_attentions,
811
+ use_cache=use_cache,
812
+ cache_position=cache_position,
813
+ )
814
+ hidden_states = residual + hidden_states
815
+
816
+ # Fully Connected
817
+ residual = hidden_states
818
+ hidden_states = self.ffn_norm(hidden_states)
819
+ hidden_states = self.feed_forward(hidden_states)
820
+ hidden_states = residual + hidden_states
821
+
822
+ outputs = (hidden_states, )
823
+
824
+ if output_attentions:
825
+ outputs += (self_attn_weights, )
826
+
827
+ if use_cache:
828
+ outputs += (present_key_value, )
829
+
830
+ return outputs
831
+
832
+
833
+ InternLM2_START_DOCSTRING = r"""
834
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
835
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
836
+ etc.)
837
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
838
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
839
+ and behavior.
840
+ Parameters:
841
+ config ([`InternLM2Config`]):
842
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
843
+ load the weights associated with the model, only the configuration. Check out the
844
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
845
+ """
846
+
847
+
848
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
849
+ @add_start_docstrings(
850
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
851
+ InternLM2_START_DOCSTRING,
852
+ )
853
+ class InternLM2PreTrainedModel(PreTrainedModel):
854
+ """
855
+ InternLM2 pretraiend model's base class.
856
+ """
857
+
858
+ config_class = InternLM2Config
859
+ base_model_prefix = 'model'
860
+ supports_gradient_checkpointing = True
861
+ _no_split_modules = ['InternLM2DecoderLayer']
862
+ _skip_keys_device_placement = ['past_key_values']
863
+ _supports_flash_attn_2 = True
864
+ _supports_sdpa = True
865
+ _supports_cache_class = True
866
+ _supports_quantized_cache = True
867
+ _supports_static_cache = True
868
+
869
+ def _init_weights(self, module):
870
+ std = self.config.initializer_range
871
+ if isinstance(module, nn.Linear):
872
+ module.weight.data.normal_(mean=0.0, std=std)
873
+ if module.bias is not None:
874
+ module.bias.data.zero_()
875
+ elif isinstance(module, nn.Embedding):
876
+ module.weight.data.normal_(mean=0.0, std=std)
877
+ if module.padding_idx is not None:
878
+ module.weight.data[module.padding_idx].zero_()
879
+
880
+
881
+ InternLM2_INPUTS_DOCSTRING = r"""
882
+ Args:
883
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
884
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
885
+ it.
886
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
887
+ [`PreTrainedTokenizer.__call__`] for details.
888
+ [What are input IDs?](../glossary#input-ids)
889
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
890
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
891
+ - 1 for tokens that are **not masked**,
892
+ - 0 for tokens that are **masked**.
893
+ [What are attention masks?](../glossary#attention-mask)
894
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
895
+ [`PreTrainedTokenizer.__call__`] for details.
896
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
897
+ `past_key_values`).
898
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
899
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
900
+ information on the default strategy.
901
+ - 1 indicates the head is **not masked**,
902
+ - 0 indicates the head is **masked**.
903
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
904
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
905
+ config.n_positions - 1]`.
906
+ [What are position IDs?](../glossary#position-ids)
907
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
908
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
909
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
910
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
911
+ Two formats are allowed:
912
+ - a [`~cache_utils.Cache`] instance;
913
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
914
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
915
+ cache format.
916
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
917
+ legacy cache format will be returned.
918
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
919
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
920
+ of shape `(batch_size, sequence_length)`.
921
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
922
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
923
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
924
+ model's internal embedding lookup matrix.
925
+ use_cache (`bool`, *optional*):
926
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
927
+ `past_key_values`).
928
+ output_attentions (`bool`, *optional*):
929
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
930
+ tensors for more detail.
931
+ output_hidden_states (`bool`, *optional*):
932
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
933
+ more detail.
934
+ return_dict (`bool`, *optional*):
935
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
936
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
937
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
938
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
939
+ the complete sequence length.
940
+ """
941
+
942
+
943
+ # Modified from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM2
944
+ @add_start_docstrings(
945
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
946
+ InternLM2_START_DOCSTRING,
947
+ )
948
+ class InternLM2Model(InternLM2PreTrainedModel):
949
+ """
950
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
951
+ Args:
952
+ config: InternLM2Config
953
+ """
954
+
955
+ _auto_class = 'AutoModel'
956
+
957
+ def __init__(self, config: InternLM2Config):
958
+ super().__init__(config)
959
+ self.padding_idx = config.pad_token_id
960
+ self.vocab_size = config.vocab_size
961
+ self.config = config
962
+
963
+ self.tok_embeddings = nn.Embedding(config.vocab_size,
964
+ config.hidden_size,
965
+ self.padding_idx)
966
+
967
+ self.layers = nn.ModuleList([
968
+ InternLM2DecoderLayer(config, layer_idx)
969
+ for layer_idx in range(config.num_hidden_layers)
970
+ ])
971
+ self.norm = InternLM2RMSNorm(
972
+ config.hidden_size, eps=config.rms_norm_eps)
973
+
974
+ self.gradient_checkpointing = False
975
+ # Initialize weights and apply final processing
976
+ self.post_init()
977
+
978
+ def get_input_embeddings(self):
979
+ return self.tok_embeddings
980
+
981
+ def set_input_embeddings(self, value):
982
+ self.tok_embeddings = value
983
+
984
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
985
+ def forward(
986
+ self,
987
+ input_ids: torch.LongTensor = None,
988
+ attention_mask: Optional[torch.Tensor] = None,
989
+ position_ids: Optional[torch.LongTensor] = None,
990
+ past_key_values: Optional[Union[Cache,
991
+ List[torch.FloatTensor]]] = None,
992
+ inputs_embeds: Optional[torch.FloatTensor] = None,
993
+ use_cache: Optional[bool] = None,
994
+ output_attentions: Optional[bool] = None,
995
+ output_hidden_states: Optional[bool] = None,
996
+ return_dict: Optional[bool] = None,
997
+ cache_position: Optional[torch.LongTensor] = None,
998
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
999
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1000
+ output_hidden_states = (
1001
+ output_hidden_states if output_hidden_states is not None else
1002
+ self.config.output_hidden_states)
1003
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1004
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1005
+
1006
+ if (input_ids is None) ^ (inputs_embeds is not None):
1007
+ raise ValueError(
1008
+ 'You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one'
1009
+ )
1010
+
1011
+ if self.gradient_checkpointing and self.training and use_cache:
1012
+ logger.warning_once(
1013
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.'
1014
+ )
1015
+ use_cache = False
1016
+
1017
+ if inputs_embeds is None:
1018
+ inputs_embeds = self.tok_embeddings(input_ids)
1019
+
1020
+ return_legacy_cache = False
1021
+ if use_cache and not isinstance(
1022
+ past_key_values,
1023
+ Cache): # kept for BC (non `Cache` `past_key_values` inputs)
1024
+ return_legacy_cache = True
1025
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1026
+
1027
+ if cache_position is None:
1028
+ past_seen_tokens = past_key_values.get_seq_length(
1029
+ ) if past_key_values is not None else 0
1030
+ cache_position = torch.arange(
1031
+ past_seen_tokens,
1032
+ past_seen_tokens + inputs_embeds.shape[1],
1033
+ device=inputs_embeds.device)
1034
+ if position_ids is None:
1035
+ position_ids = cache_position.unsqueeze(0)
1036
+
1037
+ causal_mask = self._update_causal_mask(attention_mask, inputs_embeds,
1038
+ cache_position, past_key_values,
1039
+ output_attentions)
1040
+
1041
+ # embed positions
1042
+ hidden_states = inputs_embeds
1043
+
1044
+ # decoder layers
1045
+ all_hidden_states = () if output_hidden_states else None
1046
+ all_self_attns = () if output_attentions else None
1047
+ next_decoder_cache = None
1048
+
1049
+ for decoder_layer in self.layers:
1050
+ if output_hidden_states:
1051
+ all_hidden_states += (hidden_states, )
1052
+
1053
+ if self.gradient_checkpointing and self.training:
1054
+ layer_outputs = self._gradient_checkpointing_func(
1055
+ decoder_layer.__call__,
1056
+ hidden_states,
1057
+ causal_mask,
1058
+ position_ids,
1059
+ past_key_values,
1060
+ output_attentions,
1061
+ use_cache,
1062
+ cache_position,
1063
+ )
1064
+ else:
1065
+ layer_outputs = decoder_layer(
1066
+ hidden_states,
1067
+ attention_mask=causal_mask,
1068
+ position_ids=position_ids,
1069
+ past_key_value=past_key_values,
1070
+ output_attentions=output_attentions,
1071
+ use_cache=use_cache,
1072
+ cache_position=cache_position,
1073
+ )
1074
+
1075
+ hidden_states = layer_outputs[0]
1076
+
1077
+ if use_cache:
1078
+ next_decoder_cache = layer_outputs[
1079
+ 2 if output_attentions else 1]
1080
+
1081
+ if output_attentions:
1082
+ all_self_attns += (layer_outputs[1], )
1083
+
1084
+ hidden_states = self.norm(hidden_states)
1085
+
1086
+ # add hidden states from the last decoder layer
1087
+ if output_hidden_states:
1088
+ all_hidden_states += (hidden_states, )
1089
+
1090
+ next_cache = next_decoder_cache if use_cache else None
1091
+ if return_legacy_cache:
1092
+ next_cache = next_cache.to_legacy_cache()
1093
+
1094
+ if not return_dict:
1095
+ return tuple(
1096
+ v for v in
1097
+ [hidden_states, next_cache, all_hidden_states, all_self_attns]
1098
+ if v is not None)
1099
+ return BaseModelOutputWithPast(
1100
+ last_hidden_state=hidden_states,
1101
+ past_key_values=next_cache,
1102
+ hidden_states=all_hidden_states,
1103
+ attentions=all_self_attns,
1104
+ )
1105
+
1106
+ def _update_causal_mask(
1107
+ self,
1108
+ attention_mask: torch.Tensor,
1109
+ input_tensor: torch.Tensor,
1110
+ cache_position: torch.Tensor,
1111
+ past_key_values: Cache,
1112
+ output_attentions: bool,
1113
+ ):
1114
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length
1115
+ # even when the static KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at
1116
+ # each decode steps due to the dynamic shapes. (`recording cudagraph tree for symint key 13`, etc.), which is
1117
+ # VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using `fullgraph=True`.
