YongchengYAO commited on
Commit
33736c9
·
1 Parent(s): 2ae998e

init release

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +176 -0
  2. Datasets/ACDC.zip +3 -0
  3. Datasets/AMOS22.zip +3 -0
  4. Datasets/AbdomenAtlas1.0Mini.zip +3 -0
  5. Datasets/AbdomenCT-1K.zip +3 -0
  6. Datasets/BCV15.zip +3 -0
  7. Datasets/BraTS24.zip +3 -0
  8. Datasets/CAMUS.zip +3 -0
  9. Datasets/Ceph-Biometrics-400.zip +3 -0
  10. Datasets/CrossMoDA.zip +3 -0
  11. Datasets/FLARE22.zip +3 -0
  12. Datasets/FeTA24.zip +3 -0
  13. Datasets/HNTSMRG24.zip +3 -0
  14. Datasets/ISLES24.zip +3 -0
  15. Datasets/KiPA22.zip +3 -0
  16. Datasets/KiTS23.zip +3 -0
  17. Datasets/MSD.zip +3 -0
  18. Datasets/OAIZIB-CM.zip +3 -0
  19. Datasets/SKM-TEA.zip +3 -0
  20. Datasets/ToothFairy2.zip +3 -0
  21. Datasets/TopCoW24.zip +3 -0
  22. Datasets/TotalSegmentator.zip +3 -0
  23. Datasets/autoPET-III.zip +3 -0
  24. LICENSE +1 -0
  25. MedVision.py +0 -0
  26. README.md +42 -3
  27. info/ConfigurationsList_All.csv +820 -0
  28. info/ConfigurationsList_Test.csv +410 -0
  29. info/ConfigurationsList_Train.csv +410 -0
  30. src/medvision_ds/__init__.py +6 -0
  31. src/medvision_ds/__version__.py +1 -0
  32. src/medvision_ds/datasets/ACDC/__init__.py +0 -0
  33. src/medvision_ds/datasets/ACDC/download_fast.py +102 -0
  34. src/medvision_ds/datasets/ACDC/download_raw.py +122 -0
  35. src/medvision_ds/datasets/ACDC/preprocess_detection.py +128 -0
  36. src/medvision_ds/datasets/ACDC/preprocess_segmentation.py +128 -0
  37. src/medvision_ds/datasets/AMOS22/__init__.py +0 -0
  38. src/medvision_ds/datasets/AMOS22/download.py +130 -0
  39. src/medvision_ds/datasets/AMOS22/preprocess_detection.py +152 -0
  40. src/medvision_ds/datasets/AMOS22/preprocess_segmentation.py +152 -0
  41. src/medvision_ds/datasets/AbdomenAtlas__1_0__Mini/__init__.py +0 -0
  42. src/medvision_ds/datasets/AbdomenAtlas__1_0__Mini/download_raw.py +161 -0
  43. src/medvision_ds/datasets/AbdomenAtlas__1_0__Mini/preprocess_detection.py +136 -0
  44. src/medvision_ds/datasets/AbdomenAtlas__1_0__Mini/preprocess_segmentation.py +137 -0
  45. src/medvision_ds/datasets/AbdomenCT_1K/__init__.py +0 -0
  46. src/medvision_ds/datasets/AbdomenCT_1K/download.py +127 -0
  47. src/medvision_ds/datasets/AbdomenCT_1K/preprocess_detection.py +131 -0
  48. src/medvision_ds/datasets/AbdomenCT_1K/preprocess_segmentation.py +131 -0
  49. src/medvision_ds/datasets/BCV15/__init__.py +0 -0
  50. src/medvision_ds/datasets/BCV15/download.py +147 -0
.gitignore ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Created by https://www.toptal.com/developers/gitignore/api/python
2
+ # Edit at https://www.toptal.com/developers/gitignore?templates=python
3
+
4
+ ### Python ###
5
+ # Byte-compiled / optimized / DLL files
6
+ __pycache__/
7
+ *.py[cod]
8
+ *$py.class
9
+
10
+ # C extensions
11
+ *.so
12
+
13
+ # Distribution / packaging
14
+ .Python
15
+ build/
16
+ develop-eggs/
17
+ dist/
18
+ downloads/
19
+ eggs/
20
+ .eggs/
21
+ lib/
22
+ lib64/
23
+ parts/
24
+ sdist/
25
+ var/
26
+ wheels/
27
+ share/python-wheels/
28
+ *.egg-info/
29
+ .installed.cfg
30
+ *.egg
31
+ MANIFEST
32
+
33
+ # PyInstaller
34
+ # Usually these files are written by a python script from a template
35
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
36
+ *.manifest
37
+ *.spec
38
+
39
+ # Installer logs
40
+ pip-log.txt
41
+ pip-delete-this-directory.txt
42
+
43
+ # Unit test / coverage reports
44
+ htmlcov/
45
+ .tox/
46
+ .nox/
47
+ .coverage
48
+ .coverage.*
49
+ .cache
50
+ nosetests.xml
51
+ coverage.xml
52
+ *.cover
53
+ *.py,cover
54
+ .hypothesis/
55
+ .pytest_cache/
56
+ cover/
57
+
58
+ # Translations
59
+ *.mo
60
+ *.pot
61
+
62
+ # Django stuff:
63
+ *.log
64
+ local_settings.py
65
+ db.sqlite3
66
+ db.sqlite3-journal
67
+
68
+ # Flask stuff:
69
+ instance/
70
+ .webassets-cache
71
+
72
+ # Scrapy stuff:
73
+ .scrapy
74
+
75
+ # Sphinx documentation
76
+ docs/_build/
77
+
78
+ # PyBuilder
79
+ .pybuilder/
80
+ target/
81
+
82
+ # Jupyter Notebook
83
+ .ipynb_checkpoints
84
+
85
+ # IPython
86
+ profile_default/
87
+ ipython_config.py
88
+
89
+ # pyenv
90
+ # For a library or package, you might want to ignore these files since the code is
91
+ # intended to run in multiple environments; otherwise, check them in:
92
+ # .python-version
93
+
94
+ # pipenv
95
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
96
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
97
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
98
+ # install all needed dependencies.
99
+ #Pipfile.lock
100
+
101
+ # poetry
102
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
103
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
104
+ # commonly ignored for libraries.
105
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
106
+ #poetry.lock
107
+
108
+ # pdm
109
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
110
+ #pdm.lock
111
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
112
+ # in version control.
113
+ # https://pdm.fming.dev/#use-with-ide
114
+ .pdm.toml
115
+
116
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
117
+ __pypackages__/
118
+
119
+ # Celery stuff
120
+ celerybeat-schedule
121
+ celerybeat.pid
122
+
123
+ # SageMath parsed files
124
+ *.sage.py
125
+
126
+ # Environments
127
+ .env
128
+ .venv
129
+ env/
130
+ venv/
131
+ ENV/
132
+ env.bak/
133
+ venv.bak/
134
+
135
+ # Spyder project settings
136
+ .spyderproject
137
+ .spyproject
138
+
139
+ # Rope project settings
140
+ .ropeproject
141
+
142
+ # mkdocs documentation
143
+ /site
144
+
145
+ # mypy
146
+ .mypy_cache/
147
+ .dmypy.json
148
+ dmypy.json
149
+
150
+ # Pyre type checker
151
+ .pyre/
152
+
153
+ # pytype static type analyzer
154
+ .pytype/
155
+
156
+ # Cython debug symbols
157
+ cython_debug/
158
+
159
+ # PyCharm
160
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
161
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
162
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
163
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
164
+ #.idea/
165
+
166
+ ### Python Patch ###
167
+ # Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
168
+ poetry.toml
169
+
170
+ # ruff
171
+ .ruff_cache/
172
+
173
+ # LSP config files
174
+ pyrightconfig.json
175
+
176
+ # End of https://www.toptal.com/developers/gitignore/api/python
Datasets/ACDC.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcb92b84c54fdb9702ed2c893365a209bcdb241c63dfa0dcb13dbc8d6d7ccb80
3
+ size 3782824
Datasets/AMOS22.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:818e3e4e0555cd03968f3c19b8b536cff7755376e928c2ee2812358f8b37ae81
3
+ size 52344969
Datasets/AbdomenAtlas1.0Mini.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2697cd5db6eb4d68550134df1246ea41fa517ec7f2be392d4aca3d3ec316a48
3
+ size 720784876
Datasets/AbdomenCT-1K.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11f76256950db2c51569ecd2813abc51c8f1d802b604357620b0e6e308ed6d18
3
+ size 76290869
Datasets/BCV15.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:844636afe8f09bef0edfb401593afb8132bd42f3a8bdbc5969d52398b56303ac
3
+ size 5484512
Datasets/BraTS24.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4c49974a118e4f778bdfd5dffea0d07f8468d705665dd74485b9d0695705577
3
+ size 1164911581
Datasets/CAMUS.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cea19ec40b51a72327256ff5491166c887dcfd9359d037e9aae562a9f1f2410
3
+ size 54348626
Datasets/Ceph-Biometrics-400.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b053c9f66c9a275ea8611559a5657d43197e098ea44ee99242d6004b9f96047
3
+ size 132160
Datasets/CrossMoDA.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea9d0e1fb1a33fc5100d96e24ac80a766d9e4ea15043c8085976c95e2adf3e2d
3
+ size 709309
Datasets/FLARE22.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3dd6a84a0c5fa799f4f8aaf5da1163ca85a8bb8df50829b2cd4e54cd4420e6d
3
+ size 7714459
Datasets/FeTA24.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9ced4e1e90f4a2864c88d76caf600e01e3263b6391fcff0955632198e6e4550
3
+ size 17351418
Datasets/HNTSMRG24.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0aba71c13c338c471f418af95032fdefdd00089bce0bade41db32ac73bdf6d6
3
+ size 365538926
Datasets/ISLES24.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9468c053e8ac7e208a60946c1fc7c8f7883671ef2ea927ae2c777f987697ade
3
+ size 7263795
Datasets/KiPA22.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16d9df6be1c976969bcfad61697cd218994521fae1971bd1bb89e69a6a41a95a
3
+ size 533364627
Datasets/KiTS23.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c49dce5d5009c373188df83511163a57063d468b4364482514b1941a234cca6
3
+ size 2247706597
Datasets/MSD.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63718a4752fe44c188513d167e5637a517b8cfaa670facb14b2fc428889f6c34
3
+ size 1554507726
Datasets/OAIZIB-CM.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd11ef20d5c33b98d9c2a1041062d4e07426732a75c81042d0cf8789efe9507d
3
+ size 53329224
Datasets/SKM-TEA.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f633727ec1bbbe68d5ee294b2d81b76fe1fc6b8a3070b2f2f806489ba370002f
3
+ size 28195237
Datasets/ToothFairy2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc343d0f51aaae299b1ec5a25220512b972a71e8d59103b834d06af0a9bed472
3
+ size 108617082
Datasets/TopCoW24.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b346b99b28a7add01f6c3efbd13adfa7f12124df5a78bd8c1c7908920fe2afc6
3
+ size 10380429
Datasets/TotalSegmentator.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b823e73589521e3a31189bf18726695b04363267c945e5ed3a5723cbcb38010
3
+ size 830561524
Datasets/autoPET-III.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67c63f01aa85155c8535fde62a6895687465faa40420b7e19d0913fdc088ad08
3
+ size 180238799
LICENSE ADDED
@@ -0,0 +1 @@
 
 
1
+ Data and code are released under CC-BY-NC 4.0 (https://creativecommons.org/licenses/by-nc/4.0/).
MedVision.py ADDED
The diff for this file is too large to render. See raw diff
 
README.md CHANGED
@@ -1,3 +1,42 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # About
2
+ **MedVision**, a large-scale, multi-anatomy, multi-modality dataset for quantitative medical image analysis.
