Commit
·
3b54ba5
1
Parent(s):
de7446f
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: deepseek-ai/deepseek-coder-6.7b-instruct
|
| 3 |
+
tags:
|
| 4 |
+
- SOLAR
|
| 5 |
+
- instruct
|
| 6 |
+
- finetune
|
| 7 |
+
model-index:
|
| 8 |
+
- name: NaturalQuery-Solar-6.7B-v0.1
|
| 9 |
+
results: []
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
language:
|
| 12 |
+
- en
|
| 13 |
+
datasets:
|
| 14 |
+
- wikisql
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# **NaturalQuery-Solar-6.7B-v0.1**
|
| 18 |
+
|
| 19 |
+
**NaturalQuery** is a LLM that can translate natural language queries to SQL based on your schema.
|
| 20 |
+
|
| 21 |
+
NaturalQuery-v0.1 is finetuned on 8k text to PostgreSQL Natural Language <> SQL pairs.
|
| 22 |
+
|
| 23 |
+
**Future Improvements**:
|
| 24 |
+
|
| 25 |
+
- Much larger training set
|
| 26 |
+
- More complex schemas, questions, and queries
|
| 27 |
+
- Reward modeling via DPO
|
| 28 |
+
- Benchmarking
|
| 29 |
+
|
| 30 |
+
# **Usage**
|
| 31 |
+
|
| 32 |
+
Make sure you have the correct version of the transformers library installed:
|
| 33 |
+
|
| 34 |
+
```sh
|
| 35 |
+
pip install transformers==4.35.2
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
### **Loading the Model**
|
| 39 |
+
|
| 40 |
+
Use the following Python code to load the model:
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
import torch
|
| 44 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 45 |
+
tokenizer = AutoTokenizer.from_pretrained("cfahlgren1/NaturalSQL-6.7B-v0")
|
| 46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
+
"cfahlgren1/NaturalSQL-6.7B-v0",
|
| 48 |
+
device_map="auto",
|
| 49 |
+
torch_dtype=torch.float16,
|
| 50 |
+
)
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
### **Generating Text**
|
| 54 |
+
|
| 55 |
+
To generate text, use the following Python code:
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
text = "Hi, my name is "
|
| 59 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 60 |
+
outputs = model.generate(**inputs, max_new_tokens=64)
|
| 61 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# **SQL Generation Template**
|
| 66 |
+
|
| 67 |
+
```
|
| 68 |
+
### Task
|
| 69 |
+
|
| 70 |
+
Generate a SQL query to answer the following question: `{natural language question}`
|
| 71 |
+
|
| 72 |
+
### Database Schema
|
| 73 |
+
|
| 74 |
+
The query will run on a database with the following schema:
|
| 75 |
+
|
| 76 |
+
'''
|
| 77 |
+
<SQL Table DDL Statements>
|
| 78 |
+
'''
|
| 79 |
+
|
| 80 |
+
### Answer
|
| 81 |
+
Here is the SQL query that answers the question: `{natural language question}`
|
| 82 |
+
'''sql
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
# **Example SQL Output**
|
| 86 |
+
|
| 87 |
+
### **Example Schemas**
|
| 88 |
+
|
| 89 |
+
```sql
|
| 90 |
+
CREATE TABLE
|
| 91 |
+
table_1_11545282_6 (
|
| 92 |
+
"No." numeric,
|
| 93 |
+
Nationality text,
|
| 94 |
+
"Years for Jazz" text
|
| 95 |
+
);
|
| 96 |
+
|
| 97 |
+
CREATE TABLE
|
| 98 |
+
table_2_17383560_1 (
|
| 99 |
+
Pick numeric,
|
| 100 |
+
Round numeric,
|
| 101 |
+
Player text,
|
| 102 |
+
"School/Club Team" text,
|
| 103 |
+
Position text
|
| 104 |
+
);
|
| 105 |
+
|
| 106 |
+
CREATE TABLE
|
| 107 |
+
table_1_10581768_2 (
|
| 108 |
+
Institution text,
|
| 109 |
+
Enrollment numeric,
|
| 110 |
+
Nickname text,
|
| 111 |
+
Founded numeric
|
| 112 |
+
);
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
**Question**: **What is the round of pick 63?**
|
| 116 |
+
```sql
|
| 117 |
+
SELECT "Round" FROM table_2_17383560_1 WHERE Pick=63;
|
| 118 |
+
```
|
| 119 |
+
**Question**: **What is the most popular position among players?**
|
| 120 |
+
```sql
|
| 121 |
+
SELECT COUNT("Position") FROM "table_2_17383560_1" GROUP BY "Position" ORDER BY COUNT("Position") DESC LIMIT 1;
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
**Question**: **What is the most recent year an institution was founded?**
|
| 125 |
+
```sql
|
| 126 |
+
SELECT MAX("Founded") FROM table_1_10581768_2;
|
| 127 |
+
```
|