1118
+ # See more context in https://github.com/huggingface/transformers/pull/29114
1119
+
1120
+ if self.config.attn_implementation == 'flash_attention_2':
1121
+ if attention_mask is not None and 0.0 in attention_mask:
1122
+ return attention_mask
1123
+ return None
1124
+
1125
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1126
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1127
+ # to infer the attention mask.
1128
+ past_seen_tokens = past_key_values.get_seq_length(
1129
+ ) if past_key_values is not None else 0
1130
+ using_static_cache = isinstance(past_key_values, StaticCache)
1131
+
1132
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1133
+ if self.config.attn_implementation == 'sdpa' and not using_static_cache and not output_attentions:
1134
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1135
+ attention_mask,
1136
+ inputs_embeds=input_tensor,
1137
+ past_key_values_length=past_seen_tokens,
1138
+ is_training=self.training,
1139
+ ):
1140
+ return None
1141
+
1142
+ dtype, device = input_tensor.dtype, input_tensor.device
1143
+ min_dtype = torch.finfo(dtype).min
1144
+ sequence_length = input_tensor.shape[1]
1145
+ if using_static_cache:
1146
+ target_length = past_key_values.get_max_length()
1147
+ else:
1148
+ target_length = (
1149
+ attention_mask.shape[-1] if isinstance(
1150
+ attention_mask, torch.Tensor) else past_seen_tokens +
1151
+ sequence_length + 1)
1152
+
1153
+ if attention_mask is not None and attention_mask.dim() == 4:
1154
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
1155
+ if attention_mask.max() != 0:
1156
+ raise ValueError(
1157
+ 'Custom 4D attention mask should be passed in inverted form with max==0`'
1158
+ )
1159
+ causal_mask = attention_mask
1160
+ else:
1161
+ causal_mask = torch.full((sequence_length, target_length),
1162
+ fill_value=min_dtype,
1163
+ dtype=dtype,
1164
+ device=device)
1165
+ if sequence_length != 1:
1166
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1167
+ causal_mask *= torch.arange(
1168
+ target_length, device=device) > cache_position.reshape(-1, 1)
1169
+ causal_mask = causal_mask[None, None, :, :].expand(
1170
+ input_tensor.shape[0], 1, -1, -1)
1171
+ if attention_mask is not None:
1172
+ causal_mask = causal_mask.clone(
1173
+ ) # copy to contiguous memory for in-place edit
1174
+ mask_length = attention_mask.shape[-1]
1175
+ padding_mask = causal_mask[:, :, :, :
1176
+ mask_length] + attention_mask[:,
1177
+ None,
1178
+ None, :]
1179
+ padding_mask = padding_mask == 0
1180
+ causal_mask[:, :, :, :
1181
+ mask_length] = causal_mask[:, :, :, :
1182
+ mask_length].masked_fill(
1183
+ padding_mask,
1184
+ min_dtype)
1185
+ if (self.config.attn_implementation == 'sdpa'
1186
+ and attention_mask is not None
1187
+ and attention_mask.device.type == 'cuda'
1188
+ and not output_attentions):
1189
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1190
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1191
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1192
+ causal_mask = AttentionMaskConverter._unmask_unattended(
1193
+ causal_mask, min_dtype) # pylint: disable=E1120
1194
+
1195
+ return causal_mask
1196
+
1197
+
1198
+ # Modified from transformers.models.llama.modeling_llama.LlamaForCausalLM
1199
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1200
+ """Causal language model (CLM) for InternLM2."""
1201
+
1202
+ _auto_class = 'AutoModelForCausalLM'
1203
+ _tied_weights_keys = ['output.weight']
1204
+
1205
+ def __init__(self, config):
1206
+ super().__init__(config)
1207
+ self.model = InternLM2Model(config)
1208
+ self.vocab_size = config.vocab_size
1209
+ self.output = nn.Linear(
1210
+ config.hidden_size, config.vocab_size, bias=False)
1211
+
1212
+ # Initialize weights and apply final processing
1213
+ self.post_init()
1214
+
1215
+ def get_input_embeddings(self):
1216
+ return self.model.tok_embeddings
1217
+
1218
+ def set_input_embeddings(self, value):
1219
+ self.model.tok_embeddings = value
1220
+
1221
+ def get_output_embeddings(self):
1222
+ return self.output
1223
+
1224
+ def set_output_embeddings(self, new_embeddings):
1225
+ self.output = new_embeddings
1226
+
1227
+ def set_decoder(self, decoder):
1228
+ self.model = decoder
1229
+
1230
+ def get_decoder(self):
1231
+ return self.model
1232
+
1233
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1234
+ @replace_return_docstrings(
1235
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1236
+ def forward(
1237
+ self,
1238
+ input_ids: torch.LongTensor = None,
1239
+ attention_mask: Optional[torch.Tensor] = None,
1240
+ position_ids: Optional[torch.LongTensor] = None,
1241
+ past_key_values: Optional[Union[Cache,
1242
+ List[torch.FloatTensor]]] = None,
1243
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1244
+ labels: Optional[torch.LongTensor] = None,
1245
+ use_cache: Optional[bool] = None,
1246
+ output_attentions: Optional[bool] = None,
1247
+ output_hidden_states: Optional[bool] = None,
1248
+ return_dict: Optional[bool] = None,
1249
+ cache_position: Optional[torch.LongTensor] = None,
1250
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1251
+ r"""
1252
+ Args:
1253
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1254
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1255
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1256
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1257
+ Returns:
1258
+ Example:
1259
+ ```python
1260
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1261
+ >>> model = InternLM2ForCausalLM.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
1262
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
1263
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1264
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1265
+ >>> # Generate
1266
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1267
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1268
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1269
+ ```"""
1270
+
1271
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1272
+ output_hidden_states = (
1273
+ output_hidden_states if output_hidden_states is not None else
1274
+ self.config.output_hidden_states)
1275
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1276
+
1277
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1278
+ outputs = self.model(
1279
+ input_ids=input_ids,
1280
+ attention_mask=attention_mask,
1281
+ position_ids=position_ids,
1282
+ past_key_values=past_key_values,
1283
+ inputs_embeds=inputs_embeds,
1284
+ use_cache=use_cache,
1285
+ output_attentions=output_attentions,
1286
+ output_hidden_states=output_hidden_states,
1287
+ return_dict=return_dict,
1288
+ cache_position=cache_position,
1289
+ )
1290
+
1291
+ hidden_states = outputs[0]
1292
+ if self.config.pretraining_tp > 1:
1293
+ output_slices = self.output.weight.split(
1294
+ self.vocab_size // self.config.pretraining_tp, dim=0)
1295
+ logits = [
1296
+ F.linear(hidden_states, output_slices[i]) # pylint: disable=not-callable
1297
+ for i in range(self.config.pretraining_tp)
1298
+ ]
1299
+ logits = torch.cat(logits, dim=-1)
1300
+ else:
1301
+ logits = self.output(hidden_states)
1302
+ logits = logits.float()
1303
+
1304
+ loss = None
1305
+ if labels is not None:
1306
+ # Shift so that tokens < n predict n
1307
+ shift_logits = logits[..., :-1, :].contiguous()
1308
+ shift_labels = labels[..., 1:].contiguous()
1309
+ # Flatten the tokens
1310
+ loss_fct = CrossEntropyLoss()
1311
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1312
+ shift_labels = shift_labels.view(-1)
1313
+ # Enable model parallelism
1314
+ shift_labels = shift_labels.to(shift_logits.device)
1315
+ loss = loss_fct(shift_logits, shift_labels)
1316
+
1317
+ if not return_dict:
1318
+ output = (logits, ) + outputs[1:]
1319
+ return (loss, ) + output if loss is not None else output
1320
+
1321
+ return CausalLMOutputWithPast(
1322
+ loss=loss,
1323
+ logits=logits,
1324
+ past_key_values=outputs.past_key_values,
1325
+ hidden_states=outputs.hidden_states,
1326
+ attentions=outputs.attentions,
1327
+ )
1328
+
1329
+ def prepare_inputs_for_generation(
1330
+ self,
1331
+ input_ids,
1332
+ past_key_values=None,
1333
+ attention_mask=None,
1334
+ inputs_embeds=None,
1335
+ cache_position=None,
1336
+ use_cache=True,
1337
+ **kwargs,
1338
+ ):
1339
+ past_length = 0
1340
+ if past_key_values is not None:
1341
+ if isinstance(past_key_values, Cache):
1342
+ past_length = cache_position[
1343
+ 0] if cache_position is not None else past_key_values.get_seq_length(
1344
+ )
1345
+ max_cache_length = (
1346
+ torch.tensor(
1347
+ past_key_values.get_max_length(),
1348
+ device=input_ids.device)
1349
+ if past_key_values.get_max_length() is not None else None)
1350
+ cache_length = past_length if max_cache_length is None else torch.min(
1351
+ max_cache_length, past_length)
1352
+ # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
1353
+ else:
1354
+ cache_length = past_length = past_key_values[0][0].shape[2]
1355
+ max_cache_length = None
1356
+
1357
+ # Keep only the unprocessed tokens:
1358
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1359
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
1360
+ if attention_mask is not None and attention_mask.shape[
1361
+ 1] > input_ids.shape[1]:
1362
+ input_ids = input_ids[:, -(attention_mask.shape[1] -
1363
+ past_length):]
1364
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1365
+ # input_ids based on the past_length.