3
+
4
+ # News
5
+ - [Oct 8, 2025] 🚀 Release **MedVision** dataset v1.0.0
6
+
7
+ # Requirement
8
+ 📝 Note: `trust_remote_code` is no longer supported in datasets>=4.0.0, install `dataset` with `pip install datasets==3.6.0`
9
+
10
+ # Use
11
+ ```python
12
+ import os
13
+ from datasets import load_dataset, config
14
+
15
+ # Set data folder
16
+ os.environ["MedVision_DATA_DIR"] = <your/data/folder>
17
+
18
+ # Pick a dataset config name and split
19
+ config = <config-name>
20
+ split_name = "test", # use "test" for testing set config; use "train" for training set config
21
+
22
+ # Get dataset
23
+ ds = load_dataset(
24
+ "YongchengYAO/MedVision",
25
+ name=config,
26
+ trust_remote_code=True,
27
+ split=split_name,
28
+ )
29
+ ```
30
+ 📝 List of config names in `info/`
31
+
32
+ # Environment Variables
33
+ ```bash
34
+ # Set where data will be saved, requires ~1T for the complete dataset
35
+ export MedVision_DATA_DIR=<your/data/folder>
36
+
37
+ # Force download and process raw images, default to "False"
38
+ export MedVision_FORCE_DOWNLOAD_DATA="False"
39
+
40
+ # Force install dataset codebase, default to "False"
41
+ export MedVision_FORCE_INSTALL_CODE="False"
42
+ ```
info/ConfigurationsList_All.csv ADDED
@@ -0,0 +1,820 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AbdomenAtlas1.0Mini_MaskSize_Task01_Sagittal_Train
2
+ AbdomenAtlas1.0Mini_MaskSize_Task01_Sagittal_Test
3
+ AbdomenAtlas1.0Mini_MaskSize_Task01_Coronal_Train
4
+ AbdomenAtlas1.0Mini_MaskSize_Task01_Coronal_Test
5
+ AbdomenAtlas1.0Mini_MaskSize_Task01_Axial_Train
6
+ AbdomenAtlas1.0Mini_MaskSize_Task01_Axial_Test
7
+ AbdomenAtlas1.0Mini_BoxSize_Task01_Sagittal_Train
8
+ AbdomenAtlas1.0Mini_BoxSize_Task01_Sagittal_Test
9
+ AbdomenAtlas1.0Mini_BoxSize_Task01_Coronal_Train
10
+ AbdomenAtlas1.0Mini_BoxSize_Task01_Coronal_Test
11
+ AbdomenAtlas1.0Mini_BoxSize_Task01_Axial_Train
12
+ AbdomenAtlas1.0Mini_BoxSize_Task01_Axial_Test
13
+ AbdomenCT-1K_MaskSize_Task01_Sagittal_Train
14
+ AbdomenCT-1K_MaskSize_Task01_Sagittal_Test
15
+ AbdomenCT-1K_MaskSize_Task01_Coronal_Train
16
+ AbdomenCT-1K_MaskSize_Task01_Coronal_Test
17
+ AbdomenCT-1K_MaskSize_Task01_Axial_Train
18
+ AbdomenCT-1K_MaskSize_Task01_Axial_Test
19
+ AbdomenCT-1K_BoxSize_Task01_Sagittal_Train
20
+ AbdomenCT-1K_BoxSize_Task01_Sagittal_Test
21
+ AbdomenCT-1K_BoxSize_Task01_Coronal_Train
22
+ AbdomenCT-1K_BoxSize_Task01_Coronal_Test
23
+ AbdomenCT-1K_BoxSize_Task01_Axial_Train
24
+ AbdomenCT-1K_BoxSize_Task01_Axial_Test
25
+ ACDC_MaskSize_Task01_Sagittal_Train
26
+ ACDC_MaskSize_Task01_Sagittal_Test
27
+ ACDC_MaskSize_Task01_Coronal_Train
28
+ ACDC_MaskSize_Task01_Coronal_Test
29
+ ACDC_MaskSize_Task01_Axial_Train
30
+ ACDC_MaskSize_Task01_Axial_Test
31
+ ACDC_BoxSize_Task01_Sagittal_Train
32
+ ACDC_BoxSize_Task01_Sagittal_Test
33
+ ACDC_BoxSize_Task01_Coronal_Train
34
+ ACDC_BoxSize_Task01_Coronal_Test
35
+ ACDC_BoxSize_Task01_Axial_Train
36
+ ACDC_BoxSize_Task01_Axial_Test
37
+ AMOS22_MaskSize_Task01_Sagittal_Train
38
+ AMOS22_MaskSize_Task01_Sagittal_Test
39
+ AMOS22_MaskSize_Task01_Coronal_Train
40
+ AMOS22_MaskSize_Task01_Coronal_Test
41
+ AMOS22_MaskSize_Task01_Axial_Train
42
+ AMOS22_MaskSize_Task01_Axial_Test
43
+ AMOS22_MaskSize_Task02_Sagittal_Train
44
+ AMOS22_MaskSize_Task02_Sagittal_Test
45
+ AMOS22_MaskSize_Task02_Coronal_Train
46
+ AMOS22_MaskSize_Task02_Coronal_Test
47
+ AMOS22_MaskSize_Task02_Axial_Train
48
+ AMOS22_MaskSize_Task02_Axial_Test
49
+ AMOS22_BoxSize_Task01_Sagittal_Train
50
+ AMOS22_BoxSize_Task01_Sagittal_Test
51
+ AMOS22_BoxSize_Task01_Coronal_Train
52
+ AMOS22_BoxSize_Task01_Coronal_Test
53
+ AMOS22_BoxSize_Task01_Axial_Train
54
+ AMOS22_BoxSize_Task01_Axial_Test
55
+ AMOS22_BoxSize_Task02_Sagittal_Train
56
+ AMOS22_BoxSize_Task02_Sagittal_Test
57
+ AMOS22_BoxSize_Task02_Coronal_Train
58
+ AMOS22_BoxSize_Task02_Coronal_Test
59
+ AMOS22_BoxSize_Task02_Axial_Train
60
+ AMOS22_BoxSize_Task02_Axial_Test
61
+ autoPET-III_MaskSize_Task01_Sagittal_Train
62
+ autoPET-III_MaskSize_Task01_Sagittal_Test
63
+ autoPET-III_MaskSize_Task01_Coronal_Train
64
+ autoPET-III_MaskSize_Task01_Coronal_Test
65
+ autoPET-III_MaskSize_Task01_Axial_Train
66
+ autoPET-III_MaskSize_Task01_Axial_Test
67
+ autoPET-III_MaskSize_Task02_Sagittal_Train
68
+ autoPET-III_MaskSize_Task02_Sagittal_Test
69
+ autoPET-III_MaskSize_Task02_Coronal_Train
70
+ autoPET-III_MaskSize_Task02_Coronal_Test
71
+ autoPET-III_MaskSize_Task02_Axial_Train
72
+ autoPET-III_MaskSize_Task02_Axial_Test
73
+ autoPET-III_BoxSize_Task01_Sagittal_Train
74
+ autoPET-III_BoxSize_Task01_Sagittal_Test
75
+ autoPET-III_BoxSize_Task01_Coronal_Train
76
+ autoPET-III_BoxSize_Task01_Coronal_Test
77
+ autoPET-III_BoxSize_Task01_Axial_Train
78
+ autoPET-III_BoxSize_Task01_Axial_Test
79
+ autoPET-III_BoxSize_Task02_Sagittal_Train
80
+ autoPET-III_BoxSize_Task02_Sagittal_Test
81
+ autoPET-III_BoxSize_Task02_Coronal_Train
82
+ autoPET-III_BoxSize_Task02_Coronal_Test
83
+ autoPET-III_BoxSize_Task02_Axial_Train
84
+ autoPET-III_BoxSize_Task02_Axial_Test
85
+ autoPET-III_TumorLesionSize_Task01_Sagittal_Train
86
+ autoPET-III_TumorLesionSize_Task01_Sagittal_Test
87
+ autoPET-III_TumorLesionSize_Task01_Coronal_Train
88
+ autoPET-III_TumorLesionSize_Task01_Coronal_Test
89
+ autoPET-III_TumorLesionSize_Task01_Axial_Train
90
+ autoPET-III_TumorLesionSize_Task01_Axial_Test
91
+ BCV15_MaskSize_Task01_Sagittal_Train
92
+ BCV15_MaskSize_Task01_Sagittal_Test
93
+ BCV15_MaskSize_Task01_Coronal_Train
94
+ BCV15_MaskSize_Task01_Coronal_Test
95
+ BCV15_MaskSize_Task01_Axial_Train
96
+ BCV15_MaskSize_Task01_Axial_Test
97
+ BCV15_MaskSize_Task02_Sagittal_Train
98
+ BCV15_MaskSize_Task02_Sagittal_Test
99
+ BCV15_MaskSize_Task02_Coronal_Train
100
+ BCV15_MaskSize_Task02_Coronal_Test
101
+ BCV15_MaskSize_Task02_Axial_Train
102
+ BCV15_MaskSize_Task02_Axial_Test
103
+ BCV15_BoxSize_Task01_Sagittal_Train
104
+ BCV15_BoxSize_Task01_Sagittal_Test
105
+ BCV15_BoxSize_Task01_Coronal_Train
106
+ BCV15_BoxSize_Task01_Coronal_Test
107
+ BCV15_BoxSize_Task01_Axial_Train
108
+ BCV15_BoxSize_Task01_Axial_Test
109
+ BCV15_BoxSize_Task02_Sagittal_Train
110
+ BCV15_BoxSize_Task02_Sagittal_Test
111
+ BCV15_BoxSize_Task02_Coronal_Train
112
+ BCV15_BoxSize_Task02_Coronal_Test
113
+ BCV15_BoxSize_Task02_Axial_Train
114
+ BCV15_BoxSize_Task02_Axial_Test
115
+ BraTS24_MaskSize_Task01_Sagittal_Train
116
+ BraTS24_MaskSize_Task01_Sagittal_Test
117
+ BraTS24_MaskSize_Task01_Coronal_Train
118
+ BraTS24_MaskSize_Task01_Coronal_Test
119
+ BraTS24_MaskSize_Task01_Axial_Train
120
+ BraTS24_MaskSize_Task01_Axial_Test
121
+ BraTS24_MaskSize_Task02_Sagittal_Train
122
+ BraTS24_MaskSize_Task02_Sagittal_Test
123
+ BraTS24_MaskSize_Task02_Coronal_Train
124
+ BraTS24_MaskSize_Task02_Coronal_Test
125
+ BraTS24_MaskSize_Task02_Axial_Train
126
+ BraTS24_MaskSize_Task02_Axial_Test
127
+ BraTS24_MaskSize_Task03_Sagittal_Train
128
+ BraTS24_MaskSize_Task03_Sagittal_Test
129
+ BraTS24_MaskSize_Task03_Coronal_Train
130
+ BraTS24_MaskSize_Task03_Coronal_Test
131
+ BraTS24_MaskSize_Task03_Axial_Train
132
+ BraTS24_MaskSize_Task03_Axial_Test
133
+ BraTS24_MaskSize_Task04_Sagittal_Train
134
+ BraTS24_MaskSize_Task04_Sagittal_Test
135
+ BraTS24_MaskSize_Task04_Coronal_Train
136
+ BraTS24_MaskSize_Task04_Coronal_Test
137
+ BraTS24_MaskSize_Task04_Axial_Train
138
+ BraTS24_MaskSize_Task04_Axial_Test
139
+ BraTS24_MaskSize_Task05_Sagittal_Train
140
+ BraTS24_MaskSize_Task05_Sagittal_Test
141
+ BraTS24_MaskSize_Task05_Coronal_Train
142
+ BraTS24_MaskSize_Task05_Coronal_Test
143
+ BraTS24_MaskSize_Task05_Axial_Train
144
+ BraTS24_MaskSize_Task05_Axial_Test
145
+ BraTS24_MaskSize_Task06_Sagittal_Train
146
+ BraTS24_MaskSize_Task06_Sagittal_Test
147
+ BraTS24_MaskSize_Task06_Coronal_Train
148
+ BraTS24_MaskSize_Task06_Coronal_Test
149
+ BraTS24_MaskSize_Task06_Axial_Train
150
+ BraTS24_MaskSize_Task06_Axial_Test
151
+ BraTS24_MaskSize_Task07_Sagittal_Train
152
+ BraTS24_MaskSize_Task07_Sagittal_Test
153
+ BraTS24_MaskSize_Task07_Coronal_Train
154
+ BraTS24_MaskSize_Task07_Coronal_Test
155
+ BraTS24_MaskSize_Task07_Axial_Train
156
+ BraTS24_MaskSize_Task07_Axial_Test
157
+ BraTS24_MaskSize_Task08_Sagittal_Train
158
+ BraTS24_MaskSize_Task08_Sagittal_Test
159
+ BraTS24_MaskSize_Task08_Coronal_Train
160
+ BraTS24_MaskSize_Task08_Coronal_Test
161
+ BraTS24_MaskSize_Task08_Axial_Train
162
+ BraTS24_MaskSize_Task08_Axial_Test
163
+ BraTS24_MaskSize_Task09_Sagittal_Train
164
+ BraTS24_MaskSize_Task09_Sagittal_Test
165
+ BraTS24_MaskSize_Task09_Coronal_Train
166
+ BraTS24_MaskSize_Task09_Coronal_Test
167
+ BraTS24_MaskSize_Task09_Axial_Train
168
+ BraTS24_MaskSize_Task09_Axial_Test
169
+ BraTS24_MaskSize_Task10_Sagittal_Train
170
+ BraTS24_MaskSize_Task10_Sagittal_Test
171
+ BraTS24_MaskSize_Task10_Coronal_Train
172
+ BraTS24_MaskSize_Task10_Coronal_Test
173
+ BraTS24_MaskSize_Task10_Axial_Train
174
+ BraTS24_MaskSize_Task10_Axial_Test
175
+ BraTS24_MaskSize_Task11_Sagittal_Train
