import os os.environ["TRANSFORMERS_NO_FLASH_ATTN_2"] = "1" import torch import torch.nn as nn from transformers import ( CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig, SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig, ) class CLIPVisionTower(nn.Module): def __init__(self, vision_tower, args, load_pretrained=False): super().__init__() self.vision_tower_name = vision_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) config = CLIPVisionConfig.from_pretrained(self.vision_tower_name) config._attn_implementation = "eager" if not load_pretrained: self.vision_tower = CLIPVisionModel(config=config) else: self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features[:, 1:] elif self.select_feature == 'cls_patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_tower(image.unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_tower(images, output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): return self.vision_tower.config @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def image_size(self): return self.config.image_size class SiglipVisionTower(nn.Module): def __init__(self, vision_tower, args, load_pretrained=False): super().__init__() self.vision_tower_name = vision_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name) config = SiglipVisionConfig.from_pretrained(self.vision_tower_name) config._attn_implementation = 'eager' if not load_pretrained: self.vision_tower = SiglipVisionModel(config=config) else: self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_tower(image.unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_tower(images, output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): return self.vision_tower.config @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def image_size(self): return self.config.image_size def build_vision_tower(vision_tower_cfg, **kwargs): vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None)) if 'clip' in vision_tower: vision_tower = CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) elif 'siglip' in vision_tower: vision_tower = SiglipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) else: raise ValueError(f'Unknown vision tower: {vision_tower}') return vision_tower