1366
+ elif past_length < input_ids.shape[1]:
1367
+ input_ids = input_ids[:, past_length:]
1368
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1369
+
1370
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1371
+ if (max_cache_length is not None and attention_mask is not None
1372
+ and cache_length + input_ids.shape[1] > max_cache_length):
1373
+ attention_mask = attention_mask[:, -max_cache_length:] # pylint: disable=E1130
1374
+
1375
+ position_ids = kwargs.get('position_ids', None)
1376
+ if attention_mask is not None and position_ids is None:
1377
+ # create position_ids on the fly for batch generation
1378
+ position_ids = attention_mask.long().cumsum(-1) - 1
1379
+ position_ids.masked_fill_(attention_mask == 0, 1)
1380
+ if past_key_values:
1381
+ position_ids = position_ids[:, -input_ids.shape[1]:]
1382
+
1383
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1384
+ if inputs_embeds is not None and past_key_values is None:
1385
+ model_inputs = {'inputs_embeds': inputs_embeds}
1386
+ else:
1387
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1388
+ # recompiles graphs as the stride of the inputs is a guard.
1389
+ # Ref: https://github.com/huggingface/transformers/pull/29114
1390
+ # TODO: use `next_tokens` directly instead.
1391
+ model_inputs = {'input_ids': input_ids.contiguous()}
1392
+
1393
+ input_length = position_ids.shape[
1394
+ -1] if position_ids is not None else input_ids.shape[-1]
1395
+ if cache_position is None:
1396
+ cache_position = torch.arange(
1397
+ past_length,
1398
+ past_length + input_length,
1399
+ device=input_ids.device)
1400
+ elif use_cache:
1401
+ cache_position = cache_position[-input_length:]
1402
+
1403
+ model_inputs.update({
1404
+ 'position_ids': position_ids,
1405
+ 'cache_position': cache_position,
1406
+ 'past_key_values': past_key_values,
1407
+ 'use_cache': use_cache,
1408
+ 'attention_mask': attention_mask,
1409
+ })
1410
+ return model_inputs
1411
+
1412
+ @staticmethod
1413
+ def _reorder_cache(past_key_values, beam_idx):
1414
+ reordered_past = ()
1415
+ for layer_past in past_key_values:
1416
+ reordered_past += (tuple(
1417
+ past_state.index_select(0, beam_idx.to(past_state.device))
1418
+ for past_state in layer_past), )
1419
+ return reordered_past
1420
+
1421
+ def build_inputs(self,
1422
+ tokenizer,
1423
+ query: str,
1424
+ history: List[Tuple[str, str]] = None,
1425
+ meta_instruction=''):
1426
+ if history is None:
1427
+ history = []
1428
+ if tokenizer.add_bos_token:
1429
+ prompt = ''
1430
+ else:
1431
+ prompt = tokenizer.bos_token
1432
+ if meta_instruction:
1433
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1434
+ for record in history:
1435
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1436
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1437
+ return tokenizer([prompt], return_tensors='pt')
1438
+
1439
+ @torch.no_grad()
1440
+ def chat(
1441
+ self,
1442
+ tokenizer,
1443
+ query: str,
1444
+ history: Optional[List[Tuple[str, str]]] = None,
1445
+ streamer: Optional[BaseStreamer] = None,
1446
+ max_new_tokens: int = 1024,
1447
+ do_sample: bool = True,
1448
+ temperature: float = 0.8,
1449
+ top_p: float = 0.8,
1450
+ meta_instruction:
1451
+ str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1452
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory '
1453
+ '(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1454
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such '
1455
+ 'as English and 中文.',
1456
+ **kwargs,
1457
+ ):
1458
+ if history is None:
1459
+ history = []
1460
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1461
+ inputs = {
1462
+ k: v.to(self.device)
1463
+ for k, v in inputs.items() if torch.is_tensor(v)
1464
+ }
1465
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1466
+ eos_token_id = [
1467
+ tokenizer.eos_token_id,
1468
+ tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]
1469
+ ]
1470
+ outputs = self.generate(
1471
+ **inputs,
1472
+ streamer=streamer,
1473
+ max_new_tokens=max_new_tokens,
1474
+ do_sample=do_sample,
1475
+ temperature=temperature,
1476
+ top_p=top_p,
1477
+ eos_token_id=eos_token_id,
1478
+ **kwargs,
1479
+ )
1480
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
1481
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1482
+ response = response.split('<|im_end|>')[0]
1483
+ history = history + [(query, response)]
1484
+ return response, history
1485
+
1486
+ @torch.no_grad()
1487
+ def stream_chat(
1488
+ self,
1489
+ tokenizer,
1490
+ query: str,
1491
+ history: List[Tuple[str, str]] = None,
1492
+ max_new_tokens: int = 1024,
1493
+ do_sample: bool = True,
1494
+ temperature: float = 0.8,
1495
+ top_p: float = 0.8,
1496
+ **kwargs,
1497
+ ):
1498
+ if history is None:
1499
+ history = []
1500
+ """
1501
+ Return a generator in format: (response, history)
1502
+ Eg.
1503
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1504
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1505
+ """
1506
+ if BaseStreamer is None:
1507
+ raise ModuleNotFoundError(
1508
+ 'The version of `transformers` is too low. Please make sure '
1509
+ 'that you have installed `transformers>=4.28.0`.')
1510
+
1511
+ response_queue = queue.Queue(maxsize=20)
1512
+
1513
+ class ChatStreamer(BaseStreamer):
1514
+ """
1515
+ Streamer used in generate to print words one by one.
1516
+ """
1517
+
1518
+ def __init__(self, tokenizer) -> None:
1519
+ super().__init__()
1520
+ self.tokenizer = tokenizer
1521
+ self.queue = response_queue
1522
+ self.query = query
1523
+ self.history = history
1524
+ self.response = ''
1525
+ self.cache = []
1526
+ self.received_inputs = False
1527
+ self.queue.put(
1528
+ (self.response, history + [(self.query, self.response)]))
1529
+
1530
+ def put(self, value):
1531
+ if len(value.shape) > 1 and value.shape[0] > 1:
1532
+ raise ValueError('ChatStreamer only supports batch size 1')
1533
+ elif len(value.shape) > 1:
1534
+ value = value[0]
1535
+
1536
+ if not self.received_inputs:
1537
+ # The first received value is input_ids, ignore here
1538
+ self.received_inputs = True
1539
+ return
1540
+
1541
+ self.cache.extend(value.tolist())
1542
+ token = self.tokenizer.decode(
1543
+ self.cache, skip_special_tokens=True)
1544
+ if token.strip() != '<|im_end|>':
1545
+ self.response = self.response + token
1546
+ history = self.history + [(self.query, self.response)]
1547
+ self.queue.put((self.response, history))
1548
+ self.cache = []
1549
+ else:
1550
+ self.end()
1551
+
1552
+ def end(self):
1553
+ self.queue.put(None)
1554
+
1555
+ def stream_producer():
1556
+ return self.chat(
1557
+ tokenizer=tokenizer,
1558
+ query=query,
1559
+ streamer=ChatStreamer(tokenizer=tokenizer),
1560
+ history=history,
1561
+ max_new_tokens=max_new_tokens,
1562
+ do_sample=do_sample,
1563
+ temperature=temperature,
1564
+ top_p=top_p,
1565
+ **kwargs,
1566
+ )
1567
+
1568
+ def consumer():
1569
+ producer = threading.Thread(target=stream_producer)
1570
+ producer.start()
1571
+ while True:
1572
+ res = response_queue.get()
1573
+ if res is None:
1574
+ return
1575
+ yield res
1576
+
1577
+ return consumer()
1578
+
1579
+
1580
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1581
+ @add_start_docstrings(
1582
+ """
1583
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1584
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1585
+ (e.g. GPT-2) do.