176
+ BraTS24_MaskSize_Task11_Sagittal_Test
177
+ BraTS24_MaskSize_Task11_Coronal_Train
178
+ BraTS24_MaskSize_Task11_Coronal_Test
179
+ BraTS24_MaskSize_Task11_Axial_Train
180
+ BraTS24_MaskSize_Task11_Axial_Test
181
+ BraTS24_MaskSize_Task12_Sagittal_Train
182
+ BraTS24_MaskSize_Task12_Sagittal_Test
183
+ BraTS24_MaskSize_Task12_Coronal_Train
184
+ BraTS24_MaskSize_Task12_Coronal_Test
185
+ BraTS24_MaskSize_Task12_Axial_Train
186
+ BraTS24_MaskSize_Task12_Axial_Test
187
+ BraTS24_MaskSize_Task13_Sagittal_Train
188
+ BraTS24_MaskSize_Task13_Sagittal_Test
189
+ BraTS24_MaskSize_Task13_Coronal_Train
190
+ BraTS24_MaskSize_Task13_Coronal_Test
191
+ BraTS24_MaskSize_Task13_Axial_Train
192
+ BraTS24_MaskSize_Task13_Axial_Test
193
+ BraTS24_BoxSize_Task01_Sagittal_Train
194
+ BraTS24_BoxSize_Task01_Sagittal_Test
195
+ BraTS24_BoxSize_Task01_Coronal_Train
196
+ BraTS24_BoxSize_Task01_Coronal_Test
197
+ BraTS24_BoxSize_Task01_Axial_Train
198
+ BraTS24_BoxSize_Task01_Axial_Test
199
+ BraTS24_BoxSize_Task02_Sagittal_Train
200
+ BraTS24_BoxSize_Task02_Sagittal_Test
201
+ BraTS24_BoxSize_Task02_Coronal_Train
202
+ BraTS24_BoxSize_Task02_Coronal_Test
203
+ BraTS24_BoxSize_Task02_Axial_Train
204
+ BraTS24_BoxSize_Task02_Axial_Test
205
+ BraTS24_BoxSize_Task03_Sagittal_Train
206
+ BraTS24_BoxSize_Task03_Sagittal_Test
207
+ BraTS24_BoxSize_Task03_Coronal_Train
208
+ BraTS24_BoxSize_Task03_Coronal_Test
209
+ BraTS24_BoxSize_Task03_Axial_Train
210
+ BraTS24_BoxSize_Task03_Axial_Test
211
+ BraTS24_BoxSize_Task04_Sagittal_Train
212
+ BraTS24_BoxSize_Task04_Sagittal_Test
213
+ BraTS24_BoxSize_Task04_Coronal_Train
214
+ BraTS24_BoxSize_Task04_Coronal_Test
215
+ BraTS24_BoxSize_Task04_Axial_Train
216
+ BraTS24_BoxSize_Task04_Axial_Test
217
+ BraTS24_BoxSize_Task05_Sagittal_Train
218
+ BraTS24_BoxSize_Task05_Sagittal_Test
219
+ BraTS24_BoxSize_Task05_Coronal_Train
220
+ BraTS24_BoxSize_Task05_Coronal_Test
221
+ BraTS24_BoxSize_Task05_Axial_Train
222
+ BraTS24_BoxSize_Task05_Axial_Test
223
+ BraTS24_BoxSize_Task06_Sagittal_Train
224
+ BraTS24_BoxSize_Task06_Sagittal_Test
225
+ BraTS24_BoxSize_Task06_Coronal_Train
226
+ BraTS24_BoxSize_Task06_Coronal_Test
227
+ BraTS24_BoxSize_Task06_Axial_Train
228
+ BraTS24_BoxSize_Task06_Axial_Test
229
+ BraTS24_BoxSize_Task07_Sagittal_Train
230
+ BraTS24_BoxSize_Task07_Sagittal_Test
231
+ BraTS24_BoxSize_Task07_Coronal_Train
232
+ BraTS24_BoxSize_Task07_Coronal_Test
233
+ BraTS24_BoxSize_Task07_Axial_Train
234
+ BraTS24_BoxSize_Task07_Axial_Test
235
+ BraTS24_BoxSize_Task08_Sagittal_Train
236
+ BraTS24_BoxSize_Task08_Sagittal_Test
237
+ BraTS24_BoxSize_Task08_Coronal_Train
238
+ BraTS24_BoxSize_Task08_Coronal_Test
239
+ BraTS24_BoxSize_Task08_Axial_Train
240
+ BraTS24_BoxSize_Task08_Axial_Test
241
+ BraTS24_BoxSize_Task09_Sagittal_Train
242
+ BraTS24_BoxSize_Task09_Sagittal_Test
243
+ BraTS24_BoxSize_Task09_Coronal_Train
244
+ BraTS24_BoxSize_Task09_Coronal_Test
245
+ BraTS24_BoxSize_Task09_Axial_Train
246
+ BraTS24_BoxSize_Task09_Axial_Test
247
+ BraTS24_BoxSize_Task10_Sagittal_Train
248
+ BraTS24_BoxSize_Task10_Sagittal_Test
249
+ BraTS24_BoxSize_Task10_Coronal_Train
250
+ BraTS24_BoxSize_Task10_Coronal_Test
251
+ BraTS24_BoxSize_Task10_Axial_Train
252
+ BraTS24_BoxSize_Task10_Axial_Test
253
+ BraTS24_BoxSize_Task11_Sagittal_Train
254
+ BraTS24_BoxSize_Task11_Sagittal_Test
255
+ BraTS24_BoxSize_Task11_Coronal_Train
256
+ BraTS24_BoxSize_Task11_Coronal_Test
257
+ BraTS24_BoxSize_Task11_Axial_Train
258
+ BraTS24_BoxSize_Task11_Axial_Test
259
+ BraTS24_BoxSize_Task12_Sagittal_Train
260
+ BraTS24_BoxSize_Task12_Sagittal_Test
261
+ BraTS24_BoxSize_Task12_Coronal_Train
262
+ BraTS24_BoxSize_Task12_Coronal_Test
263
+ BraTS24_BoxSize_Task12_Axial_Train
264
+ BraTS24_BoxSize_Task12_Axial_Test
265
+ BraTS24_BoxSize_Task13_Sagittal_Train
266
+ BraTS24_BoxSize_Task13_Sagittal_Test
267
+ BraTS24_BoxSize_Task13_Coronal_Train
268
+ BraTS24_BoxSize_Task13_Coronal_Test
269
+ BraTS24_BoxSize_Task13_Axial_Train
270
+ BraTS24_BoxSize_Task13_Axial_Test
271
+ BraTS24_TumorLesionSize_Task01_Sagittal_Train
272
+ BraTS24_TumorLesionSize_Task01_Sagittal_Test
273
+ BraTS24_TumorLesionSize_Task01_Coronal_Train
274
+ BraTS24_TumorLesionSize_Task01_Coronal_Test
275
+ BraTS24_TumorLesionSize_Task01_Axial_Train
276
+ BraTS24_TumorLesionSize_Task01_Axial_Test
277
+ BraTS24_TumorLesionSize_Task02_Sagittal_Train
278
+ BraTS24_TumorLesionSize_Task02_Sagittal_Test
279
+ BraTS24_TumorLesionSize_Task02_Coronal_Train
280
+ BraTS24_TumorLesionSize_Task02_Coronal_Test
281
+ BraTS24_TumorLesionSize_Task02_Axial_Train
282
+ BraTS24_TumorLesionSize_Task02_Axial_Test
283
+ BraTS24_TumorLesionSize_Task03_Sagittal_Train
284
+ BraTS24_TumorLesionSize_Task03_Sagittal_Test
285
+ BraTS24_TumorLesionSize_Task03_Coronal_Train
286
+ BraTS24_TumorLesionSize_Task03_Coronal_Test
287
+ BraTS24_TumorLesionSize_Task03_Axial_Train
288
+ BraTS24_TumorLesionSize_Task03_Axial_Test
289
+ BraTS24_TumorLesionSize_Task04_Sagittal_Train
290
+ BraTS24_TumorLesionSize_Task04_Sagittal_Test
291
+ BraTS24_TumorLesionSize_Task04_Coronal_Train
292
+ BraTS24_TumorLesionSize_Task04_Coronal_Test
293
+ BraTS24_TumorLesionSize_Task04_Axial_Train
294
+ BraTS24_TumorLesionSize_Task04_Axial_Test
295
+ BraTS24_TumorLesionSize_Task05_Sagittal_Train
296
+ BraTS24_TumorLesionSize_Task05_Sagittal_Test
297
+ BraTS24_TumorLesionSize_Task05_Coronal_Train
298
+ BraTS24_TumorLesionSize_Task05_Coronal_Test
299
+ BraTS24_TumorLesionSize_Task05_Axial_Train
300
+ BraTS24_TumorLesionSize_Task05_Axial_Test
301
+ BraTS24_TumorLesionSize_Task06_Sagittal_Train
302
+ BraTS24_TumorLesionSize_Task06_Sagittal_Test
303
+ BraTS24_TumorLesionSize_Task06_Coronal_Train
304
+ BraTS24_TumorLesionSize_Task06_Coronal_Test
305
+ BraTS24_TumorLesionSize_Task06_Axial_Train
306
+ BraTS24_TumorLesionSize_Task06_Axial_Test
307
+ BraTS24_TumorLesionSize_Task07_Sagittal_Train
308
+ BraTS24_TumorLesionSize_Task07_Sagittal_Test
309
+ BraTS24_TumorLesionSize_Task07_Coronal_Train
310
+ BraTS24_TumorLesionSize_Task07_Coronal_Test
311
+ BraTS24_TumorLesionSize_Task07_Axial_Train
312
+ BraTS24_TumorLesionSize_Task07_Axial_Test
313
+ BraTS24_TumorLesionSize_Task08_Sagittal_Train
314
+ BraTS24_TumorLesionSize_Task08_Sagittal_Test
315
+ BraTS24_TumorLesionSize_Task08_Coronal_Train
316
+ BraTS24_TumorLesionSize_Task08_Coronal_Test
317
+ BraTS24_TumorLesionSize_Task08_Axial_Train
318
+ BraTS24_TumorLesionSize_Task08_Axial_Test
319
+ BraTS24_TumorLesionSize_Task09_Sagittal_Train
320
+ BraTS24_TumorLesionSize_Task09_Sagittal_Test
321
+ BraTS24_TumorLesionSize_Task09_Coronal_Train
322
+ BraTS24_TumorLesionSize_Task09_Coronal_Test
323
+ BraTS24_TumorLesionSize_Task09_Axial_Train
324
+ BraTS24_TumorLesionSize_Task09_Axial_Test
325
+ BraTS24_TumorLesionSize_Task10_Sagittal_Train
326
+ BraTS24_TumorLesionSize_Task10_Sagittal_Test
327
+ BraTS24_TumorLesionSize_Task10_Coronal_Train
328
+ BraTS24_TumorLesionSize_Task10_Coronal_Test
329
+ BraTS24_TumorLesionSize_Task10_Axial_Train
330
+ BraTS24_TumorLesionSize_Task10_Axial_Test
331
+ BraTS24_TumorLesionSize_Task11_Sagittal_Train
332
+ BraTS24_TumorLesionSize_Task11_Sagittal_Test
333
+ BraTS24_TumorLesionSize_Task11_Coronal_Train
334
+ BraTS24_TumorLesionSize_Task11_Coronal_Test
335
+ BraTS24_TumorLesionSize_Task11_Axial_Train
336
+ BraTS24_TumorLesionSize_Task11_Axial_Test
337
+ BraTS24_TumorLesionSize_Task12_Sagittal_Train
338
+ BraTS24_TumorLesionSize_Task12_Sagittal_Test
339
+ BraTS24_TumorLesionSize_Task12_Coronal_Train
340
+ BraTS24_TumorLesionSize_Task12_Coronal_Test
341
+ BraTS24_TumorLesionSize_Task12_Axial_Train
342
+ BraTS24_TumorLesionSize_Task12_Axial_Test
343
+ CAMUS_MaskSize_Task01_Sagittal_Train
344
+ CAMUS_MaskSize_Task01_Sagittal_Test
345
+ CAMUS_MaskSize_Task01_Coronal_Train
346
+ CAMUS_MaskSize_Task01_Coronal_Test
347
+ CAMUS_MaskSize_Task01_Axial_Train
348
+ CAMUS_MaskSize_Task01_Axial_Test
349
+ CAMUS_BoxSize_Task01_Sagittal_Train
350
+ CAMUS_BoxSize_Task01_Sagittal_Test
351
+ CAMUS_BoxSize_Task01_Coronal_Train
352
+ CAMUS_BoxSize_Task01_Coronal_Test
353
+ CAMUS_BoxSize_Task01_Axial_Train
354
+ CAMUS_BoxSize_Task01_Axial_Test
355
+ Ceph-Biometrics-400_BiometricsFromLandmarks_Distance_Task01_Sagittal_Train
356
+ Ceph-Biometrics-400_BiometricsFromLandmarks_Distance_Task01_Sagittal_Test
357
+ Ceph-Biometrics-400_BiometricsFromLandmarks_Angle_Task01_Sagittal_Train
358
+ Ceph-Biometrics-400_BiometricsFromLandmarks_Angle_Task01_Sagittal_Test
359
+ CrossMoDA_MaskSize_Task01_Sagittal_Train
360
+ CrossMoDA_MaskSize_Task01_Sagittal_Test
361
+ CrossMoDA_MaskSize_Task01_Coronal_Train
362
+ CrossMoDA_MaskSize_Task01_Coronal_Test
363
+ CrossMoDA_MaskSize_Task01_Axial_Train
364
+ CrossMoDA_MaskSize_Task01_Axial_Test
365
+ CrossMoDA_BoxSize_Task01_Sagittal_Train
366
+ CrossMoDA_BoxSize_Task01_Sagittal_Test
367
+ CrossMoDA_BoxSize_Task01_Coronal_Train
368
+ CrossMoDA_BoxSize_Task01_Coronal_Test
369
+ CrossMoDA_BoxSize_Task01_Axial_Train
