""" Adapted from BLIP (https://github.com/salesforce/BLIP) """ import torch.distributed as dist from torch import nn import transformers transformers.logging.set_verbosity_error() from .med import BertConfig, BertModel from .blip import create_vit, init_tokenizer, load_checkpoint class BLIP_Pretrain(nn.Module): def __init__(self, med_config = 'med_config.json', image_size = 224, vit = 'base', vit_grad_ckpt = False, vit_ckpt_layer = 0, embed_dim = 256 ): """ Args: med_config (str): path for the mixture of encoder-decoder model's configuration file image_size (int): input image size vit (str): model size of vision transformer """ super().__init__() self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0) self.tokenizer = init_tokenizer() encoder_config = BertConfig.from_json_file(med_config) encoder_config.encoder_width = vision_width self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False) text_width = self.text_encoder.config.hidden_size self.vision_proj = nn.Linear(vision_width, embed_dim) self.text_proj = nn.Linear(text_width, embed_dim) def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def blip_pretrain(pretrained='', **kwargs): model = BLIP_Pretrain(**kwargs) if pretrained and get_rank() == 0: model, msg = load_checkpoint(model,pretrained) return model