1586
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1587
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1588
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1589
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1590
+ each row of the batch).
1591
+ """,
1592
+ InternLM2_START_DOCSTRING,
1593
+ )
1594
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1595
+ """Sequence Classification Head for InternLM2 Model."""
1596
+
1597
+ def __init__(self, config):
1598
+ super().__init__(config)
1599
+ self.num_labels = config.num_labels
1600
+ self.model = InternLM2Model(config)
1601
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1602
+
1603
+ # Initialize weights and apply final processing
1604
+ self.post_init()
1605
+
1606
+ def get_input_embeddings(self):
1607
+ return self.model.tok_embeddings
1608
+
1609
+ def set_input_embeddings(self, value):
1610
+ self.model.tok_embeddings = value
1611
+
1612
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1613
+ def forward(
1614
+ self,
1615
+ input_ids: torch.LongTensor = None,
1616
+ attention_mask: Optional[torch.Tensor] = None,
1617
+ position_ids: Optional[torch.LongTensor] = None,
1618
+ past_key_values: Optional[Union[Cache,
1619
+ List[torch.FloatTensor]]] = None,
1620
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1621
+ labels: Optional[torch.LongTensor] = None,
1622
+ use_cache: Optional[bool] = None,
1623
+ output_attentions: Optional[bool] = None,
1624
+ output_hidden_states: Optional[bool] = None,
1625
+ return_dict: Optional[bool] = None,
1626
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1627
+ r"""
1628
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1629
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1630
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1631
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1632
+ """
1633
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1634
+
1635
+ transformer_outputs = self.model(
1636
+ input_ids,
1637
+ attention_mask=attention_mask,
1638
+ position_ids=position_ids,
1639
+ past_key_values=past_key_values,
1640
+ inputs_embeds=inputs_embeds,
1641
+ use_cache=use_cache,
1642
+ output_attentions=output_attentions,
1643
+ output_hidden_states=output_hidden_states,
1644
+ return_dict=return_dict,
1645
+ )
1646
+ hidden_states = transformer_outputs[0]
1647
+ logits = self.score(hidden_states)
1648
+
1649
+ if input_ids is not None:
1650
+ batch_size = input_ids.shape[0]
1651
+ else:
1652
+ batch_size = inputs_embeds.shape[0]
1653
+
1654
+ if self.config.pad_token_id is None and batch_size != 1:
1655
+ raise ValueError(
1656
+ 'Cannot handle batch sizes > 1 if no padding token is defined.'
1657
+ )
1658
+ if self.config.pad_token_id is None:
1659
+ sequence_lengths = -1
1660
+ else:
1661
+ if input_ids is not None:
1662
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1663
+ sequence_lengths = torch.eq(
1664
+ input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1665
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1666
+ sequence_lengths = sequence_lengths.to(logits.device)
1667
+ else:
1668
+ sequence_lengths = -1
1669
+
1670
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device),
1671
+ sequence_lengths]
1672
+
1673
+ loss = None
1674
+ if labels is not None:
1675
+ labels = labels.to(logits.device)
1676
+ if self.config.problem_type is None:
1677
+ if self.num_labels == 1:
1678
+ self.config.problem_type = 'regression'
1679
+ elif self.num_labels > 1 and (labels.dtype
1680
+ in (torch.long, torch.int)):
1681
+ self.config.problem_type = 'single_label_classification'
1682
+ else:
1683
+ self.config.problem_type = 'multi_label_classification'
1684
+
1685
+ if self.config.problem_type == 'regression':
1686
+ loss_fct = MSELoss()
1687
+ if self.num_labels == 1:
1688
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1689
+ else:
1690
+ loss = loss_fct(pooled_logits, labels)
1691
+ elif self.config.problem_type == 'single_label_classification':
1692
+ loss_fct = CrossEntropyLoss()
1693
+ loss = loss_fct(
1694
+ pooled_logits.view(-1, self.num_labels), labels.view(-1))
1695
+ elif self.config.problem_type == 'multi_label_classification':
1696
+ loss_fct = BCEWithLogitsLoss()
1697
+ loss = loss_fct(pooled_logits, labels)
1698
+ if not return_dict:
1699
+ output = (pooled_logits, ) + transformer_outputs[1:]
1700
+ return ((loss, ) + output) if loss is not None else output
1701
+
1702
+ return SequenceClassifierOutputWithPast(
1703
+ loss=loss,
1704
+ logits=pooled_logits,
1705
+ past_key_values=transformer_outputs.past_key_values,
1706
+ hidden_states=transformer_outputs.hidden_states,
1707
+ attentions=transformer_outputs.attentions,
1708
+ )
1709
+
1710
+
1711
+ # Copied from transformers.models.llama.modeling_llama.LlamaForQuestionAnswering with Llama->InternLM2
1712
+ @add_start_docstrings(
1713
+ """
1714
+ The InternLM2 Model transformer with a span classification head on top for extractive question-answering tasks like
1715
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1716
+ """,
1717
+ InternLM2_START_DOCSTRING,
1718
+ )
1719
+ class InternLM2ForQuestionAnswering(InternLM2PreTrainedModel):
1720
+ """Question Answering model for InternLM2."""
1721
+
1722
+ base_model_prefix = 'transformer'
1723
+
1724
+ def __init__(self, config):
1725
+ super().__init__(config)
1726
+ self.transformer = InternLM2Model(config)
1727
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1728
+
1729
+ # Initialize weights and apply final processing
1730
+ self.post_init()
1731
+
1732
+ def get_input_embeddings(self):
1733
+ return self.transformer.tok_embeddings
1734
+
1735
+ def set_input_embeddings(self, value):
1736
+ self.transformer.tok_embeddings = value
1737
+
1738
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1739
+ def forward(
1740
+ self,
1741
+ input_ids: Optional[torch.LongTensor] = None,
1742
+ attention_mask: Optional[torch.FloatTensor] = None,
1743
+ position_ids: Optional[torch.LongTensor] = None,
1744
+ past_key_values: Optional[Union[Cache,
1745
+ List[torch.FloatTensor]]] = None,
1746
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1747
+ start_positions: Optional[torch.LongTensor] = None,
1748
+ end_positions: Optional[torch.LongTensor] = None,
1749
+ output_attentions: Optional[bool] = None,
1750
+ output_hidden_states: Optional[bool] = None,
1751
+ return_dict: Optional[bool] = None,
1752
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1753
+ r"""
1754
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1755
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1756
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1757
+ are not taken into account for computing the loss.
1758
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1759
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1760
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1761
+ are not taken into account for computing the loss.
1762
+ """
1763
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1764
+
1765
+ outputs = self.transformer(
1766
+ input_ids,
1767
+ attention_mask=attention_mask,
1768
+ position_ids=position_ids,
1769
+ past_key_values=past_key_values,
1770
+ inputs_embeds=inputs_embeds,
1771
+ output_attentions=output_attentions,
1772
+ output_hidden_states=output_hidden_states,
1773
+ return_dict=return_dict,
1774
+ )
1775
+
1776
+ sequence_output = outputs[0]
1777
+
1778
+ logits = self.qa_outputs(sequence_output)
1779
+ start_logits, end_logits = logits.split(1, dim=-1)
1780
+ start_logits = start_logits.squeeze(-1).contiguous()
1781
+ end_logits = end_logits.squeeze(-1).contiguous()
1782
+
1783
+ total_loss = None
1784
+ if start_positions is not None and end_positions is not None:
1785
+ # If we are on multi-GPU, split add a dimension
1786
+ if len(start_positions.size()) > 1:
1787
+ start_positions = start_positions.squeeze(-1).to(
1788
+ start_logits.device)
1789
+ if len(end_positions.size()) > 1:
1790
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1791
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1792
+ ignored_index = start_logits.size(1)
1793
+ start_positions = start_positions.clamp(0, ignored_index)
1794
+ end_positions = end_positions.clamp(0, ignored_index)
1795
+
1796
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1797
+ start_loss = loss_fct(start_logits, start_positions)
1798
+ end_loss = loss_fct(end_logits, end_positions)
1799
+ total_loss = (start_loss + end_loss) / 2
1800
+
1801
+ if not return_dict:
1802
+ output = (start_logits, end_logits) + outputs[2:]
1803
+ return ((total_loss, ) +
1804
+ output) if total_loss is not None else output
1805
+
1806
+ return QuestionAnsweringModelOutput(
1807
+ loss=total_loss,
1808
+ start_logits=start_logits,
1809
+ end_logits=end_logits,
1810
+ hidden_states=outputs.hidden_states,
1811
+ attentions=outputs.attentions,
1812
+ )
1813
+
1814
+
1815
+ # Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->InternLM2
1816
+ @add_start_docstrings(
1817
+ """
1818
+ The InternLM2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1819
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1820
+ """,
1821
+ InternLM2_START_DOCSTRING,
1822
+ )
1823
+ class InternLM2ForTokenClassification(InternLM2PreTrainedModel):
1824
+ """Token classification model for InternLM2."""