370
+ CrossMoDA_BoxSize_Task01_Axial_Test
371
+ FeTA24_MaskSize_Task01_Sagittal_Train
372
+ FeTA24_MaskSize_Task01_Sagittal_Test
373
+ FeTA24_MaskSize_Task01_Coronal_Train
374
+ FeTA24_MaskSize_Task01_Coronal_Test
375
+ FeTA24_MaskSize_Task01_Axial_Train
376
+ FeTA24_MaskSize_Task01_Axial_Test
377
+ FeTA24_BoxSize_Task01_Sagittal_Train
378
+ FeTA24_BoxSize_Task01_Sagittal_Test
379
+ FeTA24_BoxSize_Task01_Coronal_Train
380
+ FeTA24_BoxSize_Task01_Coronal_Test
381
+ FeTA24_BoxSize_Task01_Axial_Train
382
+ FeTA24_BoxSize_Task01_Axial_Test
383
+ FeTA24_BiometricsFromLandmarks_Task01_Sagittal_Train
384
+ FeTA24_BiometricsFromLandmarks_Task01_Sagittal_Test
385
+ FeTA24_BiometricsFromLandmarks_Task01_Coronal_Train
386
+ FeTA24_BiometricsFromLandmarks_Task01_Coronal_Test
387
+ FeTA24_BiometricsFromLandmarks_Task01_Axial_Train
388
+ FeTA24_BiometricsFromLandmarks_Task01_Axial_Test
389
+ FLARE22_MaskSize_Task01_Sagittal_Train
390
+ FLARE22_MaskSize_Task01_Sagittal_Test
391
+ FLARE22_MaskSize_Task01_Coronal_Train
392
+ FLARE22_MaskSize_Task01_Coronal_Test
393
+ FLARE22_MaskSize_Task01_Axial_Train
394
+ FLARE22_MaskSize_Task01_Axial_Test
395
+ FLARE22_BoxSize_Task01_Sagittal_Train
396
+ FLARE22_BoxSize_Task01_Sagittal_Test
397
+ FLARE22_BoxSize_Task01_Coronal_Train
398
+ FLARE22_BoxSize_Task01_Coronal_Test
399
+ FLARE22_BoxSize_Task01_Axial_Train
400
+ FLARE22_BoxSize_Task01_Axial_Test
401
+ HNTSMRG24_MaskSize_Task01_Sagittal_Train
402
+ HNTSMRG24_MaskSize_Task01_Sagittal_Test
403
+ HNTSMRG24_MaskSize_Task01_Coronal_Train
404
+ HNTSMRG24_MaskSize_Task01_Coronal_Test
405
+ HNTSMRG24_MaskSize_Task01_Axial_Train
406
+ HNTSMRG24_MaskSize_Task01_Axial_Test
407
+ HNTSMRG24_MaskSize_Task02_Sagittal_Train
408
+ HNTSMRG24_MaskSize_Task02_Sagittal_Test
409
+ HNTSMRG24_MaskSize_Task02_Coronal_Train
410
+ HNTSMRG24_MaskSize_Task02_Coronal_Test
411
+ HNTSMRG24_MaskSize_Task02_Axial_Train
412
+ HNTSMRG24_MaskSize_Task02_Axial_Test
413
+ HNTSMRG24_BoxSize_Task01_Sagittal_Train
414
+ HNTSMRG24_BoxSize_Task01_Sagittal_Test
415
+ HNTSMRG24_BoxSize_Task01_Coronal_Train
416
+ HNTSMRG24_BoxSize_Task01_Coronal_Test
417
+ HNTSMRG24_BoxSize_Task01_Axial_Train
418
+ HNTSMRG24_BoxSize_Task01_Axial_Test
419
+ HNTSMRG24_BoxSize_Task02_Sagittal_Train
420
+ HNTSMRG24_BoxSize_Task02_Sagittal_Test
421
+ HNTSMRG24_BoxSize_Task02_Coronal_Train
422
+ HNTSMRG24_BoxSize_Task02_Coronal_Test
423
+ HNTSMRG24_BoxSize_Task02_Axial_Train
424
+ HNTSMRG24_BoxSize_Task02_Axial_Test
425
+ HNTSMRG24_TumorLesionSize_Task01_Sagittal_Train
426
+ HNTSMRG24_TumorLesionSize_Task01_Sagittal_Test
427
+ HNTSMRG24_TumorLesionSize_Task01_Coronal_Train
428
+ HNTSMRG24_TumorLesionSize_Task01_Coronal_Test
429
+ HNTSMRG24_TumorLesionSize_Task01_Axial_Train
430
+ HNTSMRG24_TumorLesionSize_Task01_Axial_Test
431
+ HNTSMRG24_TumorLesionSize_Task02_Sagittal_Train
432
+ HNTSMRG24_TumorLesionSize_Task02_Sagittal_Test
433
+ HNTSMRG24_TumorLesionSize_Task02_Coronal_Train
434
+ HNTSMRG24_TumorLesionSize_Task02_Coronal_Test
435
+ HNTSMRG24_TumorLesionSize_Task02_Axial_Train
436
+ HNTSMRG24_TumorLesionSize_Task02_Axial_Test
437
+ HNTSMRG24_TumorLesionSize_Task03_Sagittal_Train
438
+ HNTSMRG24_TumorLesionSize_Task03_Sagittal_Test
439
+ HNTSMRG24_TumorLesionSize_Task03_Coronal_Train
440
+ HNTSMRG24_TumorLesionSize_Task03_Coronal_Test
441
+ HNTSMRG24_TumorLesionSize_Task03_Axial_Train
442
+ HNTSMRG24_TumorLesionSize_Task03_Axial_Test
443
+ HNTSMRG24_TumorLesionSize_Task04_Sagittal_Train
444
+ HNTSMRG24_TumorLesionSize_Task04_Sagittal_Test
445
+ HNTSMRG24_TumorLesionSize_Task04_Coronal_Train
446
+ HNTSMRG24_TumorLesionSize_Task04_Coronal_Test
447
+ HNTSMRG24_TumorLesionSize_Task04_Axial_Train
448
+ HNTSMRG24_TumorLesionSize_Task04_Axial_Test
449
+ ISLES24_MaskSize_Task01_Sagittal_Train
450
+ ISLES24_MaskSize_Task01_Sagittal_Test
451
+ ISLES24_MaskSize_Task01_Coronal_Train
452
+ ISLES24_MaskSize_Task01_Coronal_Test
453
+ ISLES24_MaskSize_Task01_Axial_Train
454
+ ISLES24_MaskSize_Task01_Axial_Test
455
+ ISLES24_MaskSize_Task02_Sagittal_Train
456
+ ISLES24_MaskSize_Task02_Sagittal_Test
457
+ ISLES24_MaskSize_Task02_Coronal_Train
458
+ ISLES24_MaskSize_Task02_Coronal_Test
459
+ ISLES24_MaskSize_Task02_Axial_Train
460
+ ISLES24_MaskSize_Task02_Axial_Test
461
+ ISLES24_BoxSize_Task01_Sagittal_Train
462
+ ISLES24_BoxSize_Task01_Sagittal_Test
463
+ ISLES24_BoxSize_Task01_Coronal_Train
464
+ ISLES24_BoxSize_Task01_Coronal_Test
465
+ ISLES24_BoxSize_Task01_Axial_Train
466
+ ISLES24_BoxSize_Task01_Axial_Test
467
+ ISLES24_BoxSize_Task02_Sagittal_Train
468
+ ISLES24_BoxSize_Task02_Sagittal_Test
469
+ ISLES24_BoxSize_Task02_Coronal_Train
470
+ ISLES24_BoxSize_Task02_Coronal_Test
471
+ ISLES24_BoxSize_Task02_Axial_Train
472
+ ISLES24_BoxSize_Task02_Axial_Test
473
+ KiPA22_MaskSize_Task01_Sagittal_Train
474
+ KiPA22_MaskSize_Task01_Sagittal_Test
475
+ KiPA22_MaskSize_Task01_Coronal_Train
476
+ KiPA22_MaskSize_Task01_Coronal_Test
477
+ KiPA22_MaskSize_Task01_Axial_Train
478
+ KiPA22_MaskSize_Task01_Axial_Test
479
+ KiPA22_BoxSize_Task01_Sagittal_Train
480
+ KiPA22_BoxSize_Task01_Sagittal_Test
481
+ KiPA22_BoxSize_Task01_Coronal_Train
482
+ KiPA22_BoxSize_Task01_Coronal_Test
483
+ KiPA22_BoxSize_Task01_Axial_Train
484
+ KiPA22_BoxSize_Task01_Axial_Test
485
+ KiPA22_TumorLesionSize_Task01_Sagittal_Train
486
+ KiPA22_TumorLesionSize_Task01_Sagittal_Test
487
+ KiPA22_TumorLesionSize_Task01_Coronal_Train
488
+ KiPA22_TumorLesionSize_Task01_Coronal_Test
489
+ KiPA22_TumorLesionSize_Task01_Axial_Train
490
+ KiPA22_TumorLesionSize_Task01_Axial_Test
491
+ KiTS23_MaskSize_Task01_Sagittal_Train
492
+ KiTS23_MaskSize_Task01_Sagittal_Test
493
+ KiTS23_MaskSize_Task01_Coronal_Train
494
+ KiTS23_MaskSize_Task01_Coronal_Test
495
+ KiTS23_MaskSize_Task01_Axial_Train
496
+ KiTS23_MaskSize_Task01_Axial_Test
497
+ KiTS23_BoxSize_Task01_Sagittal_Train
498
+ KiTS23_BoxSize_Task01_Sagittal_Test
499
+ KiTS23_BoxSize_Task01_Coronal_Train
500
+ KiTS23_BoxSize_Task01_Coronal_Test
501
+ KiTS23_BoxSize_Task01_Axial_Train
502
+ KiTS23_BoxSize_Task01_Axial_Test
503
+ KiTS23_TumorLesionSize_Task01_Sagittal_Train
504
+ KiTS23_TumorLesionSize_Task01_Sagittal_Test
505
+ KiTS23_TumorLesionSize_Task01_Coronal_Train
506
+ KiTS23_TumorLesionSize_Task01_Coronal_Test
507
+ KiTS23_TumorLesionSize_Task01_Axial_Train
508
+ KiTS23_TumorLesionSize_Task01_Axial_Test
509
+ MSD_MaskSize_Task01_Sagittal_Train
510
+ MSD_MaskSize_Task01_Sagittal_Test
511
+ MSD_MaskSize_Task01_Coronal_Train
512
+ MSD_MaskSize_Task01_Coronal_Test
513
+ MSD_MaskSize_Task01_Axial_Train
514
+ MSD_MaskSize_Task01_Axial_Test
515
+ MSD_MaskSize_Task02_Sagittal_Train
516
+ MSD_MaskSize_Task02_Sagittal_Test
517
+ MSD_MaskSize_Task02_Coronal_Train
518
+ MSD_MaskSize_Task02_Coronal_Test
519
+ MSD_MaskSize_Task02_Axial_Train
520
+ MSD_MaskSize_Task02_Axial_Test
521
+ MSD_MaskSize_Task03_Sagittal_Train
522
+ MSD_MaskSize_Task03_Sagittal_Test
523
+ MSD_MaskSize_Task03_Coronal_Train
524
+ MSD_MaskSize_Task03_Coronal_Test
525
+ MSD_MaskSize_Task03_Axial_Train
526
+ MSD_MaskSize_Task03_Axial_Test
527
+ MSD_MaskSize_Task04_Sagittal_Train
528
+ MSD_MaskSize_Task04_Sagittal_Test
529
+ MSD_MaskSize_Task04_Coronal_Train
530
+ MSD_MaskSize_Task04_Coronal_Test
531
+ MSD_MaskSize_Task04_Axial_Train
532
+ MSD_MaskSize_Task04_Axial_Test
533
+ MSD_MaskSize_Task05_Sagittal_Train
534
+ MSD_MaskSize_Task05_Sagittal_Test
535
+ MSD_MaskSize_Task05_Coronal_Train
536
+ MSD_MaskSize_Task05_Coronal_Test
537
+ MSD_MaskSize_Task05_Axial_Train
538
+ MSD_MaskSize_Task05_Axial_Test
539
+ MSD_MaskSize_Task06_Sagittal_Train
540
+ MSD_MaskSize_Task06_Sagittal_Test
541
+ MSD_MaskSize_Task06_Coronal_Train
542
+ MSD_MaskSize_Task06_Coronal_Test
543
+ MSD_MaskSize_Task06_Axial_Train
544
+ MSD_MaskSize_Task06_Axial_Test
545
+ MSD_MaskSize_Task07_Sagittal_Train
546
+ MSD_MaskSize_Task07_Sagittal_Test
547
+ MSD_MaskSize_Task07_Coronal_Train
548
+ MSD_MaskSize_Task07_Coronal_Test
549
+ MSD_MaskSize_Task07_Axial_Train
550
+ MSD_MaskSize_Task07_Axial_Test
551
+ MSD_MaskSize_Task08_Sagittal_Train
552
+ MSD_MaskSize_Task08_Sagittal_Test
553
+ MSD_MaskSize_Task08_Coronal_Train
554
+ MSD_MaskSize_Task08_Coronal_Test
555
+ MSD_MaskSize_Task08_Axial_Train
556
+ MSD_MaskSize_Task08_Axial_Test
557
+ MSD_MaskSize_Task09_Sagittal_Train
558
+ MSD_MaskSize_Task09_Sagittal_Test
559
+ MSD_MaskSize_Task09_Coronal_Train
560
+ MSD_MaskSize_Task09_Coronal_Test
561
+ MSD_MaskSize_Task09_Axial_Train
562
+ MSD_MaskSize_Task09_Axial_Test
563
+ MSD_MaskSize_Task10_Sagittal_Train
564
+ MSD_MaskSize_Task10_Sagittal_Test
565
+ MSD_MaskSize_Task10_Coronal_Train
566
+ MSD_MaskSize_Task10_Coronal_Test
567
+ MSD_MaskSize_Task10_Axial_Train
568
+ MSD_MaskSize_Task10_Axial_Test
569
+ MSD_MaskSize_Task11_Sagittal_Train
570
+ MSD_MaskSize_Task11_Sagittal_Test
571
+ MSD_MaskSize_Task11_Coronal_Train
572
+ MSD_MaskSize_Task11_Coronal_Test
573
+ MSD_MaskSize_Task11_Axial_Train
574
+ MSD_MaskSize_Task11_Axial_Test
