Dataset Viewer
Auto-converted to Parquet Duplicate
video_id
stringlengths
19
35
video_key
stringlengths
13
22
category
stringclasses
13 values
features_shape
listlengths
2
2
labels_shape
listlengths
1
1
duration
float64
3.47
4.73k
split
stringclasses
3 values
num_anomaly_segments
int64
1
177
has_sentences
bool
1 class
normal/Normal_Videos_439_x264
Normal_Videos_439_x264
normal
[ 7, 1024 ]
[ 7 ]
140.9
Train
3
true
normal/Normal_Videos_345_x264
Normal_Videos_345_x264
normal
[ 7, 1024 ]
[ 7 ]
7.04
Train
2
true
normal/Normal_Videos_704_x264
Normal_Videos_704_x264
normal
[ 7, 1024 ]
[ 7 ]
56.48
Train
3
true
normal/Normal_Videos_452_x264
Normal_Videos_452_x264
normal
[ 7, 1024 ]
[ 7 ]
14.84
Train
1
true
normal/Normal_Videos_576_x264
Normal_Videos_576_x264
normal
[ 7, 1024 ]
[ 7 ]
375.89
Train
6
true
normal/Normal_Videos_877_x264
Normal_Videos_877_x264
normal
[ 7, 1024 ]
[ 7 ]
334.18
Train
23
true
normal/Normal_Videos_015_x264
Normal_Videos_015_x264
normal
[ 7, 1024 ]
[ 7 ]
16.05
Train
4
true
normal/Normal_Videos_603_x264
Normal_Videos_603_x264
normal
[ 7, 1024 ]
[ 7 ]
109.27
Train
6
true
normal/Normal_Videos_621_x264
Normal_Videos_621_x264
normal
[ 7, 1024 ]
[ 7 ]
160.08
Train
7
true
normal/Normal_Videos_453_x264
Normal_Videos_453_x264
normal
[ 7, 1024 ]
[ 7 ]
177.42
Train
5
true
normal/Normal_Videos_758_x264
Normal_Videos_758_x264
normal
[ 7, 1024 ]
[ 7 ]
53
Train
2
true
normal/Normal_Videos_246_x264
Normal_Videos_246_x264
normal
[ 7, 1024 ]
[ 7 ]
166.46
Train
1
true
normal/Normal_Videos_634_x264
Normal_Videos_634_x264
normal
[ 7, 1024 ]
[ 7 ]
448.68
Train
7
true
normal/Normal_Videos_913_x264
Normal_Videos_913_x264
normal
[ 7, 1024 ]
[ 7 ]
20.3
Train
2
true
normal/Normal_Videos_656_x264
Normal_Videos_656_x264
normal
[ 7, 1024 ]
[ 7 ]
60.56
Train
2
true
normal/Normal_Videos_360_x264
Normal_Videos_360_x264
normal
[ 7, 1024 ]
[ 7 ]
32.83
Train
7
true
normal/Normal_Videos_798_x264
Normal_Videos_798_x264
normal
[ 7, 1024 ]
[ 7 ]
200.03
Train
9
true
normal/Normal_Videos_905_x264
Normal_Videos_905_x264
normal
[ 7, 1024 ]
[ 7 ]
39.87
Train
4
true
normal/Normal_Videos_100_x264
Normal_Videos_100_x264
normal
[ 7, 1024 ]
[ 7 ]
20.95
Train
1
true
normal/Normal_Videos_914_x264
Normal_Videos_914_x264
normal
[ 7, 1024 ]
[ 7 ]
29.33
Train
2
true
normal/Normal_Videos_310_x264
Normal_Videos_310_x264
normal
[ 7, 1024 ]
[ 7 ]
83.99
Train
3
true
normal/Normal_Videos_317_x264
Normal_Videos_317_x264
normal
[ 7, 1024 ]
[ 7 ]
30.97
Train
3
true
normal/Normal_Videos_885_x264
Normal_Videos_885_x264
normal
[ 7, 1024 ]
[ 7 ]
15.88
Train
2
true
normal/Normal_Videos_828_x264
Normal_Videos_828_x264
normal
[ 7, 1024 ]
[ 7 ]
31.05
Train
2
true
normal/Normal_Videos_892_x264
Normal_Videos_892_x264
normal
[ 7, 1024 ]
[ 7 ]
59.03
Train
4
true
normal/Normal_Videos_696_x264
Normal_Videos_696_x264
normal
[ 7, 1024 ]
[ 7 ]
120.86
Train
5
true
normal/Normal_Videos_781_x264
Normal_Videos_781_x264
normal
[ 7, 1024 ]
[ 7 ]
132.56
Train
8
true
normal/Normal_Videos_929_x264
Normal_Videos_929_x264
normal
[ 7, 1024 ]
[ 7 ]
30.92
Test
3
true
normal/Normal_Videos_831_x264
Normal_Videos_831_x264
normal
[ 7, 1024 ]
[ 7 ]
14.98
Train
1
true
normal/Normal_Videos_641_x264
Normal_Videos_641_x264
normal
[ 7, 1024 ]
[ 7 ]