1825
+
1826
+ def __init__(self, config):
1827
+ super().__init__(config)
1828
+ self.num_labels = config.num_labels
1829
+ self.model = InternLM2Model(config)
1830
+ if getattr(config, 'classifier_dropout', None) is not None:
1831
+ classifier_dropout = config.classifier_dropout
1832
+ elif getattr(config, 'hidden_dropout', None) is not None:
1833
+ classifier_dropout = config.hidden_dropout
1834
+ else:
1835
+ classifier_dropout = 0.1
1836
+ self.dropout = nn.Dropout(classifier_dropout)
1837
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1838
+
1839
+ # Initialize weights and apply final processing
1840
+ self.post_init()
1841
+
1842
+ def get_input_embeddings(self):
1843
+ return self.model.tok_embeddings
1844
+
1845
+ def set_input_embeddings(self, value):
1846
+ self.model.tok_embeddings = value
1847
+
1848
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1849
+ def forward(
1850
+ self,
1851
+ input_ids: torch.LongTensor = None,
1852
+ attention_mask: Optional[torch.Tensor] = None,
1853
+ position_ids: Optional[torch.LongTensor] = None,
1854
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1855
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1856
+ labels: Optional[torch.LongTensor] = None,
1857
+ use_cache: Optional[bool] = None,
1858
+ output_attentions: Optional[bool] = None,
1859
+ output_hidden_states: Optional[bool] = None,
1860
+ return_dict: Optional[bool] = None,
1861
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1862
+ r"""
1863
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1864
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1865
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1866
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1867
+ """
1868
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1869
+
1870
+ outputs = self.model(
1871
+ input_ids,
1872
+ attention_mask=attention_mask,
1873
+ position_ids=position_ids,
1874
+ past_key_values=past_key_values,
1875
+ inputs_embeds=inputs_embeds,
1876
+ use_cache=use_cache,
1877
+ output_attentions=output_attentions,
1878
+ output_hidden_states=output_hidden_states,
1879
+ return_dict=return_dict,
1880
+ )
1881
+ sequence_output = outputs[0]
1882
+ sequence_output = self.dropout(sequence_output)
1883
+ logits = self.score(sequence_output)
1884
+
1885
+ loss = None
1886
+ if labels is not None:
1887
+ loss_fct = CrossEntropyLoss()
1888
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1889
+
1890
+ if not return_dict:
1891
+ output = (logits, ) + outputs[2:]
1892
+ return ((loss, ) + output) if loss is not None else output
1893
+
1894
+ return TokenClassifierOutput(
1895
+ loss=loss,
1896
+ logits=logits,
1897
+ hidden_states=outputs.hidden_states,
1898
+ attentions=outputs.attentions,
1899
+ )
code/xtuner/_lite/modelings/internlm3/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .configuration_internlm3 import InternLM3Config
2
+ from .modeling_internlm3 import InternLM3ForCausalLM
3
+ from .tokenization_internlm3 import InternLM3Tokenizer
code/xtuner/_lite/modelings/internlm3/configuration_internlm3.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ InternLM3 model configuration"""
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.modeling_rope_utils import rope_config_validation
21
+ from transformers.utils import logging
22
+
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ class InternLM3Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 151936):
39
+ Vocabulary size of the InternLM3 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM3Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 22016):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*, defaults to 32):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
56
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
57
+ The non-linear activation function (function or string) in the decoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
59
+ The maximum sequence length that this model might ever be used with.
60
+ initializer_range (`float`, *optional*, defaults to 0.02):
61
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
62
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
63
+ The epsilon used by the rms normalization layers.
64
+ use_cache (`bool`, *optional*, defaults to `True`):
65
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
66
+ relevant if `config.is_decoder=True`.
67
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
68
+ Whether the model's input and output word embeddings should be tied.
69
+ rope_theta (`float`, *optional*, defaults to 10000.0):
70
+ The base period of the RoPE embeddings.
71
+ rope_scaling (`Dict`, *optional*):
72
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
73
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
74
+ accordingly.
75
+ Expected contents:
76
+ `rope_type` (`str`):
77
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
78
+ 'llama3'], with 'default' being the original RoPE implementation.
79
+ `factor` (`float`, *optional*):
80
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
81
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
82
+ original maximum pre-trained length.
83
+ `original_max_position_embeddings` (`int`, *optional*):
84
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
85
+ pretraining.
86
+ `attention_factor` (`float`, *optional*):
87
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
88
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
89
+ `factor` field to infer the suggested value.
90
+ `beta_fast` (`float`, *optional*):
91
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
92
+ ramp function. If unspecified, it defaults to 32.
93
+ `beta_slow` (`float`, *optional*):
94
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
95
+ ramp function. If unspecified, it defaults to 1.
96
+ `short_factor` (`List[float]`, *optional*):
97
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
98
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
99
+ size divided by the number of attention heads divided by 2
100
+ `long_factor` (`List[float]`, *optional*):
101
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
102
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
103
+ size divided by the number of attention heads divided by 2
104
+ `low_freq_factor` (`float`, *optional*):
105
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
106
+ `high_freq_factor` (`float`, *optional*):
107
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
108
+ qkv_bias (`bool`, *optional*, defaults to `False`):
109
+ Whether to use a bias in the query, key and value projection layers during self-attention.
110
+ attention_dropout (`float`, *optional*, defaults to 0.0):
111
+ The dropout ratio for the attention probabilities.
112
+ bias (`bool`, *optional*, defaults to `False`):
113
+ Whether to use a bias in o_proj, up_proj, down_proj and gate_proj layers.
114
+ head_dim (`int`, *optional*):
115
+ The attention head dimension. If None, it will default to hidden_size // num_heads
116
+
117
+ ```python
118
+ >>> from transformers import InternLM3Model, InternLM3Config
119
+
120
+ >>> # Initializing a InternLM3 style configuration
121
+ >>> configuration = InternLM3Config()
122
+
123
+ >>> # Initializing a model from the InternLM3-8B style configuration
124
+ >>> model = InternLM3Model(configuration)
125
+
126
+ >>> # Accessing the model configuration
127
+ >>> configuration = model.config
128
+ ```"""
129
+
130
+ model_type = "internlm3"
131
+ keys_to_ignore_at_inference = ["past_key_values"]
132
+
133
+ # Default tensor parallel plan for base model `InternLM3`
134
+ base_model_tp_plan = {
135
+ "layers.*.self_attn.q_proj": "colwise",
136
+ "layers.*.self_attn.k_proj": "colwise",
137
+ "layers.*.self_attn.v_proj": "colwise",
138
+ "layers.*.self_attn.o_proj": "rowwise",
139
+ "layers.*.mlp.gate_proj": "colwise",
140
+ "layers.*.mlp.up_proj": "colwise",
141
+ "layers.*.mlp.down_proj": "rowwise",
142
+ }
143
+
144
+ def __init__(
145
+ self,
146
+ vocab_size=128512,
147
+ hidden_size=4096,
148
+ intermediate_size=11008,
149
+ num_hidden_layers=32,
150
+ num_attention_heads=32,
151
+ num_key_value_heads=32,
152
+ hidden_act="silu",
153
+ max_position_embeddings=32768,
154
+ initializer_range=0.02,
155
+ rms_norm_eps=1e-6,
156
+ use_cache=True,
157
+ tie_word_embeddings=False,
158
+ rope_theta=10000.0,
159
+ rope_scaling=None,
160
+ qkv_bias=False,
161
+ attention_dropout=0.0,
162
+ bias=False,
163
+ head_dim=None,
164
+ **kwargs,
165
+ ):
166
+ self.vocab_size = vocab_size
167
+ self.max_position_embeddings = max_position_embeddings
168
+ self.hidden_size = hidden_size
169
+ self.intermediate_size = intermediate_size
170
+ self.num_hidden_layers = num_hidden_layers
171
+ self.num_attention_heads = num_attention_heads
172
+
173
+ # for backward compatibility
174
+ if num_key_value_heads is None:
175
+ num_key_value_heads = num_attention_heads
176
+
177
+ self.num_key_value_heads = num_key_value_heads
178
+ self.hidden_act = hidden_act
179
+ self.initializer_range = initializer_range
180
+ self.rms_norm_eps = rms_norm_eps
181
+ self.use_cache = use_cache
182
+ self.rope_theta = rope_theta
183
+ self.rope_scaling = rope_scaling
184
+ self.qkv_bias = qkv_bias
185
+ self.attention_dropout = attention_dropout
186
+ self.bias = bias
187
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
188
+ # Validate the correctness of rotary position embeddings parameters
189
+ # BC: if there is a 'type' field, move it to 'rope_type'.