575
+ MSD_MaskSize_Task12_Sagittal_Train
576
+ MSD_MaskSize_Task12_Sagittal_Test
577
+ MSD_MaskSize_Task12_Coronal_Train
578
+ MSD_MaskSize_Task12_Coronal_Test
579
+ MSD_MaskSize_Task12_Axial_Train
580
+ MSD_MaskSize_Task12_Axial_Test
581
+ MSD_MaskSize_Task13_Sagittal_Train
582
+ MSD_MaskSize_Task13_Sagittal_Test
583
+ MSD_MaskSize_Task13_Coronal_Train
584
+ MSD_MaskSize_Task13_Coronal_Test
585
+ MSD_MaskSize_Task13_Axial_Train
586
+ MSD_MaskSize_Task13_Axial_Test
587
+ MSD_MaskSize_Task14_Sagittal_Train
588
+ MSD_MaskSize_Task14_Sagittal_Test
589
+ MSD_MaskSize_Task14_Coronal_Train
590
+ MSD_MaskSize_Task14_Coronal_Test
591
+ MSD_MaskSize_Task14_Axial_Train
592
+ MSD_MaskSize_Task14_Axial_Test
593
+ MSD_BoxSize_Task01_Sagittal_Train
594
+ MSD_BoxSize_Task01_Sagittal_Test
595
+ MSD_BoxSize_Task01_Coronal_Train
596
+ MSD_BoxSize_Task01_Coronal_Test
597
+ MSD_BoxSize_Task01_Axial_Train
598
+ MSD_BoxSize_Task01_Axial_Test
599
+ MSD_BoxSize_Task02_Sagittal_Train
600
+ MSD_BoxSize_Task02_Sagittal_Test
601
+ MSD_BoxSize_Task02_Coronal_Train
602
+ MSD_BoxSize_Task02_Coronal_Test
603
+ MSD_BoxSize_Task02_Axial_Train
604
+ MSD_BoxSize_Task02_Axial_Test
605
+ MSD_BoxSize_Task03_Sagittal_Train
606
+ MSD_BoxSize_Task03_Sagittal_Test
607
+ MSD_BoxSize_Task03_Coronal_Train
608
+ MSD_BoxSize_Task03_Coronal_Test
609
+ MSD_BoxSize_Task03_Axial_Train
610
+ MSD_BoxSize_Task03_Axial_Test
611
+ MSD_BoxSize_Task04_Sagittal_Train
612
+ MSD_BoxSize_Task04_Sagittal_Test
613
+ MSD_BoxSize_Task04_Coronal_Train
614
+ MSD_BoxSize_Task04_Coronal_Test
615
+ MSD_BoxSize_Task04_Axial_Train
616
+ MSD_BoxSize_Task04_Axial_Test
617
+ MSD_BoxSize_Task05_Sagittal_Train
618
+ MSD_BoxSize_Task05_Sagittal_Test
619
+ MSD_BoxSize_Task05_Coronal_Train
620
+ MSD_BoxSize_Task05_Coronal_Test
621
+ MSD_BoxSize_Task05_Axial_Train
622
+ MSD_BoxSize_Task05_Axial_Test
623
+ MSD_BoxSize_Task06_Sagittal_Train
624
+ MSD_BoxSize_Task06_Sagittal_Test
625
+ MSD_BoxSize_Task06_Coronal_Train
626
+ MSD_BoxSize_Task06_Coronal_Test
627
+ MSD_BoxSize_Task06_Axial_Train
628
+ MSD_BoxSize_Task06_Axial_Test
629
+ MSD_BoxSize_Task07_Sagittal_Train
630
+ MSD_BoxSize_Task07_Sagittal_Test
631
+ MSD_BoxSize_Task07_Coronal_Train
632
+ MSD_BoxSize_Task07_Coronal_Test
633
+ MSD_BoxSize_Task07_Axial_Train
634
+ MSD_BoxSize_Task07_Axial_Test
635
+ MSD_BoxSize_Task08_Sagittal_Train
636
+ MSD_BoxSize_Task08_Sagittal_Test
637
+ MSD_BoxSize_Task08_Coronal_Train
638
+ MSD_BoxSize_Task08_Coronal_Test
639
+ MSD_BoxSize_Task08_Axial_Train
640
+ MSD_BoxSize_Task08_Axial_Test
641
+ MSD_BoxSize_Task09_Sagittal_Train
642
+ MSD_BoxSize_Task09_Sagittal_Test
643
+ MSD_BoxSize_Task09_Coronal_Train
644
+ MSD_BoxSize_Task09_Coronal_Test
645
+ MSD_BoxSize_Task09_Axial_Train
646
+ MSD_BoxSize_Task09_Axial_Test
647
+ MSD_BoxSize_Task10_Sagittal_Train
648
+ MSD_BoxSize_Task10_Sagittal_Test
649
+ MSD_BoxSize_Task10_Coronal_Train
650
+ MSD_BoxSize_Task10_Coronal_Test
651
+ MSD_BoxSize_Task10_Axial_Train
652
+ MSD_BoxSize_Task10_Axial_Test
653
+ MSD_BoxSize_Task11_Sagittal_Train
654
+ MSD_BoxSize_Task11_Sagittal_Test
655
+ MSD_BoxSize_Task11_Coronal_Train
656
+ MSD_BoxSize_Task11_Coronal_Test
657
+ MSD_BoxSize_Task11_Axial_Train
658
+ MSD_BoxSize_Task11_Axial_Test
659
+ MSD_BoxSize_Task12_Sagittal_Train
660
+ MSD_BoxSize_Task12_Sagittal_Test
661
+ MSD_BoxSize_Task12_Coronal_Train
662
+ MSD_BoxSize_Task12_Coronal_Test
663
+ MSD_BoxSize_Task12_Axial_Train
664
+ MSD_BoxSize_Task12_Axial_Test
665
+ MSD_BoxSize_Task13_Sagittal_Train
666
+ MSD_BoxSize_Task13_Sagittal_Test
667
+ MSD_BoxSize_Task13_Coronal_Train
668
+ MSD_BoxSize_Task13_Coronal_Test
669
+ MSD_BoxSize_Task13_Axial_Train
670
+ MSD_BoxSize_Task13_Axial_Test
671
+ MSD_BoxSize_Task14_Sagittal_Train
672
+ MSD_BoxSize_Task14_Sagittal_Test
673
+ MSD_BoxSize_Task14_Coronal_Train
674
+ MSD_BoxSize_Task14_Coronal_Test
675
+ MSD_BoxSize_Task14_Axial_Train
676
+ MSD_BoxSize_Task14_Axial_Test
677
+ MSD_TumorLesionSize_Task01_Sagittal_Train
678
+ MSD_TumorLesionSize_Task01_Sagittal_Test
679
+ MSD_TumorLesionSize_Task01_Coronal_Train
680
+ MSD_TumorLesionSize_Task01_Coronal_Test
681
+ MSD_TumorLesionSize_Task01_Axial_Train
682
+ MSD_TumorLesionSize_Task01_Axial_Test
683
+ MSD_TumorLesionSize_Task02_Sagittal_Train
684
+ MSD_TumorLesionSize_Task02_Sagittal_Test
685
+ MSD_TumorLesionSize_Task02_Coronal_Train
686
+ MSD_TumorLesionSize_Task02_Coronal_Test
687
+ MSD_TumorLesionSize_Task02_Axial_Train
688
+ MSD_TumorLesionSize_Task02_Axial_Test
689
+ MSD_TumorLesionSize_Task03_Sagittal_Train
690
+ MSD_TumorLesionSize_Task03_Sagittal_Test
691
+ MSD_TumorLesionSize_Task03_Coronal_Train
692
+ MSD_TumorLesionSize_Task03_Coronal_Test
693
+ MSD_TumorLesionSize_Task03_Axial_Train
694
+ MSD_TumorLesionSize_Task03_Axial_Test
695
+ MSD_TumorLesionSize_Task04_Sagittal_Train
696
+ MSD_TumorLesionSize_Task04_Sagittal_Test
697
+ MSD_TumorLesionSize_Task04_Coronal_Train
698
+ MSD_TumorLesionSize_Task04_Coronal_Test
699
+ MSD_TumorLesionSize_Task04_Axial_Train
700
+ MSD_TumorLesionSize_Task04_Axial_Test
701
+ MSD_TumorLesionSize_Task05_Sagittal_Train
702
+ MSD_TumorLesionSize_Task05_Sagittal_Test
703
+ MSD_TumorLesionSize_Task05_Coronal_Train
704
+ MSD_TumorLesionSize_Task05_Coronal_Test
705
+ MSD_TumorLesionSize_Task05_Axial_Train
706
+ MSD_TumorLesionSize_Task05_Axial_Test
707
+ MSD_TumorLesionSize_Task06_Sagittal_Train
708
+ MSD_TumorLesionSize_Task06_Sagittal_Test
709
+ MSD_TumorLesionSize_Task06_Coronal_Train
710
+ MSD_TumorLesionSize_Task06_Coronal_Test
711
+ MSD_TumorLesionSize_Task06_Axial_Train
712
+ MSD_TumorLesionSize_Task06_Axial_Test
713
+ MSD_TumorLesionSize_Task07_Sagittal_Train
714
+ MSD_TumorLesionSize_Task07_Sagittal_Test
715
+ MSD_TumorLesionSize_Task07_Coronal_Train
716
+ MSD_TumorLesionSize_Task07_Coronal_Test
717
+ MSD_TumorLesionSize_Task07_Axial_Train
718
+ MSD_TumorLesionSize_Task07_Axial_Test
719
+ MSD_TumorLesionSize_Task08_Sagittal_Train
720
+ MSD_TumorLesionSize_Task08_Sagittal_Test
721
+ MSD_TumorLesionSize_Task08_Coronal_Train
722
+ MSD_TumorLesionSize_Task08_Coronal_Test
723
+ MSD_TumorLesionSize_Task08_Axial_Train
724
+ MSD_TumorLesionSize_Task08_Axial_Test
725
+ OAIZIB-CM_MaskSize_Task01_Sagittal_Train
726
+ OAIZIB-CM_MaskSize_Task01_Sagittal_Test
727
+ OAIZIB-CM_MaskSize_Task01_Coronal_Train
728
+ OAIZIB-CM_MaskSize_Task01_Coronal_Test
729
+ OAIZIB-CM_MaskSize_Task01_Axial_Train
730
+ OAIZIB-CM_MaskSize_Task01_Axial_Test
731
+ OAIZIB-CM_BoxSize_Task01_Sagittal_Train
732
+ OAIZIB-CM_BoxSize_Task01_Sagittal_Test
733
+ OAIZIB-CM_BoxSize_Task01_Coronal_Train
734
+ OAIZIB-CM_BoxSize_Task01_Coronal_Test
735
+ OAIZIB-CM_BoxSize_Task01_Axial_Train
736
+ OAIZIB-CM_BoxSize_Task01_Axial_Test
737
+ SKM-TEA_MaskSize_Task01_Sagittal_Train
738
+ SKM-TEA_MaskSize_Task01_Sagittal_Test
739
+ SKM-TEA_MaskSize_Task01_Coronal_Train
740
+ SKM-TEA_MaskSize_Task01_Coronal_Test
741
+ SKM-TEA_MaskSize_Task01_Axial_Train
742
+ SKM-TEA_MaskSize_Task01_Axial_Test
743
+ SKM-TEA_MaskSize_Task02_Sagittal_Train
744
+ SKM-TEA_MaskSize_Task02_Sagittal_Test
745
+ SKM-TEA_MaskSize_Task02_Coronal_Train
746
+ SKM-TEA_MaskSize_Task02_Coronal_Test
747
+ SKM-TEA_MaskSize_Task02_Axial_Train
748
+ SKM-TEA_MaskSize_Task02_Axial_Test
749
+ SKM-TEA_BoxSize_Task01_Sagittal_Train
750
+ SKM-TEA_BoxSize_Task01_Sagittal_Test
751
+ SKM-TEA_BoxSize_Task01_Coronal_Train
752
+ SKM-TEA_BoxSize_Task01_Coronal_Test
753
+ SKM-TEA_BoxSize_Task01_Axial_Train
754
+ SKM-TEA_BoxSize_Task01_Axial_Test
755
+ SKM-TEA_BoxSize_Task02_Sagittal_Train
756
+ SKM-TEA_BoxSize_Task02_Sagittal_Test
757
+ SKM-TEA_BoxSize_Task02_Coronal_Train
758
+ SKM-TEA_BoxSize_Task02_Coronal_Test
759
+ SKM-TEA_BoxSize_Task02_Axial_Train
760
+ SKM-TEA_BoxSize_Task02_Axial_Test
761
+ ToothFairy2_MaskSize_Task01_Sagittal_Train
762
+ ToothFairy2_MaskSize_Task01_Sagittal_Test
763
+ ToothFairy2_MaskSize_Task01_Coronal_Train
764
+ ToothFairy2_MaskSize_Task01_Coronal_Test
765
+ ToothFairy2_MaskSize_Task01_Axial_Train
766
+ ToothFairy2_MaskSize_Task01_Axial_Test
767
+ ToothFairy2_BoxSize_Task01_Sagittal_Train
768
+ ToothFairy2_BoxSize_Task01_Sagittal_Test
769
+ ToothFairy2_BoxSize_Task01_Coronal_Train
770
+ ToothFairy2_BoxSize_Task01_Coronal_Test
771
+ ToothFairy2_BoxSize_Task01_Axial_Train
772
+ ToothFairy2_BoxSize_Task01_Axial_Test
773
+ TopCoW24_MaskSize_Task01_Sagittal_Train
774
+ TopCoW24_MaskSize_Task01_Sagittal_Test
775
+ TopCoW24_MaskSize_Task01_Coronal_Train
776
+ TopCoW24_MaskSize_Task01_Coronal_Test
777
+ TopCoW24_MaskSize_Task01_Axial_Train
778
+ TopCoW24_MaskSize_Task01_Axial_Test
779
+ TopCoW24_MaskSize_Task02_Sagittal_Train
780
+ TopCoW24_MaskSize_Task02_Sagittal_Test
781
+ TopCoW24_MaskSize_Task02_Coronal_Train
782
+ TopCoW24_MaskSize_Task02_Coronal_Test
783
+ TopCoW24_MaskSize_Task02_Axial_Train
784
+ TopCoW24_MaskSize_Task02_Axial_Test
785
+ TopCoW24_BoxSize_Task01_Sagittal_Train
786
+ TopCoW24_BoxSize_Task01_Sagittal_Test
787
+ TopCoW24_BoxSize_Task01_Coronal_Train
788
