2fd93761cee38dd43e0ddc98af316a8f
This model is a fine-tuned version of albert/albert-large-v2 on the contemmcm/hate-speech-and-offensive-language dataset. It achieves the following results on the evaluation set:
- Loss: 0.6704
- Data Size: 1.0
- Epoch Runtime: 43.9994
- Accuracy: 0.7672
- F1 Macro: 0.2894
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.1244 | 0 | 3.8580 | 0.1670 | 0.1314 |
| No log | 1 | 619 | 0.7125 | 0.0078 | 4.5480 | 0.7672 | 0.2894 |
| No log | 2 | 1238 | 0.6460 | 0.0156 | 4.5558 | 0.7672 | 0.2894 |
| 0.016 | 3 | 1857 | 0.5565 | 0.0312 | 5.1657 | 0.7987 | 0.4105 |
| 0.016 | 4 | 2476 | 0.6316 | 0.0625 | 7.4823 | 0.7672 | 0.2894 |
| 0.6005 | 5 | 3095 | 0.4552 | 0.125 | 8.9755 | 0.8521 | 0.5452 |
| 0.0384 | 6 | 3714 | 0.4566 | 0.25 | 14.2178 | 0.8722 | 0.5664 |
| 0.6126 | 7 | 4333 | 0.5186 | 0.5 | 24.7002 | 0.8462 | 0.5343 |
| 0.6776 | 8.0 | 4952 | 0.6786 | 1.0 | 44.3803 | 0.7672 | 0.2894 |
| 0.644 | 9.0 | 5571 | 0.6704 | 1.0 | 43.9994 | 0.7672 | 0.2894 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 7
Model tree for contemmcm/2fd93761cee38dd43e0ddc98af316a8f
Base model
albert/albert-large-v2