120.23
Train
9
true
normal/Normal_Videos_050_x264
Normal_Videos_050_x264
normal
[ 7, 1024 ]
[ 7 ]
139.95
Train
10
true
normal/Normal_Videos_129_x264
Normal_Videos_129_x264
normal
[ 7, 1024 ]
[ 7 ]
15.57
Train
1
true
normal/Normal_Videos_247_x264
Normal_Videos_247_x264
normal
[ 7, 1024 ]
[ 7 ]
273.74
Train
1
true
normal/Normal_Videos_745_x264
Normal_Videos_745_x264
normal
[ 7, 1024 ]
[ 7 ]
10.17
Train
2
true
normal/Normal_Videos_606_x264
Normal_Videos_606_x264
normal
[ 7, 1024 ]
[ 7 ]
41.15
Train
5
true
normal/Normal_Videos_722_x264
Normal_Videos_722_x264
normal
[ 7, 1024 ]
[ 7 ]
291.04
Train
5
true
normal/Normal_Videos_150_x264
Normal_Videos_150_x264
normal
[ 7, 1024 ]
[ 7 ]
28.84
Train
3
true
normal/Normal_Videos_597_x264
Normal_Videos_597_x264
normal
[ 7, 1024 ]
[ 7 ]
74.35
Train
8
true
normal/Normal_Videos_365_x264
Normal_Videos_365_x264
normal
[ 7, 1024 ]
[ 7 ]
220.96
Train
7
true
normal/Normal_Videos_352_x264
Normal_Videos_352_x264
normal
[ 7, 1024 ]
[ 7 ]
180.14
Train
6
true
normal/Normal_Videos_401_x264
Normal_Videos_401_x264
normal
[ 7, 1024 ]
[ 7 ]
54.24
Train
3
true
normal/Normal_Videos_912_x264
Normal_Videos_912_x264
normal
[ 7, 1024 ]
[ 7 ]
24.87
Train
1
true
normal/Normal_Videos_478_x264
Normal_Videos_478_x264
normal
[ 7, 1024 ]
[ 7 ]
150.07
Train
3
true
normal/Normal_Videos_289_x264
Normal_Videos_289_x264
normal
[ 7, 1024 ]
[ 7 ]
28.8
Train
2
true
normal/Normal_Videos_801_x264
Normal_Videos_801_x264
normal
[ 7, 1024 ]
[ 7 ]
91.49
Train
9
true
normal/Normal_Videos_248_x264
Normal_Videos_248_x264
normal
[ 7, 1024 ]
[ 7 ]
38.04
Train
2
true
normal/Normal_Videos_312_x264
Normal_Videos_312_x264
normal
[ 7, 1024 ]
[ 7 ]
42.03
Train
7
true
normal/Normal_Videos_881_x264
Normal_Videos_881_x264
normal
[ 7, 1024 ]
[ 7 ]
7.63
Train
1
true
normal/Normal_Videos_251_x264
Normal_Videos_251_x264
normal
[ 7, 1024 ]
[ 7 ]
13.53
Train
2
true
stealing/Stealing071_x264
Stealing071_x264
stealing
[ 7, 1024 ]
[ 7 ]
32.07
Train
3
true
stealing/Stealing091_x264
Stealing091_x264
stealing
[ 7, 1024 ]
[ 7 ]
20.16
Test
4
true
stealing/Stealing031_x264
Stealing031_x264
stealing
[ 7, 1024 ]
[ 7 ]
36.27
Train
4
true
stealing/Stealing101_x264
Stealing101_x264
stealing
[ 7, 1024 ]
[ 7 ]
84.82
Val
6
true
stealing/Stealing035_x264
Stealing035_x264
stealing
[ 7, 1024 ]
[ 7 ]
371.85
Train
6
true
stealing/Stealing042_x264
Stealing042_x264
stealing
[ 7, 1024 ]
[ 7 ]
140.09
Train
9
true
stealing/Stealing079_x264
Stealing079_x264
stealing
[ 7, 1024 ]
[ 7 ]
195.06
Test
28
true
stealing/Stealing100_x264
Stealing100_x264
stealing
[ 7, 1024 ]
[ 7 ]
511.91
Val
39
true
stealing/Stealing050_x264
Stealing050_x264
stealing
[ 7, 1024 ]
[ 7 ]
111.63
Train
3
true
stealing/Stealing072_x264
Stealing072_x264
stealing
[ 7, 1024 ]
[ 7 ]
387.21
Train
11
true
stealing/Stealing070_x264
Stealing070_x264
stealing
[ 7, 1024 ]
[ 7 ]
44.93
Train
4
true
stealing/Stealing081_x264
Stealing081_x264
stealing
[ 7, 1024 ]
[ 7 ]
42.01
Test
6
true
stealing/Stealing114_x264
Stealing114_x264
stealing
[ 7, 1024 ]
[ 7 ]
40.57
Val
4
true
stealing/Stealing010_x264
Stealing010_x264
stealing
[ 7, 1024 ]
[ 7 ]
101.1
Train
9
true
stealing/Stealing109_x264
Stealing109_x264
stealing
[ 7, 1024 ]
[ 7 ]
315.14
Val
14
true
stealing/Stealing029_x264
