2fd93761cee38dd43e0ddc98af316a8f

This model is a fine-tuned version of albert/albert-large-v2 on the contemmcm/hate-speech-and-offensive-language dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6704
  • Data Size: 1.0
  • Epoch Runtime: 43.9994
  • Accuracy: 0.7672
  • F1 Macro: 0.2894

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro
No log 0 0 1.1244 0 3.8580 0.1670 0.1314
No log 1 619 0.7125 0.0078 4.5480 0.7672 0.2894
No log 2 1238 0.6460 0.0156 4.5558 0.7672 0.2894
0.016 3 1857 0.5565 0.0312 5.1657 0.7987 0.4105
0.016 4 2476 0.6316 0.0625 7.4823 0.7672 0.2894
0.6005 5 3095 0.4552 0.125 8.9755 0.8521 0.5452
0.0384 6 3714 0.4566 0.25 14.2178 0.8722 0.5664
0.6126 7 4333 0.5186 0.5 24.7002 0.8462 0.5343
0.6776 8.0 4952 0.6786 1.0 44.3803 0.7672 0.2894
0.644 9.0 5571 0.6704 1.0 43.9994 0.7672 0.2894

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
7
Safetensors
Model size
17.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/2fd93761cee38dd43e0ddc98af316a8f

Finetuned
(25)
this model