190
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
191
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
192
+ rope_config_validation(self)
193
+
194
+ super().__init__(
195
+ tie_word_embeddings=tie_word_embeddings,
196
+ **kwargs,
197
+ )
code/xtuner/_lite/modelings/internlm3/modeling_internlm3.py ADDED
@@ -0,0 +1,825 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/internlm3/modular_internlm3.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_internlm3.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ from typing import Callable, List, Optional, Tuple, Union
8
+
9
+ import torch
10
+ from torch import nn
11
+
12
+ from transformers.utils import logging
13
+
14
+ from transformers.activations import ACT2FN
15
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
16
+ from transformers.generation import GenerationMixin
17
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
18
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
19
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
20
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
21
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
22
+ from transformers.processing_utils import Unpack
23
+ from transformers.utils import LossKwargs, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
24
+ from .configuration_internlm3 import InternLM3Config
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+ _CONFIG_FOR_DOC = "InternLM3Config"
29
+
30
+
31
+ class InternLM3MLP(nn.Module):
32
+ def __init__(self, config):
33
+ super().__init__()
34
+ self.config = config
35
+ self.hidden_size = config.hidden_size
36
+ self.intermediate_size = config.intermediate_size
37
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.bias)
38
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.bias)
39
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.bias)
40
+ self.act_fn = ACT2FN[config.hidden_act]
41
+
42
+ def forward(self, x):
43
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
44
+ return down_proj
45
+
46
+
47
+ def rotate_half(x):
48
+ """Rotates half the hidden dims of the input."""
49
+ x1 = x[..., : x.shape[-1] // 2]
50
+ x2 = x[..., x.shape[-1] // 2 :]
51
+ return torch.cat((-x2, x1), dim=-1)
52
+
53
+
54
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
55
+ """Applies Rotary Position Embedding to the query and key tensors.
56
+
57
+ Args:
58
+ q (`torch.Tensor`): The query tensor.
59
+ k (`torch.Tensor`): The key tensor.
60
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
61
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
62
+ position_ids (`torch.Tensor`, *optional*):
63
+ Deprecated and unused.
64
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
65
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
66
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
67
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
68
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
69
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
70
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
71
+ Returns:
72
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
73
+ """
74
+ cos = cos.unsqueeze(unsqueeze_dim)
75
+ sin = sin.unsqueeze(unsqueeze_dim)
76
+ q_embed = (q * cos) + (rotate_half(q) * sin)
77
+ k_embed = (k * cos) + (rotate_half(k) * sin)
78
+ return q_embed, k_embed
79
+
80
+
81
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
82
+ """
83
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
84
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
85
+ """
86
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
87
+ if n_rep == 1:
88
+ return hidden_states
89
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
90
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
91
+
92
+
93
+ def eager_attention_forward(
94
+ module: nn.Module,
95
+ query: torch.Tensor,
96
+ key: torch.Tensor,
97
+ value: torch.Tensor,
98
+ attention_mask: Optional[torch.Tensor],
99
+ scaling: float,
100
+ dropout: float = 0.0,
101
+ **kwargs,
102
+ ):
103
+ key_states = repeat_kv(key, module.num_key_value_groups)
104
+ value_states = repeat_kv(value, module.num_key_value_groups)
105
+
106
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
107
+ if attention_mask is not None:
108
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
109
+ attn_weights = attn_weights + causal_mask
110
+
111
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
112
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
113
+ attn_output = torch.matmul(attn_weights, value_states)
114
+ attn_output = attn_output.transpose(1, 2).contiguous()
115
+
116
+ return attn_output, attn_weights
117
+
118
+
119
+ class InternLM3Attention(nn.Module):
120
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
121
+
122
+ def __init__(self, config: InternLM3Config, layer_idx: int):
123
+ super().__init__()
124
+ self.config = config
125
+ self.layer_idx = layer_idx
126
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
127
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
128
+ self.scaling = self.head_dim**-0.5
129
+ self.attention_dropout = config.attention_dropout
130
+ self.is_causal = True
131
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.qkv_bias)
132
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.qkv_bias)
133
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.qkv_bias)
134
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.bias)
135
+
136
+ def forward(
137
+ self,
138
+ hidden_states: torch.Tensor,
139
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
140
+ attention_mask: Optional[torch.Tensor],
141
+ past_key_value: Optional[Cache] = None,
142
+ cache_position: Optional[torch.LongTensor] = None,
143
+ **kwargs: Unpack[FlashAttentionKwargs],
144
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
145
+ input_shape = hidden_states.shape[:-1]
146
+ hidden_shape = (*input_shape, -1, self.head_dim)
147
+
148
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
149
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
150
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
151
+
152
+ cos, sin = position_embeddings
153
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
154
+
155
+ if past_key_value is not None:
156
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
157
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
158
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
159
+
160
+ attention_interface: Callable = eager_attention_forward
161
+ if self.config._attn_implementation != "eager":
162
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
163
+ logger.warning_once(
164
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
165
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
166
+ )
167
+ else:
168
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
169
+
170
+ attn_output, attn_weights = attention_interface(
171
+ self,
172
+ query_states,
173
+ key_states,
174
+ value_states,
175
+ attention_mask,
176
+ dropout=0.0 if not self.training else self.attention_dropout,
177
+ scaling=self.scaling,
178
+ **kwargs,
179
+ )
180
+
181
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
182
+ attn_output = self.o_proj(attn_output)
183
+ return attn_output, attn_weights
184
+
185
+
186
+ class InternLM3RMSNorm(nn.Module):
187
+ def __init__(self, hidden_size, eps=1e-6):
188
+ """
189
+ InternLM3RMSNorm is equivalent to T5LayerNorm
190
+ """
191
+ super().__init__()
192
+ self.weight = nn.Parameter(torch.ones(hidden_size))
193
+ self.variance_epsilon = eps
194
+
195
+ def forward(self, hidden_states):
196
+ input_dtype = hidden_states.dtype
197
+ hidden_states = hidden_states.to(torch.float32)
198
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
199
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
200
+ return self.weight * hidden_states.to(input_dtype)
201
+
202
+ def extra_repr(self):
203
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
204
+
205
+
206
+ class InternLM3DecoderLayer(nn.Module):
207
+ def __init__(self, config: InternLM3Config, layer_idx: int):
208
+ super().__init__()
209
+ self.hidden_size = config.hidden_size
210
+ self.self_attn = InternLM3Attention(config=config, layer_idx=layer_idx)
211
+ self.mlp = InternLM3MLP(config)
212
+ self.input_layernorm = InternLM3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
213
+ self.post_attention_layernorm = InternLM3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
214
+
215
+ def forward(
216
+ self,
217
+ hidden_states: torch.Tensor,
218
+ attention_mask: Optional[torch.Tensor] = None,
219
+ position_ids: Optional[torch.LongTensor] = None,
220
+ past_key_value: Optional[Cache] = None,
221
+ output_attentions: Optional[bool] = False,
222
+ use_cache: Optional[bool] = False,
223
+ cache_position: Optional[torch.LongTensor] = None,
224
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
225
+ **kwargs: Unpack[FlashAttentionKwargs],
226
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
227
+ residual = hidden_states
228
+
229
+ hidden_states = self.input_layernorm(hidden_states)
230
+
231
+ # Self Attention
232
+ hidden_states, self_attn_weights = self.self_attn(
233
+ hidden_states=hidden_states,
234
+ attention_mask=attention_mask,
235
+ position_ids=position_ids,
236
+ past_key_value=past_key_value,
237
+ output_attentions=output_attentions,
238
+ use_cache=use_cache,
239
+ cache_position=cache_position,
240
+ position_embeddings=position_embeddings,
241
+ **kwargs,
242
+ )
243
+ hidden_states = residual + hidden_states
244
+
245
+ # Fully Connected
246
+ residual = hidden_states
247
+ hidden_states = self.post_attention_layernorm(hidden_states)
248
+ hidden_states = self.mlp(hidden_states)
249
+ hidden_states = residual + hidden_states
250
+
251
+ outputs = (hidden_states,)
252
+ if output_attentions:
253
+ outputs += (self_attn_weights,)
254
+
255
+ return outputs
256
+
257
+
258
+ class InternLM3RotaryEmbedding(nn.Module):
259
+ def __init__(self, config: InternLM3Config, device=None):
260
+ super().__init__()
261
+ # BC: "rope_type" was originally "type"
262
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
263
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
264
+ else:
265
+ self.rope_type = "default"
266
+ self.max_seq_len_cached = config.max_position_embeddings
267
+ self.original_max_seq_len = config.max_position_embeddings
268
+
269
+ self.config = config
270
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
271
+
272
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
273
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
274
+ self.original_inv_freq = self.inv_freq
275
+
276
+ def _dynamic_frequency_update(self, position_ids, device):
277
+ """
278
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
279
+ 1 - growing beyond the cached sequence length (allow scaling)
280
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
281
+ """
282
+ seq_len = torch.max(position_ids) + 1
283
+ if seq_len > self.max_seq_len_cached: # growth
284
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
285
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
286
+ self.max_seq_len_cached = seq_len
287
+
288
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
289
+ # This .to() is needed if the model has been moved to a device after being initialized (because
290
+ # the buffer is automatically moved, but not the original copy)
291
+ self.original_inv_freq = self.original_inv_freq.to(device)
292
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
293
+ self.max_seq_len_cached = self.original_max_seq_len
294
+
295
+ @torch.no_grad()
296
+ def forward(self, x, position_ids):
297
+ if "dynamic" in self.rope_type:
298
+ self._dynamic_frequency_update(position_ids, device=x.device)
299
+
300
+ # Core RoPE block
301
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
302
+ position_ids_expanded = position_ids[:, None, :].float()
303
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
304
+ device_type = x.device.type
305
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
306
+ with torch.autocast(device_type=device_type, enabled=False):
307
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
308
+ emb = torch.cat((freqs, freqs), dim=-1)
309
+ cos = emb.cos()
310
+ sin = emb.sin()
311
+
312
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
313
+ cos = cos * self.attention_scaling
314
+ sin = sin * self.attention_scaling
315
+
316
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
317
+
318
+
319
+ INTERNLM3_START_DOCSTRING = r"""
320
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
321
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
322
+ etc.)