Stealing029_x264
stealing
[ 7, 1024 ]
[ 7 ]
13.58
Train
3
true
stealing/Stealing020_x264
Stealing020_x264
stealing
[ 7, 1024 ]
[ 7 ]
220.13
Train
16
true
stealing/Stealing054_x264
Stealing054_x264
stealing
[ 7, 1024 ]
[ 7 ]
88.98
Train
5
true
stealing/Stealing111_x264
Stealing111_x264
stealing
[ 7, 1024 ]
[ 7 ]
157.07
Val
6
true
stealing/Stealing110_x264
Stealing110_x264
stealing
[ 7, 1024 ]
[ 7 ]
58.4
Val
4
true
stealing/Stealing073_x264
Stealing073_x264
stealing
[ 7, 1024 ]
[ 7 ]
50.84
Train
3
true
stealing/Stealing058_x264
Stealing058_x264
stealing
[ 7, 1024 ]
[ 7 ]
166.39
Train
5
true
stealing/Stealing012_x264
Stealing012_x264
stealing
[ 7, 1024 ]
[ 7 ]
90.43
Train
7
true
stealing/Stealing015_x264
Stealing015_x264
stealing
[ 7, 1024 ]
[ 7 ]
60
Train
5
true
stealing/Stealing024_x264
Stealing024_x264
stealing
[ 7, 1024 ]
[ 7 ]
82.2
Train
4
true
stealing/Stealing068_x264
Stealing068_x264
stealing
[ 7, 1024 ]
[ 7 ]
228.67
Train
6
true
stealing/Stealing078_x264
Stealing078_x264
stealing
[ 7, 1024 ]
[ 7 ]
86.23
Test
7
true
stealing/Stealing009_x264
Stealing009_x264
stealing
[ 7, 1024 ]
[ 7 ]
53.8
Train
5
true
stealing/Stealing067_x264
Stealing067_x264
stealing
[ 7, 1024 ]
[ 7 ]
70
Train
4
true
stealing/Stealing046_x264
Stealing046_x264
stealing
[ 7, 1024 ]
[ 7 ]
343.6
Train
4
true
stealing/Stealing069_x264
Stealing069_x264
stealing
[ 7, 1024 ]
[ 7 ]
26.73
Train
3
true
stealing/Stealing002_x264
Stealing002_x264
stealing
[ 7, 1024 ]
[ 7 ]
117.23
Train
11
true
stealing/Stealing025_x264
Stealing025_x264
stealing
[ 7, 1024 ]
[ 7 ]
727.24
Train
48
true
stealing/Stealing011_x264
Stealing011_x264
stealing
[ 7, 1024 ]
[ 7 ]
123.9
Train
12
true
stealing/Stealing018_x264
Stealing018_x264
stealing
[ 7, 1024 ]
[ 7 ]
68.4
Train
7
true
stealing/Stealing066_x264
Stealing066_x264
stealing
[ 7, 1024 ]
[ 7 ]
42.72
Train
3
true
stealing/Stealing095_x264
Stealing095_x264
stealing
[ 7, 1024 ]
[ 7 ]
25.07
Val
2
true
stealing/Stealing051_x264
Stealing051_x264
stealing
[ 7, 1024 ]
[ 7 ]
111.04
Train
6
true
stealing/Stealing047_x264
Stealing047_x264
stealing
[ 7, 1024 ]
[ 7 ]
45.12
Train
3
true
stealing/Stealing104_x264
Stealing104_x264
stealing
[ 7, 1024 ]
[ 7 ]
105.09
Val
11
true
stealing/Stealing013_x264
Stealing013_x264
stealing
[ 7, 1024 ]
[ 7 ]
308.37
Train
13
true
stealing/Stealing112_x264
Stealing112_x264
stealing
[ 7, 1024 ]
[ 7 ]
70.05
Val
6
true
stealing/Stealing049_x264
Stealing049_x264
stealing
[ 7, 1024 ]
[ 7 ]
49.23
Train
2
true
stealing/Stealing087_x264
Stealing087_x264
stealing
[ 7, 1024 ]
[ 7 ]
164.7
Test
26
true
stealing/Stealing084_x264
Stealing084_x264
stealing
[ 7, 1024 ]
[ 7 ]
524.46
Test
31
true
stealing/Stealing059_x264
Stealing059_x264
stealing
[ 7, 1024 ]
[ 7 ]
74.52
Train
4
true
stealing/Stealing106_x264
Stealing106_x264
stealing
[ 7, 1024 ]
[ 7 ]
47.76
Val
5
true
stealing/Stealing053_x264
Stealing053_x264
stealing
[ 7, 1024 ]
[ 7 ]
435.26
Train
10
true
stealing/Stealing108_x264
Stealing108_x264
stealing
[ 7, 1024 ]
[ 7 ]
132.23
Val
9
true
stealing/Stealing023_x264
Stealing023_x264
stealing
[ 7, 1024 ]
[ 7 ]
169.17
Train
12
true
stealing/Stealing093_x264
Stealing093_x264
stealing
[ 7, 1024 ]
[ 7 ]
41.04
Val
4
true
End of preview. Expand in Data Studio

