--- license: mit --- # 3DV-TON: Textured 3D-Guided Consistent Video Try-on via Diffusion Models Min Wei, Chaohui Yu, Jingkai Zhou, and Fan Wang. 2025. 3DV-TON: Textured 3D-Guided Consistent Video Try-on via Diffusion Models. In Proceedings of the 33rd ACM International Conference on Multimedia (MM ’25), October 27–31, 2025, Dublin, Ireland. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3746027.3754754 [![arXiv](https://img.shields.io/badge/arXiv-2504.17414-b31b1b.svg)](https://arxiv.org/abs/2504.17414) [![Project Page](https://img.shields.io/badge/Project-Website-green)](https://2y7c3.github.io/3DV-TON/) [![Hugging Face Model](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-yellow)](https://huggingface.co/2y7c3/3DV-TON) [![HR-VVT](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-HR_VVT-yellow)](https://huggingface.co/datasets/2y7c3/HR-VVT) ## Installation ``` git clone https://github.com/2y7c3/3DV-TON.git cd 3DV-TON pip install -r requirements.txt cd preprocess/model/DensePose/detectron2/projects/DensePose pip install -e . ## install GVHMR ## see https://github.com/zju3dv/GVHMR/blob/main/docs/INSTALL.md ## replace GVHMR/hmr4d/utils/vis/renderer.py with our preprocess/renderer.py ``` ### Weights Download [Stable Diffusion](https://huggingface.co/lambdalabs/sd-image-variations-diffusers), [Motion module](https://huggingface.co/guoyww/animatediff/blob/main/v3_sd15_mm.ckpt),[VAE](https://huggingface.co/stabilityai/sd-vae-ft-mse) and Our [3DV-TON models](https://huggingface.co/2y7c3/3DV-TON) in ``` ./ckpts ```. Download [Cloth masker](https://huggingface.co/2y7c3/3DV-TON) in ``` ./preprocess/ckpts ```. Then you can use our cloth masker to generate agnostic mask videos for improved try-on results. ## Inference We provid three demo examples in ```./demos/``` — run the following commands to test them. ```bash python infer.py --config ./configs/inference/demo_test.yaml ``` Or you can prepare your own example by following the steps below. ``` bash # 1. generate agnostic mask (type: 'upper', 'lower', 'overall') cd preprocess python seg_mask.py --input demos/videos/video.mp4 --output demos/ --type overall # 2. use GVHMR to generate SMPL video # 3. use image tryon model to generate tryon image (e.g. CaTVTON) # 4. generate textured 3d mesh # 5. modify demo_test.yaml, then run python infer.py --config ./configs/inference/demo_test.yaml ``` ## BibTeX ```text @article{wei20253dv, title={3dv-ton: Textured 3d-guided consistent video try-on via diffusion models}, author={Wei, Min and Yu, Chaohui and Zhou, Jingkai and Wang, Fan}, journal={arXiv preprint arXiv:2504.17414}, year={2025} } ```