+ TopCoW24_BoxSize_Task01_Coronal_Test
789
+ TopCoW24_BoxSize_Task01_Axial_Train
790
+ TopCoW24_BoxSize_Task01_Axial_Test
791
+ TopCoW24_BoxSize_Task02_Sagittal_Train
792
+ TopCoW24_BoxSize_Task02_Sagittal_Test
793
+ TopCoW24_BoxSize_Task02_Coronal_Train
794
+ TopCoW24_BoxSize_Task02_Coronal_Test
795
+ TopCoW24_BoxSize_Task02_Axial_Train
796
+ TopCoW24_BoxSize_Task02_Axial_Test
797
+ TotalSegmentator_MaskSize_Task01_Sagittal_Train
798
+ TotalSegmentator_MaskSize_Task01_Sagittal_Test
799
+ TotalSegmentator_MaskSize_Task01_Coronal_Train
800
+ TotalSegmentator_MaskSize_Task01_Coronal_Test
801
+ TotalSegmentator_MaskSize_Task01_Axial_Train
802
+ TotalSegmentator_MaskSize_Task01_Axial_Test
803
+ TotalSegmentator_MaskSize_Task02_Sagittal_Train
804
+ TotalSegmentator_MaskSize_Task02_Sagittal_Test
805
+ TotalSegmentator_MaskSize_Task02_Coronal_Train
806
+ TotalSegmentator_MaskSize_Task02_Coronal_Test
807
+ TotalSegmentator_MaskSize_Task02_Axial_Train
808
+ TotalSegmentator_MaskSize_Task02_Axial_Test
809
+ TotalSegmentator_BoxSize_Task01_Sagittal_Train
810
+ TotalSegmentator_BoxSize_Task01_Sagittal_Test
811
+ TotalSegmentator_BoxSize_Task01_Coronal_Train
812
+ TotalSegmentator_BoxSize_Task01_Coronal_Test
813
+ TotalSegmentator_BoxSize_Task01_Axial_Train
814
+ TotalSegmentator_BoxSize_Task01_Axial_Test
815
+ TotalSegmentator_BoxSize_Task02_Sagittal_Train
816
+ TotalSegmentator_BoxSize_Task02_Sagittal_Test
817
+ TotalSegmentator_BoxSize_Task02_Coronal_Train
818
+ TotalSegmentator_BoxSize_Task02_Coronal_Test
819
+ TotalSegmentator_BoxSize_Task02_Axial_Train
820
+ TotalSegmentator_BoxSize_Task02_Axial_Test
info/ConfigurationsList_Test.csv ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AbdomenAtlas1.0Mini_MaskSize_Task01_Sagittal_Test
2
+ AbdomenAtlas1.0Mini_MaskSize_Task01_Coronal_Test
3
+ AbdomenAtlas1.0Mini_MaskSize_Task01_Axial_Test
4
+ AbdomenAtlas1.0Mini_BoxSize_Task01_Sagittal_Test
5
+ AbdomenAtlas1.0Mini_BoxSize_Task01_Coronal_Test
6
+ AbdomenAtlas1.0Mini_BoxSize_Task01_Axial_Test
7
+ AbdomenCT-1K_MaskSize_Task01_Sagittal_Test
8
+ AbdomenCT-1K_MaskSize_Task01_Coronal_Test
9
+ AbdomenCT-1K_MaskSize_Task01_Axial_Test
10
+ AbdomenCT-1K_BoxSize_Task01_Sagittal_Test
11
+ AbdomenCT-1K_BoxSize_Task01_Coronal_Test
12
+ AbdomenCT-1K_BoxSize_Task01_Axial_Test
13
+ ACDC_MaskSize_Task01_Sagittal_Test
14
+ ACDC_MaskSize_Task01_Coronal_Test
15
+ ACDC_MaskSize_Task01_Axial_Test
16
+ ACDC_BoxSize_Task01_Sagittal_Test
17
+ ACDC_BoxSize_Task01_Coronal_Test
18
+ ACDC_BoxSize_Task01_Axial_Test
19
+ AMOS22_MaskSize_Task01_Sagittal_Test
20
+ AMOS22_MaskSize_Task01_Coronal_Test
21
+ AMOS22_MaskSize_Task01_Axial_Test
22
+ AMOS22_MaskSize_Task02_Sagittal_Test
23
+ AMOS22_MaskSize_Task02_Coronal_Test
24
+ AMOS22_MaskSize_Task02_Axial_Test
25
+ AMOS22_BoxSize_Task01_Sagittal_Test
26
+ AMOS22_BoxSize_Task01_Coronal_Test
27
+ AMOS22_BoxSize_Task01_Axial_Test
28
+ AMOS22_BoxSize_Task02_Sagittal_Test
29
+ AMOS22_BoxSize_Task02_Coronal_Test
30
+ AMOS22_BoxSize_Task02_Axial_Test
31
+ autoPET-III_MaskSize_Task01_Sagittal_Test
32
+ autoPET-III_MaskSize_Task01_Coronal_Test
33
+ autoPET-III_MaskSize_Task01_Axial_Test
34
+ autoPET-III_MaskSize_Task02_Sagittal_Test
35
+ autoPET-III_MaskSize_Task02_Coronal_Test
36
+ autoPET-III_MaskSize_Task02_Axial_Test
37
+ autoPET-III_BoxSize_Task01_Sagittal_Test
38
+ autoPET-III_BoxSize_Task01_Coronal_Test
39
+ autoPET-III_BoxSize_Task01_Axial_Test
40
+ autoPET-III_BoxSize_Task02_Sagittal_Test
41
+ autoPET-III_BoxSize_Task02_Coronal_Test
42
+ autoPET-III_BoxSize_Task02_Axial_Test
43
+ autoPET-III_TumorLesionSize_Task01_Sagittal_Test
44
+ autoPET-III_TumorLesionSize_Task01_Coronal_Test
45
+ autoPET-III_TumorLesionSize_Task01_Axial_Test
46
+ BCV15_MaskSize_Task01_Sagittal_Test
47
+ BCV15_MaskSize_Task01_Coronal_Test
48
+ BCV15_MaskSize_Task01_Axial_Test
49
+ BCV15_MaskSize_Task02_Sagittal_Test
50
+ BCV15_MaskSize_Task02_Coronal_Test
51
+ BCV15_MaskSize_Task02_Axial_Test
52
+ BCV15_BoxSize_Task01_Sagittal_Test
53
+ BCV15_BoxSize_Task01_Coronal_Test
54
+ BCV15_BoxSize_Task01_Axial_Test
55
+ BCV15_BoxSize_Task02_Sagittal_Test
56
+ BCV15_BoxSize_Task02_Coronal_Test
57
+ BCV15_BoxSize_Task02_Axial_Test
58
+ BraTS24_MaskSize_Task01_Sagittal_Test
59
+ BraTS24_MaskSize_Task01_Coronal_Test
60
+ BraTS24_MaskSize_Task01_Axial_Test
61
+ BraTS24_MaskSize_Task02_Sagittal_Test
62
+ BraTS24_MaskSize_Task02_Coronal_Test
63
+ BraTS24_MaskSize_Task02_Axial_Test
64
+ BraTS24_MaskSize_Task03_Sagittal_Test
65
+ BraTS24_MaskSize_Task03_Coronal_Test
66
+ BraTS24_MaskSize_Task03_Axial_Test
67
+ BraTS24_MaskSize_Task04_Sagittal_Test
68
+ BraTS24_MaskSize_Task04_Coronal_Test
69
+ BraTS24_MaskSize_Task04_Axial_Test
70
+ BraTS24_MaskSize_Task05_Sagittal_Test
71
+ BraTS24_MaskSize_Task05_Coronal_Test
72
+ BraTS24_MaskSize_Task05_Axial_Test
73
+ BraTS24_MaskSize_Task06_Sagittal_Test
74
+ BraTS24_MaskSize_Task06_Coronal_Test
75
+ BraTS24_MaskSize_Task06_Axial_Test
76
+ BraTS24_MaskSize_Task07_Sagittal_Test
77
+ BraTS24_MaskSize_Task07_Coronal_Test
78
+ BraTS24_MaskSize_Task07_Axial_Test
79
+ BraTS24_MaskSize_Task08_Sagittal_Test
80
+ BraTS24_MaskSize_Task08_Coronal_Test
81
+ BraTS24_MaskSize_Task08_Axial_Test
82
+ BraTS24_MaskSize_Task09_Sagittal_Test
83
+ BraTS24_MaskSize_Task09_Coronal_Test
84
+ BraTS24_MaskSize_Task09_Axial_Test
85
+ BraTS24_MaskSize_Task10_Sagittal_Test
86
+ BraTS24_MaskSize_Task10_Coronal_Test
87
+ BraTS24_MaskSize_Task10_Axial_Test
88
+ BraTS24_MaskSize_Task11_Sagittal_Test
89
+ BraTS24_MaskSize_Task11_Coronal_Test
90
+ BraTS24_MaskSize_Task11_Axial_Test
91
+ BraTS24_MaskSize_Task12_Sagittal_Test
92
+ BraTS24_MaskSize_Task12_Coronal_Test
93
+ BraTS24_MaskSize_Task12_Axial_Test
94
+ BraTS24_MaskSize_Task13_Sagittal_Test
95
+ BraTS24_MaskSize_Task13_Coronal_Test
96
+ BraTS24_MaskSize_Task13_Axial_Test
97
+ BraTS24_BoxSize_Task01_Sagittal_Test
98
+ BraTS24_BoxSize_Task01_Coronal_Test
99
+ BraTS24_BoxSize_Task01_Axial_Test
100
+ BraTS24_BoxSize_Task02_Sagittal_Test
101
+ BraTS24_BoxSize_Task02_Coronal_Test
102
+ BraTS24_BoxSize_Task02_Axial_Test
103
+ BraTS24_BoxSize_Task03_Sagittal_Test
104
+ BraTS24_BoxSize_Task03_Coronal_Test
105
+ BraTS24_BoxSize_Task03_Axial_Test
106
+ BraTS24_BoxSize_Task04_Sagittal_Test
107
+ BraTS24_BoxSize_Task04_Coronal_Test
108
+ BraTS24_BoxSize_Task04_Axial_Test
109
+ BraTS24_BoxSize_Task05_Sagittal_Test
110
+ BraTS24_BoxSize_Task05_Coronal_Test
111
+ BraTS24_BoxSize_Task05_Axial_Test
112
+ BraTS24_BoxSize_Task06_Sagittal_Test
113
+ BraTS24_BoxSize_Task06_Coronal_Test
114
+ BraTS24_BoxSize_Task06_Axial_Test
115
+ BraTS24_BoxSize_Task07_Sagittal_Test
116
+ BraTS24_BoxSize_Task07_Coronal_Test
117
+ BraTS24_BoxSize_Task07_Axial_Test
118
+ BraTS24_BoxSize_Task08_Sagittal_Test
119
+ BraTS24_BoxSize_Task08_Coronal_Test
120
+ BraTS24_BoxSize_Task08_Axial_Test
121
+ BraTS24_BoxSize_Task09_Sagittal_Test
122
+ BraTS24_BoxSize_Task09_Coronal_Test
123
+ BraTS24_BoxSize_Task09_Axial_Test
124
+ BraTS24_BoxSize_Task10_Sagittal_Test
125
+ BraTS24_BoxSize_Task10_Coronal_Test
126
+ BraTS24_BoxSize_Task10_Axial_Test
127
+ BraTS24_BoxSize_Task11_Sagittal_Test
128
+ BraTS24_BoxSize_Task11_Coronal_Test
129
+ BraTS24_BoxSize_Task11_Axial_Test
130
+ BraTS24_BoxSize_Task12_Sagittal_Test
131
+ BraTS24_BoxSize_Task12_Coronal_Test
132
+ BraTS24_BoxSize_Task12_Axial_Test
133
+ BraTS24_BoxSize_Task13_Sagittal_Test
134
+ BraTS24_BoxSize_Task13_Coronal_Test
135
+ BraTS24_BoxSize_Task13_Axial_Test
136
+ BraTS24_TumorLesionSize_Task01_Sagittal_Test
137
+ BraTS24_TumorLesionSize_Task01_Coronal_Test
138
+ BraTS24_TumorLesionSize_Task01_Axial_Test
139
+ BraTS24_TumorLesionSize_Task02_Sagittal_Test
140
+ BraTS24_TumorLesionSize_Task02_Coronal_Test
141
+ BraTS24_TumorLesionSize_Task02_Axial_Test
142
+ BraTS24_TumorLesionSize_Task03_Sagittal_Test
143
+ BraTS24_TumorLesionSize_Task03_Coronal_Test
144
+ BraTS24_TumorLesionSize_Task03_Axial_Test
145
+ BraTS24_TumorLesionSize_Task04_Sagittal_Test
146
+ BraTS24_TumorLesionSize_Task04_Coronal_Test
147
+ BraTS24_TumorLesionSize_Task04_Axial_Test
148
+ BraTS24_TumorLesionSize_Task05_Sagittal_Test
149
+ BraTS24_TumorLesionSize_Task05_Coronal_Test
150
+ BraTS24_TumorLesionSize_Task05_Axial_Test
151
+ BraTS24_TumorLesionSize_Task06_Sagittal_Test
152
+ BraTS24_TumorLesionSize_Task06_Coronal_Test
153
+ BraTS24_TumorLesionSize_Task06_Axial_Test
154
+ BraTS24_TumorLesionSize_Task07_Sagittal_Test
155
+ BraTS24_TumorLesionSize_Task07_Coronal_Test
156
+ BraTS24_TumorLesionSize_Task07_Axial_Test
157
+ BraTS24_TumorLesionSize_Task08_Sagittal_Test
158
+ BraTS24_TumorLesionSize_Task08_Coronal_Test
159
+ BraTS24_TumorLesionSize_Task08_Axial_Test
160
+ BraTS24_TumorLesionSize_Task09_Sagittal_Test
161
+ BraTS24_TumorLesionSize_Task09_Coronal_Test
162
+ BraTS24_TumorLesionSize_Task09_Axial_Test
163
+ BraTS24_TumorLesionSize_Task10_Sagittal_Test
164
+ BraTS24_TumorLesionSize_Task10_Coronal_Test
165
+ BraTS24_TumorLesionSize_Task10_Axial_Test
166
+ BraTS24_TumorLesionSize_Task11_Sagittal_Test