UCF-Crime: Precomputed I3D Features with Temporal Annotations

This dataset provides pre-extracted 1024-dimensional I3D RGB features along with frame-level temporal anomaly labels for videos from the UCF-Crime dataset.


Dataset Characteristics

Features

  • 1024-dimensional I3D RGB feature vectors
  • Extracted from 64 uniformly sampled frames per video
  • Feature tensor shape: [64, 1024]

Temporal Annotations

  • Mapped from original anomaly intervals
  • Re-scaled to match the 64 sampled frames
  • Only videos with valid annotations are included

Coverage

  • Videos that contain complete temporal anomaly intervals
  • Suitable for supervised learning tasks

Recommended Usage

This dataset is ideal for:

  • Frame-level binary classification
  • Reconstruction-based anomaly detection
  • Temporal convolutional networks (TCN)
  • Transformer-based sequence models
  • Sequential anomaly scoring models

Since features are already extracted, experiments are lightweight and GPU-efficient.


Loading the Dataset

The Data Loader code has also been provided. Please refer to that.


Citation

@inproceedings{sultani2018real, title={Real-world Anomaly Detection in Surveillance Videos}, author={Sultani, Waqas and Chen, Chen and Shah, Mubarak}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={4469--4478}, year={2018} }

Downloads last month
50