323
+
324
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
325
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
326
+ and behavior.
327
+
328
+ Parameters:
329
+ config ([`InternLM3Config`]):
330
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
331
+ load the weights associated with the model, only the configuration. Check out the
332
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
333
+ """
334
+
335
+
336
+ @add_start_docstrings(
337
+ "The bare InternLM3 Model outputting raw hidden-states without any specific head on top.",
338
+ INTERNLM3_START_DOCSTRING,
339
+ )
340
+ class InternLM3PreTrainedModel(PreTrainedModel):
341
+ config_class = InternLM3Config
342
+ base_model_prefix = "model"
343
+ supports_gradient_checkpointing = True
344
+ _no_split_modules = ["InternLM3DecoderLayer"]
345
+ _skip_keys_device_placement = ["past_key_values"]
346
+ _supports_flash_attn_2 = True
347
+ _supports_sdpa = True
348
+ _supports_flex_attn = True
349
+ _supports_cache_class = True
350
+ _supports_quantized_cache = True
351
+ _supports_static_cache = True
352
+
353
+ def _init_weights(self, module):
354
+ std = self.config.initializer_range
355
+ if isinstance(module, nn.Linear):
356
+ module.weight.data.normal_(mean=0.0, std=std)
357
+ if module.bias is not None:
358
+ module.bias.data.zero_()
359
+ elif isinstance(module, nn.Embedding):
360
+ module.weight.data.normal_(mean=0.0, std=std)
361
+ if module.padding_idx is not None:
362
+ module.weight.data[module.padding_idx].zero_()
363
+
364
+
365
+ INTERNLM3_INPUTS_DOCSTRING = r"""
366
+ Args:
367
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
368
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
369
+ it.
370
+
371
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
372
+ [`PreTrainedTokenizer.__call__`] for details.
373
+
374
+ [What are input IDs?](../glossary#input-ids)
375
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
376
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
377
+
378
+ - 1 for tokens that are **not masked**,
379
+ - 0 for tokens that are **masked**.
380
+
381
+ [What are attention masks?](../glossary#attention-mask)
382
+
383
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
384
+ [`PreTrainedTokenizer.__call__`] for details.
385
+
386
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
387
+ `past_key_values`).
388
+
389
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
390
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
391
+ information on the default strategy.
392
+
393
+ - 1 indicates the head is **not masked**,
394
+ - 0 indicates the head is **masked**.
395
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
396
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
397
+ config.n_positions - 1]`.
398
+
399
+ [What are position IDs?](../glossary#position-ids)
400
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
401
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
402
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
403
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
404
+
405
+ Two formats are allowed:
406
+ - a [`~cache_utils.Cache`] instance, see our
407
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
408
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
409
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
410
+ cache format.
411
+
412
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
413
+ legacy cache format will be returned.
414
+
415
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
416
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
417
+ of shape `(batch_size, sequence_length)`.
418
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
419
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
420
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
421
+ model's internal embedding lookup matrix.
422
+ use_cache (`bool`, *optional*):
423
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
424
+ `past_key_values`).
425
+ output_attentions (`bool`, *optional*):
426
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
427
+ tensors for more detail.
428
+ output_hidden_states (`bool`, *optional*):
429
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
430
+ more detail.
431
+ return_dict (`bool`, *optional*):
432
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
433
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
434
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
435
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
436
+ the complete sequence length.
437
+ """
438
+
439
+
440
+ @add_start_docstrings(
441
+ "The bare InternLM3 Model outputting raw hidden-states without any specific head on top.",
442
+ INTERNLM3_START_DOCSTRING,
443
+ )
444
+ class InternLM3Model(InternLM3PreTrainedModel):
445
+ """
446
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM3DecoderLayer`]
447
+
448
+ Args:
449
+ config: InternLM3Config
450
+ """
451
+
452
+ def __init__(self, config: InternLM3Config):
453
+ super().__init__(config)
454
+ self.padding_idx = config.pad_token_id
455
+ self.vocab_size = config.vocab_size
456
+
457
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
458
+ self.layers = nn.ModuleList(
459
+ [InternLM3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
460
+ )
461
+ self.norm = InternLM3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
462
+ self.rotary_emb = InternLM3RotaryEmbedding(config=config)
463
+ self.gradient_checkpointing = False
464
+
465
+ # Initialize weights and apply final processing
466
+ self.post_init()
467
+
468
+ def get_input_embeddings(self):
469
+ return self.embed_tokens
470
+
471
+ def set_input_embeddings(self, value):
472
+ self.embed_tokens = value
473
+
474
+ @add_start_docstrings_to_model_forward(INTERNLM3_INPUTS_DOCSTRING)
475
+ def forward(
476
+ self,
477
+ input_ids: torch.LongTensor = None,
478
+ attention_mask: Optional[torch.Tensor] = None,
479
+ position_ids: Optional[torch.LongTensor] = None,
480
+ past_key_values: Optional[Cache] = None,
481
+ inputs_embeds: Optional[torch.FloatTensor] = None,
482
+ use_cache: Optional[bool] = None,
483
+ output_attentions: Optional[bool] = None,
484
+ output_hidden_states: Optional[bool] = None,
485
+ return_dict: Optional[bool] = None,
486
+ cache_position: Optional[torch.LongTensor] = None,
487
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
488
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
489
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
490
+ output_hidden_states = (
491
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
492
+ )
493
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
494
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
495
+
496
+ if (input_ids is None) ^ (inputs_embeds is not None):
497
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
498
+
499
+ if self.gradient_checkpointing and self.training and use_cache:
500
+ logger.warning_once(
501
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
502
+ )
503
+ use_cache = False
504
+
505
+ if inputs_embeds is None:
506
+ inputs_embeds = self.embed_tokens(input_ids)
507
+
508
+ if use_cache and past_key_values is None:
509
+ past_key_values = DynamicCache()
510
+
511
+ if cache_position is None:
512
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
513
+ cache_position = torch.arange(
514
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
515
+ )
516
+
517
+ if position_ids is None:
518
+ position_ids = cache_position.unsqueeze(0)
519
+
520
+ causal_mask = self._update_causal_mask(
521
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
522
+ )
523
+
524
+ hidden_states = inputs_embeds
525
+
526
+ # create position embeddings to be shared across the decoder layers
527
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
528
+
529
+ # decoder layers
530
+ all_hidden_states = () if output_hidden_states else None
531
+ all_self_attns = () if output_attentions else None
532
+
533
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
534
+ if output_hidden_states:
535
+ all_hidden_states += (hidden_states,)
536
+
537
+ if self.gradient_checkpointing and self.training:
538
+ layer_outputs = self._gradient_checkpointing_func(
539
+ decoder_layer.__call__,
540
+ hidden_states,
541
+ causal_mask,
542
+ position_ids,
543
+ past_key_values,
544
+ output_attentions,
545
+ use_cache,
546
+ cache_position,
547
+ position_embeddings,
548
+ )
549
+ else:
550
+ layer_outputs = decoder_layer(
551
+ hidden_states,
552
+ attention_mask=causal_mask,
553
+ position_ids=position_ids,
554
+ past_key_value=past_key_values,
555
+ output_attentions=output_attentions,
556
+ use_cache=use_cache,
557
+ cache_position=cache_position,
558
+ position_embeddings=position_embeddings,
559
+ **flash_attn_kwargs,
560
+ )
561
+
562
+ hidden_states = layer_outputs[0]
563
+
564
+ if output_attentions:
565
+ all_self_attns += (layer_outputs[1],)
566
+
567
+ hidden_states = self.norm(hidden_states)
568
+
569
+ # add hidden states from the last decoder layer
570
+ if output_hidden_states:
571
+ all_hidden_states += (hidden_states,)
572
+
573
+ output = BaseModelOutputWithPast(
574
+ last_hidden_state=hidden_states,
575
+ past_key_values=past_key_values if use_cache else None,
576
+ hidden_states=all_hidden_states,
577
+ attentions=all_self_attns,
578
+ )
579
+ return output if return_dict else output.to_tuple()
580
+
581
+ def _update_causal_mask(
582
+ self,
583
+ attention_mask: torch.Tensor,
584
+ input_tensor: torch.Tensor,
585
+ cache_position: torch.Tensor,
586
+ past_key_values: Cache,
587
+ output_attentions: bool,
588
+ ):
589
+ if self.config._attn_implementation == "flash_attention_2":
590
+ if attention_mask is not None and (attention_mask == 0.0).any():
591
+ return attention_mask
592
+ return None
593
+
594
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
595
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
596
+ # to infer the attention mask.