167
+ BraTS24_TumorLesionSize_Task11_Coronal_Test
168
+ BraTS24_TumorLesionSize_Task11_Axial_Test
169
+ BraTS24_TumorLesionSize_Task12_Sagittal_Test
170
+ BraTS24_TumorLesionSize_Task12_Coronal_Test
171
+ BraTS24_TumorLesionSize_Task12_Axial_Test
172
+ CAMUS_MaskSize_Task01_Sagittal_Test
173
+ CAMUS_MaskSize_Task01_Coronal_Test
174
+ CAMUS_MaskSize_Task01_Axial_Test
175
+ CAMUS_BoxSize_Task01_Sagittal_Test
176
+ CAMUS_BoxSize_Task01_Coronal_Test
177
+ CAMUS_BoxSize_Task01_Axial_Test
178
+ Ceph-Biometrics-400_BiometricsFromLandmarks_Distance_Task01_Sagittal_Test
179
+ Ceph-Biometrics-400_BiometricsFromLandmarks_Angle_Task01_Sagittal_Test
180
+ CrossMoDA_MaskSize_Task01_Sagittal_Test
181
+ CrossMoDA_MaskSize_Task01_Coronal_Test
182
+ CrossMoDA_MaskSize_Task01_Axial_Test
183
+ CrossMoDA_BoxSize_Task01_Sagittal_Test
184
+ CrossMoDA_BoxSize_Task01_Coronal_Test
185
+ CrossMoDA_BoxSize_Task01_Axial_Test
186
+ FeTA24_MaskSize_Task01_Sagittal_Test
187
+ FeTA24_MaskSize_Task01_Coronal_Test
188
+ FeTA24_MaskSize_Task01_Axial_Test
189
+ FeTA24_BoxSize_Task01_Sagittal_Test
190
+ FeTA24_BoxSize_Task01_Coronal_Test
191
+ FeTA24_BoxSize_Task01_Axial_Test
192
+ FeTA24_BiometricsFromLandmarks_Task01_Sagittal_Test
193
+ FeTA24_BiometricsFromLandmarks_Task01_Coronal_Test
194
+ FeTA24_BiometricsFromLandmarks_Task01_Axial_Test
195
+ FLARE22_MaskSize_Task01_Sagittal_Test
196
+ FLARE22_MaskSize_Task01_Coronal_Test
197
+ FLARE22_MaskSize_Task01_Axial_Test
198
+ FLARE22_BoxSize_Task01_Sagittal_Test
199
+ FLARE22_BoxSize_Task01_Coronal_Test
200
+ FLARE22_BoxSize_Task01_Axial_Test
201
+ HNTSMRG24_MaskSize_Task01_Sagittal_Test
202
+ HNTSMRG24_MaskSize_Task01_Coronal_Test
203
+ HNTSMRG24_MaskSize_Task01_Axial_Test
204
+ HNTSMRG24_MaskSize_Task02_Sagittal_Test
205
+ HNTSMRG24_MaskSize_Task02_Coronal_Test
206
+ HNTSMRG24_MaskSize_Task02_Axial_Test
207
+ HNTSMRG24_BoxSize_Task01_Sagittal_Test
208
+ HNTSMRG24_BoxSize_Task01_Coronal_Test
209
+ HNTSMRG24_BoxSize_Task01_Axial_Test
210
+ HNTSMRG24_BoxSize_Task02_Sagittal_Test
211
+ HNTSMRG24_BoxSize_Task02_Coronal_Test
212
+ HNTSMRG24_BoxSize_Task02_Axial_Test
213
+ HNTSMRG24_TumorLesionSize_Task01_Sagittal_Test
214
+ HNTSMRG24_TumorLesionSize_Task01_Coronal_Test
215
+ HNTSMRG24_TumorLesionSize_Task01_Axial_Test
216
+ HNTSMRG24_TumorLesionSize_Task02_Sagittal_Test
217
+ HNTSMRG24_TumorLesionSize_Task02_Coronal_Test
218
+ HNTSMRG24_TumorLesionSize_Task02_Axial_Test
219
+ HNTSMRG24_TumorLesionSize_Task03_Sagittal_Test
220
+ HNTSMRG24_TumorLesionSize_Task03_Coronal_Test
221
+ HNTSMRG24_TumorLesionSize_Task03_Axial_Test
222
+ HNTSMRG24_TumorLesionSize_Task04_Sagittal_Test
223
+ HNTSMRG24_TumorLesionSize_Task04_Coronal_Test
224
+ HNTSMRG24_TumorLesionSize_Task04_Axial_Test
225
+ ISLES24_MaskSize_Task01_Sagittal_Test
226
+ ISLES24_MaskSize_Task01_Coronal_Test
227
+ ISLES24_MaskSize_Task01_Axial_Test
228
+ ISLES24_MaskSize_Task02_Sagittal_Test
229
+ ISLES24_MaskSize_Task02_Coronal_Test
230
+ ISLES24_MaskSize_Task02_Axial_Test
231
+ ISLES24_BoxSize_Task01_Sagittal_Test
232
+ ISLES24_BoxSize_Task01_Coronal_Test
233
+ ISLES24_BoxSize_Task01_Axial_Test
234
+ ISLES24_BoxSize_Task02_Sagittal_Test
235
+ ISLES24_BoxSize_Task02_Coronal_Test
236
+ ISLES24_BoxSize_Task02_Axial_Test
237
+ KiPA22_MaskSize_Task01_Sagittal_Test
238
+ KiPA22_MaskSize_Task01_Coronal_Test
239
+ KiPA22_MaskSize_Task01_Axial_Test
240
+ KiPA22_BoxSize_Task01_Sagittal_Test
241
+ KiPA22_BoxSize_Task01_Coronal_Test
242
+ KiPA22_BoxSize_Task01_Axial_Test
243
+ KiPA22_TumorLesionSize_Task01_Sagittal_Test
244
+ KiPA22_TumorLesionSize_Task01_Coronal_Test
245
+ KiPA22_TumorLesionSize_Task01_Axial_Test
246
+ KiTS23_MaskSize_Task01_Sagittal_Test
247
+ KiTS23_MaskSize_Task01_Coronal_Test
248
+ KiTS23_MaskSize_Task01_Axial_Test
249
+ KiTS23_BoxSize_Task01_Sagittal_Test
250
+ KiTS23_BoxSize_Task01_Coronal_Test
251
+ KiTS23_BoxSize_Task01_Axial_Test
252
+ KiTS23_TumorLesionSize_Task01_Sagittal_Test
253
+ KiTS23_TumorLesionSize_Task01_Coronal_Test
254
+ KiTS23_TumorLesionSize_Task01_Axial_Test
255
+ MSD_MaskSize_Task01_Sagittal_Test
256
+ MSD_MaskSize_Task01_Coronal_Test
257
+ MSD_MaskSize_Task01_Axial_Test
258
+ MSD_MaskSize_Task02_Sagittal_Test
259
+ MSD_MaskSize_Task02_Coronal_Test
260
+ MSD_MaskSize_Task02_Axial_Test
261
+ MSD_MaskSize_Task03_Sagittal_Test
262
+ MSD_MaskSize_Task03_Coronal_Test
263
+ MSD_MaskSize_Task03_Axial_Test
264
+ MSD_MaskSize_Task04_Sagittal_Test
265
+ MSD_MaskSize_Task04_Coronal_Test
266
+ MSD_MaskSize_Task04_Axial_Test
267
+ MSD_MaskSize_Task05_Sagittal_Test
268
+ MSD_MaskSize_Task05_Coronal_Test
269
+ MSD_MaskSize_Task05_Axial_Test
270
+ MSD_MaskSize_Task06_Sagittal_Test
271
+ MSD_MaskSize_Task06_Coronal_Test
272
+ MSD_MaskSize_Task06_Axial_Test
273
+ MSD_MaskSize_Task07_Sagittal_Test
274
+ MSD_MaskSize_Task07_Coronal_Test
275
+ MSD_MaskSize_Task07_Axial_Test
276
+ MSD_MaskSize_Task08_Sagittal_Test
277
+ MSD_MaskSize_Task08_Coronal_Test
278
+ MSD_MaskSize_Task08_Axial_Test
279
+ MSD_MaskSize_Task09_Sagittal_Test
280
+ MSD_MaskSize_Task09_Coronal_Test
281
+ MSD_MaskSize_Task09_Axial_Test
282
+ MSD_MaskSize_Task10_Sagittal_Test
283
+ MSD_MaskSize_Task10_Coronal_Test
284
+ MSD_MaskSize_Task10_Axial_Test
285
+ MSD_MaskSize_Task11_Sagittal_Test
286
+ MSD_MaskSize_Task11_Coronal_Test
287
+ MSD_MaskSize_Task11_Axial_Test
288
+ MSD_MaskSize_Task12_Sagittal_Test
289
+ MSD_MaskSize_Task12_Coronal_Test
290
+ MSD_MaskSize_Task12_Axial_Test
291
+ MSD_MaskSize_Task13_Sagittal_Test
292
+ MSD_MaskSize_Task13_Coronal_Test
293
+ MSD_MaskSize_Task13_Axial_Test
294
+ MSD_MaskSize_Task14_Sagittal_Test
295
+ MSD_MaskSize_Task14_Coronal_Test
296
+ MSD_MaskSize_Task14_Axial_Test
297
+ MSD_BoxSize_Task01_Sagittal_Test
298
+ MSD_BoxSize_Task01_Coronal_Test
299
+ MSD_BoxSize_Task01_Axial_Test
300
+ MSD_BoxSize_Task02_Sagittal_Test
301
+ MSD_BoxSize_Task02_Coronal_Test
302
+ MSD_BoxSize_Task02_Axial_Test
303
+ MSD_BoxSize_Task03_Sagittal_Test
304
+ MSD_BoxSize_Task03_Coronal_Test
305
+ MSD_BoxSize_Task03_Axial_Test
306
+ MSD_BoxSize_Task04_Sagittal_Test
307
+ MSD_BoxSize_Task04_Coronal_Test
308
+ MSD_BoxSize_Task04_Axial_Test
309
+ MSD_BoxSize_Task05_Sagittal_Test
310
+ MSD_BoxSize_Task05_Coronal_Test
311
+ MSD_BoxSize_Task05_Axial_Test
312
+ MSD_BoxSize_Task06_Sagittal_Test
313
+ MSD_BoxSize_Task06_Coronal_Test
314
+ MSD_BoxSize_Task06_Axial_Test
315
+ MSD_BoxSize_Task07_Sagittal_Test
316
+ MSD_BoxSize_Task07_Coronal_Test
317
+ MSD_BoxSize_Task07_Axial_Test
318
+ MSD_BoxSize_Task08_Sagittal_Test
319
+ MSD_BoxSize_Task08_Coronal_Test
320
+ MSD_BoxSize_Task08_Axial_Test
321
+ MSD_BoxSize_Task09_Sagittal_Test
322
+ MSD_BoxSize_Task09_Coronal_Test
323
+ MSD_BoxSize_Task09_Axial_Test
324
+ MSD_BoxSize_Task10_Sagittal_Test
325
+ MSD_BoxSize_Task10_Coronal_Test
326
+ MSD_BoxSize_Task10_Axial_Test
327
+ MSD_BoxSize_Task11_Sagittal_Test
328
+ MSD_BoxSize_Task11_Coronal_Test
329
+ MSD_BoxSize_Task11_Axial_Test
330
+ MSD_BoxSize_Task12_Sagittal_Test
331
+ MSD_BoxSize_Task12_Coronal_Test
332
+ MSD_BoxSize_Task12_Axial_Test
333
+ MSD_BoxSize_Task13_Sagittal_Test
334
+ MSD_BoxSize_Task13_Coronal_Test
335
+ MSD_BoxSize_Task13_Axial_Test
336
+ MSD_BoxSize_Task14_Sagittal_Test
337
+ MSD_BoxSize_Task14_Coronal_Test
338
+ MSD_BoxSize_Task14_Axial_Test
339
+ MSD_TumorLesionSize_Task01_Sagittal_Test
340
+ MSD_TumorLesionSize_Task01_Coronal_Test
341
+ MSD_TumorLesionSize_Task01_Axial_Test
342
+ MSD_TumorLesionSize_Task02_Sagittal_Test
343
+ MSD_TumorLesionSize_Task02_Coronal_Test
344
+ MSD_TumorLesionSize_Task02_Axial_Test
345
+ MSD_TumorLesionSize_Task03_Sagittal_Test
346
+ MSD_TumorLesionSize_Task03_Coronal_Test
347
+ MSD_TumorLesionSize_Task03_Axial_Test
348
+ MSD_TumorLesionSize_Task04_Sagittal_Test
349
+ MSD_TumorLesionSize_Task04_Coronal_Test
350
+ MSD_TumorLesionSize_Task04_Axial_Test
351
+ MSD_TumorLesionSize_Task05_Sagittal_Test
352
+ MSD_TumorLesionSize_Task05_Coronal_Test
353
+ MSD_TumorLesionSize_Task05_Axial_Test
354
+ MSD_TumorLesionSize_Task06_Sagittal_Test
355
+ MSD_TumorLesionSize_Task06_Coronal_Test
356
+ MSD_TumorLesionSize_Task06_Axial_Test
357
+ MSD_TumorLesionSize_Task07_Sagittal_Test
358
+ MSD_TumorLesionSize_Task07_Coronal_Test
359
+ MSD_TumorLesionSize_Task07_Axial_Test
360
+ MSD_TumorLesionSize_Task08_Sagittal_Test
361
+ MSD_TumorLesionSize_Task08_Coronal_Test
362
+ MSD_TumorLesionSize_Task08_Axial_Test
363
+ OAIZIB-CM_MaskSize_Task01_Sagittal_Test
364
+ OAIZIB-CM_MaskSize_Task01_Coronal_Test
365
+ OAIZIB-CM_MaskSize_Task01_Axial_Test
366
+ OAIZIB-CM_BoxSize_Task01_Sagittal_Test
367
+ OAIZIB-CM_BoxSize_Task01_Coronal_Test
368
+ OAIZIB-CM_BoxSize_Task01_Axial_Test
369
+ SKM-TEA_MaskSize_Task01_Sagittal_Test
370
+ SKM-TEA_MaskSize_Task01_Coronal_Test
371
+ SKM-TEA_MaskSize_Task01_Axial_Test
372
+ SKM-TEA_MaskSize_Task02_Sagittal_Test
373
+ SKM-TEA_MaskSize_Task02_Coronal_Test
374
+ SKM-TEA_MaskSize_Task02_Axial_Test
375
+ SKM-TEA_BoxSize_Task01_Sagittal_Test
376
+ SKM-TEA_BoxSize_Task01_Coronal_Test