597
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
598
+ using_static_cache = isinstance(past_key_values, StaticCache)
599
+
600
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
601
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
602
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
603
+ attention_mask,
604
+ inputs_embeds=input_tensor,
605
+ past_key_values_length=past_seen_tokens,
606
+ is_training=self.training,
607
+ ):
608
+ return None
609
+
610
+ dtype, device = input_tensor.dtype, input_tensor.device
611
+ sequence_length = input_tensor.shape[1]
612
+ if using_static_cache:
613
+ target_length = past_key_values.get_max_cache_shape()
614
+ else:
615
+ target_length = (
616
+ attention_mask.shape[-1]
617
+ if isinstance(attention_mask, torch.Tensor)
618
+ else past_seen_tokens + sequence_length + 1
619
+ )
620
+
621
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
622
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
623
+ attention_mask,
624
+ sequence_length=sequence_length,
625
+ target_length=target_length,
626
+ dtype=dtype,
627
+ device=device,
628
+ cache_position=cache_position,
629
+ batch_size=input_tensor.shape[0],
630
+ )
631
+
632
+ if (
633
+ self.config._attn_implementation == "sdpa"
634
+ and attention_mask is not None
635
+ and attention_mask.device.type == "cuda"
636
+ and not output_attentions
637
+ ):
638
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
639
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
640
+ # Details: https://github.com/pytorch/pytorch/issues/110213
641
+ min_dtype = torch.finfo(dtype).min
642
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
643
+
644
+ return causal_mask
645
+
646
+ @staticmethod
647
+ def _prepare_4d_causal_attention_mask_with_cache_position(
648
+ attention_mask: torch.Tensor,
649
+ sequence_length: int,
650
+ target_length: int,
651
+ dtype: torch.dtype,
652
+ device: torch.device,
653
+ cache_position: torch.Tensor,
654
+ batch_size: int,
655
+ **kwargs,
656
+ ):
657
+ """
658
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
659
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
660
+
661
+ Args:
662
+ attention_mask (`torch.Tensor`):
663
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
664
+ `(batch_size, 1, query_length, key_value_length)`.
665
+ sequence_length (`int`):
666
+ The sequence length being processed.
667
+ target_length (`int`):
668
+ The target length: when generating with static cache, the mask should be as long as the static cache,
669
+ to account for the 0 padding, the part of the cache that is not filled yet.
670
+ dtype (`torch.dtype`):
671
+ The dtype to use for the 4D attention mask.
672
+ device (`torch.device`):
673
+ The device to plcae the 4D attention mask on.
674
+ cache_position (`torch.Tensor`):
675
+ Indices depicting the position of the input sequence tokens in the sequence.
676
+ batch_size (`torch.Tensor`):
677
+ Batch size.
678
+ """
679
+ if attention_mask is not None and attention_mask.dim() == 4:
680
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
681
+ causal_mask = attention_mask
682
+ else:
683
+ min_dtype = torch.finfo(dtype).min
684
+ causal_mask = torch.full(
685
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
686
+ )
687
+ if sequence_length != 1:
688
+ causal_mask = torch.triu(causal_mask, diagonal=1)
689
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
690
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
691
+ if attention_mask is not None:
692
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
693
+ mask_length = attention_mask.shape[-1]
694
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
695
+ padding_mask = padding_mask == 0
696
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
697
+ padding_mask, min_dtype
698
+ )
699
+
700
+ return causal_mask
701
+
702
+
703
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
704
+
705
+
706
+ class InternLM3ForCausalLM(InternLM3PreTrainedModel, GenerationMixin):
707
+ _auto_class = 'AutoModelForCausalLM'
708
+ _tied_weights_keys = ["lm_head.weight"]
709
+ _tp_plan = {"lm_head": "colwise_rep"}
710
+
711
+ def __init__(self, config):
712
+ super().__init__(config)
713
+ self.model = InternLM3Model(config)
714
+ self.vocab_size = config.vocab_size
715
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
716
+
717
+ # Initialize weights and apply final processing
718
+ self.post_init()
719
+
720
+ def get_input_embeddings(self):
721
+ return self.model.embed_tokens
722
+
723
+ def set_input_embeddings(self, value):
724
+ self.model.embed_tokens = value
725
+
726
+ def get_output_embeddings(self):
727
+ return self.lm_head
728
+
729
+ def set_output_embeddings(self, new_embeddings):
730
+ self.lm_head = new_embeddings
731
+
732
+ def set_decoder(self, decoder):
733
+ self.model = decoder
734
+
735
+ def get_decoder(self):
736
+ return self.model
737
+
738
+ @add_start_docstrings_to_model_forward(INTERNLM3_INPUTS_DOCSTRING)
739
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
740
+ def forward(
741
+ self,
742
+ input_ids: torch.LongTensor = None,
743
+ attention_mask: Optional[torch.Tensor] = None,
744
+ position_ids: Optional[torch.LongTensor] = None,
745
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
746
+ inputs_embeds: Optional[torch.FloatTensor] = None,
747
+ labels: Optional[torch.LongTensor] = None,
748
+ use_cache: Optional[bool] = None,
749
+ output_attentions: Optional[bool] = None,
750
+ output_hidden_states: Optional[bool] = None,
751
+ return_dict: Optional[bool] = None,
752
+ cache_position: Optional[torch.LongTensor] = None,
753
+ num_logits_to_keep: int = 0,
754
+ **kwargs: Unpack[KwargsForCausalLM],
755
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
756
+ r"""
757
+ Args:
758
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
759
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
760
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
761
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
762
+
763
+ num_logits_to_keep (`int`, *optional*):
764
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
765
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
766
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
767
+
768
+ Returns:
769
+
770
+ Example:
771
+
772
+ ```python
773
+ >>> from transformers import AutoTokenizer, InternLM3ForCausalLM
774
+
775
+ >>> model = InternLM3ForCausalLM.from_pretrained("meta-internlm3/InternLM3-2-7b-hf")
776
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-internlm3/InternLM3-2-7b-hf")
777
+
778
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
779
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
780
+
781
+ >>> # Generate
782
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
783
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
784
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
785
+ ```"""
786
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
787
+ output_hidden_states = (
788
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
789
+ )
790
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
791
+
792
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
793
+ outputs = self.model(
794
+ input_ids=input_ids,
795
+ attention_mask=attention_mask,
796
+ position_ids=position_ids,
797
+ past_key_values=past_key_values,
798
+ inputs_embeds=inputs_embeds,
799
+ use_cache=use_cache,
800
+ output_attentions=output_attentions,
801
+ output_hidden_states=output_hidden_states,
802
+ return_dict=return_dict,
803
+ cache_position=cache_position,
804
+ **kwargs,
805
+ )
806
+
807
+ hidden_states = outputs[0]
808
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
809
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
810
+
811
+ loss = None
812
+ if labels is not None:
813
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
814
+
815
+ if not return_dict:
816
+ output = (logits,) + outputs[1:]
817
+ return (loss,) + output if loss is not None else output
818
+
819
+ return CausalLMOutputWithPast(
820
+ loss=loss,
821
+ logits=logits,
822
+ past_key_values=outputs.past_key_values,
823
+ hidden_states=outputs.hidden_states,
824
+ attentions=outputs.attentions,
825
+ )