377
+ SKM-TEA_BoxSize_Task01_Axial_Test
378
+ SKM-TEA_BoxSize_Task02_Sagittal_Test
379
+ SKM-TEA_BoxSize_Task02_Coronal_Test
380
+ SKM-TEA_BoxSize_Task02_Axial_Test
381
+ ToothFairy2_MaskSize_Task01_Sagittal_Test
382
+ ToothFairy2_MaskSize_Task01_Coronal_Test
383
+ ToothFairy2_MaskSize_Task01_Axial_Test
384
+ ToothFairy2_BoxSize_Task01_Sagittal_Test
385
+ ToothFairy2_BoxSize_Task01_Coronal_Test
386
+ ToothFairy2_BoxSize_Task01_Axial_Test
387
+ TopCoW24_MaskSize_Task01_Sagittal_Test
388
+ TopCoW24_MaskSize_Task01_Coronal_Test
389
+ TopCoW24_MaskSize_Task01_Axial_Test
390
+ TopCoW24_MaskSize_Task02_Sagittal_Test
391
+ TopCoW24_MaskSize_Task02_Coronal_Test
392
+ TopCoW24_MaskSize_Task02_Axial_Test
393
+ TopCoW24_BoxSize_Task01_Sagittal_Test
394
+ TopCoW24_BoxSize_Task01_Coronal_Test
395
+ TopCoW24_BoxSize_Task01_Axial_Test
396
+ TopCoW24_BoxSize_Task02_Sagittal_Test
397
+ TopCoW24_BoxSize_Task02_Coronal_Test
398
+ TopCoW24_BoxSize_Task02_Axial_Test
399
+ TotalSegmentator_MaskSize_Task01_Sagittal_Test
400
+ TotalSegmentator_MaskSize_Task01_Coronal_Test
401
+ TotalSegmentator_MaskSize_Task01_Axial_Test
402
+ TotalSegmentator_MaskSize_Task02_Sagittal_Test
403
+ TotalSegmentator_MaskSize_Task02_Coronal_Test
404
+ TotalSegmentator_MaskSize_Task02_Axial_Test
405
+ TotalSegmentator_BoxSize_Task01_Sagittal_Test
406
+ TotalSegmentator_BoxSize_Task01_Coronal_Test
407
+ TotalSegmentator_BoxSize_Task01_Axial_Test
408
+ TotalSegmentator_BoxSize_Task02_Sagittal_Test
409
+ TotalSegmentator_BoxSize_Task02_Coronal_Test
410
+ TotalSegmentator_BoxSize_Task02_Axial_Test
info/ConfigurationsList_Train.csv ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AbdomenAtlas1.0Mini_MaskSize_Task01_Sagittal_Train
2
+ AbdomenAtlas1.0Mini_MaskSize_Task01_Coronal_Train
3
+ AbdomenAtlas1.0Mini_MaskSize_Task01_Axial_Train
4
+ AbdomenAtlas1.0Mini_BoxSize_Task01_Sagittal_Train
5
+ AbdomenAtlas1.0Mini_BoxSize_Task01_Coronal_Train
6
+ AbdomenAtlas1.0Mini_BoxSize_Task01_Axial_Train
7
+ AbdomenCT-1K_MaskSize_Task01_Sagittal_Train
8
+ AbdomenCT-1K_MaskSize_Task01_Coronal_Train
9
+ AbdomenCT-1K_MaskSize_Task01_Axial_Train
10
+ AbdomenCT-1K_BoxSize_Task01_Sagittal_Train
11
+ AbdomenCT-1K_BoxSize_Task01_Coronal_Train
12
+ AbdomenCT-1K_BoxSize_Task01_Axial_Train
13
+ ACDC_MaskSize_Task01_Sagittal_Train
14
+ ACDC_MaskSize_Task01_Coronal_Train
15
+ ACDC_MaskSize_Task01_Axial_Train
16
+ ACDC_BoxSize_Task01_Sagittal_Train
17
+ ACDC_BoxSize_Task01_Coronal_Train
18
+ ACDC_BoxSize_Task01_Axial_Train
19
+ AMOS22_MaskSize_Task01_Sagittal_Train
20
+ AMOS22_MaskSize_Task01_Coronal_Train
21
+ AMOS22_MaskSize_Task01_Axial_Train
22
+ AMOS22_MaskSize_Task02_Sagittal_Train
23
+ AMOS22_MaskSize_Task02_Coronal_Train
24
+ AMOS22_MaskSize_Task02_Axial_Train
25
+ AMOS22_BoxSize_Task01_Sagittal_Train
26
+ AMOS22_BoxSize_Task01_Coronal_Train
27
+ AMOS22_BoxSize_Task01_Axial_Train
28
+ AMOS22_BoxSize_Task02_Sagittal_Train
29
+ AMOS22_BoxSize_Task02_Coronal_Train
30
+ AMOS22_BoxSize_Task02_Axial_Train
31
+ autoPET-III_MaskSize_Task01_Sagittal_Train
32
+ autoPET-III_MaskSize_Task01_Coronal_Train
33
+ autoPET-III_MaskSize_Task01_Axial_Train
34
+ autoPET-III_MaskSize_Task02_Sagittal_Train
35
+ autoPET-III_MaskSize_Task02_Coronal_Train
36
+ autoPET-III_MaskSize_Task02_Axial_Train
37
+ autoPET-III_BoxSize_Task01_Sagittal_Train
38
+ autoPET-III_BoxSize_Task01_Coronal_Train
39
+ autoPET-III_BoxSize_Task01_Axial_Train
40
+ autoPET-III_BoxSize_Task02_Sagittal_Train
41
+ autoPET-III_BoxSize_Task02_Coronal_Train
42
+ autoPET-III_BoxSize_Task02_Axial_Train
43
+ autoPET-III_TumorLesionSize_Task01_Sagittal_Train
44
+ autoPET-III_TumorLesionSize_Task01_Coronal_Train
45
+ autoPET-III_TumorLesionSize_Task01_Axial_Train
46
+ BCV15_MaskSize_Task01_Sagittal_Train
47
+ BCV15_MaskSize_Task01_Coronal_Train
48
+ BCV15_MaskSize_Task01_Axial_Train
49
+ BCV15_MaskSize_Task02_Sagittal_Train
50
+ BCV15_MaskSize_Task02_Coronal_Train
51
+ BCV15_MaskSize_Task02_Axial_Train
52
+ BCV15_BoxSize_Task01_Sagittal_Train
53
+ BCV15_BoxSize_Task01_Coronal_Train
54
+ BCV15_BoxSize_Task01_Axial_Train
55
+ BCV15_BoxSize_Task02_Sagittal_Train
56
+ BCV15_BoxSize_Task02_Coronal_Train
57
+ BCV15_BoxSize_Task02_Axial_Train
58
+ BraTS24_MaskSize_Task01_Sagittal_Train
59
+ BraTS24_MaskSize_Task01_Coronal_Train
60
+ BraTS24_MaskSize_Task01_Axial_Train
61
+ BraTS24_MaskSize_Task02_Sagittal_Train
62
+ BraTS24_MaskSize_Task02_Coronal_Train
63
+ BraTS24_MaskSize_Task02_Axial_Train
64
+ BraTS24_MaskSize_Task03_Sagittal_Train
65
+ BraTS24_MaskSize_Task03_Coronal_Train
66
+ BraTS24_MaskSize_Task03_Axial_Train
67
+ BraTS24_MaskSize_Task04_Sagittal_Train
68
+ BraTS24_MaskSize_Task04_Coronal_Train
69
+ BraTS24_MaskSize_Task04_Axial_Train
70
+ BraTS24_MaskSize_Task05_Sagittal_Train
71
+ BraTS24_MaskSize_Task05_Coronal_Train
72
+ BraTS24_MaskSize_Task05_Axial_Train
73
+ BraTS24_MaskSize_Task06_Sagittal_Train
74
+ BraTS24_MaskSize_Task06_Coronal_Train
75
+ BraTS24_MaskSize_Task06_Axial_Train
76
+ BraTS24_MaskSize_Task07_Sagittal_Train
77
+ BraTS24_MaskSize_Task07_Coronal_Train
78
+ BraTS24_MaskSize_Task07_Axial_Train
79
+ BraTS24_MaskSize_Task08_Sagittal_Train
80
+ BraTS24_MaskSize_Task08_Coronal_Train
81
+ BraTS24_MaskSize_Task08_Axial_Train
82
+ BraTS24_MaskSize_Task09_Sagittal_Train
83
+ BraTS24_MaskSize_Task09_Coronal_Train
84
+ BraTS24_MaskSize_Task09_Axial_Train
85
+ BraTS24_MaskSize_Task10_Sagittal_Train
86
+ BraTS24_MaskSize_Task10_Coronal_Train
87
+ BraTS24_MaskSize_Task10_Axial_Train
88
+ BraTS24_MaskSize_Task11_Sagittal_Train
89
+ BraTS24_MaskSize_Task11_Coronal_Train
90
+ BraTS24_MaskSize_Task11_Axial_Train
91
+ BraTS24_MaskSize_Task12_Sagittal_Train
92
+ BraTS24_MaskSize_Task12_Coronal_Train
93
+ BraTS24_MaskSize_Task12_Axial_Train
94
+ BraTS24_MaskSize_Task13_Sagittal_Train
95
+ BraTS24_MaskSize_Task13_Coronal_Train
96
+ BraTS24_MaskSize_Task13_Axial_Train
97
+ BraTS24_BoxSize_Task01_Sagittal_Train
98
+ BraTS24_BoxSize_Task01_Coronal_Train
99
+ BraTS24_BoxSize_Task01_Axial_Train
100
+ BraTS24_BoxSize_Task02_Sagittal_Train
101
+ BraTS24_BoxSize_Task02_Coronal_Train
102
+ BraTS24_BoxSize_Task02_Axial_Train
103
+ BraTS24_BoxSize_Task03_Sagittal_Train
104
+ BraTS24_BoxSize_Task03_Coronal_Train
105
+ BraTS24_BoxSize_Task03_Axial_Train
106
+ BraTS24_BoxSize_Task04_Sagittal_Train
107
+ BraTS24_BoxSize_Task04_Coronal_Train
108
+ BraTS24_BoxSize_Task04_Axial_Train
109
+ BraTS24_BoxSize_Task05_Sagittal_Train
110
+ BraTS24_BoxSize_Task05_Coronal_Train
111
+ BraTS24_BoxSize_Task05_Axial_Train
112
+ BraTS24_BoxSize_Task06_Sagittal_Train
113
+ BraTS24_BoxSize_Task06_Coronal_Train
114
+ BraTS24_BoxSize_Task06_Axial_Train
115
+ BraTS24_BoxSize_Task07_Sagittal_Train
116
+ BraTS24_BoxSize_Task07_Coronal_Train
117
+ BraTS24_BoxSize_Task07_Axial_Train
118
+ BraTS24_BoxSize_Task08_Sagittal_Train
119
+ BraTS24_BoxSize_Task08_Coronal_Train
120
+ BraTS24_BoxSize_Task08_Axial_Train
121
+ BraTS24_BoxSize_Task09_Sagittal_Train
122
+ BraTS24_BoxSize_Task09_Coronal_Train
123
+ BraTS24_BoxSize_Task09_Axial_Train
124
+ BraTS24_BoxSize_Task10_Sagittal_Train
125
+ BraTS24_BoxSize_Task10_Coronal_Train
126
+ BraTS24_BoxSize_Task10_Axial_Train
127
+ BraTS24_BoxSize_Task11_Sagittal_Train
128
+ BraTS24_BoxSize_Task11_Coronal_Train
129
+ BraTS24_BoxSize_Task11_Axial_Train
130
+ BraTS24_BoxSize_Task12_Sagittal_Train
131
+ BraTS24_BoxSize_Task12_Coronal_Train
132
+ BraTS24_BoxSize_Task12_Axial_Train
133
+ BraTS24_BoxSize_Task13_Sagittal_Train
134
+ BraTS24_BoxSize_Task13_Coronal_Train
135
+ BraTS24_BoxSize_Task13_Axial_Train
136
+ BraTS24_TumorLesionSize_Task01_Sagittal_Train
137
+ BraTS24_TumorLesionSize_Task01_Coronal_Train
138
+ BraTS24_TumorLesionSize_Task01_Axial_Train
139
+ BraTS24_TumorLesionSize_Task02_Sagittal_Train
140
+ BraTS24_TumorLesionSize_Task02_Coronal_Train
141
+ BraTS24_TumorLesionSize_Task02_Axial_Train
142
+ BraTS24_TumorLesionSize_Task03_Sagittal_Train
143
+ BraTS24_TumorLesionSize_Task03_Coronal_Train
144
+ BraTS24_TumorLesionSize_Task03_Axial_Train
145
+ BraTS24_TumorLesionSize_Task04_Sagittal_Train
146
+ BraTS24_TumorLesionSize_Task04_Coronal_Train
147
+ BraTS24_TumorLesionSize_Task04_Axial_Train
148
+ BraTS24_TumorLesionSize_Task05_Sagittal_Train
149
+ BraTS24_TumorLesionSize_Task05_Coronal_Train
150
+ BraTS24_TumorLesionSize_Task05_Axial_Train
151
+ BraTS24_TumorLesionSize_Task06_Sagittal_Train
152
+ BraTS24_TumorLesionSize_Task06_Coronal_Train
153
+ BraTS24_TumorLesionSize_Task06_Axial_Train
154
+ BraTS24_TumorLesionSize_Task07_Sagittal_Train
155
+ BraTS24_TumorLesionSize_Task07_Coronal_Train
156
+ BraTS24_TumorLesionSize_Task07_Axial_Train
157
+ BraTS24_TumorLesionSize_Task08_Sagittal_Train
158
+ BraTS24_TumorLesionSize_Task08_Coronal_Train
159
+ BraTS24_TumorLesionSize_Task08_Axial_Train
160
+ BraTS24_TumorLesionSize_Task09_Sagittal_Train
161
+ BraTS24_TumorLesionSize_Task09_Coronal_Train
162
+ BraTS24_TumorLesionSize_Task09_Axial_Train
163
+ BraTS24_TumorLesionSize_Task10_Sagittal_Train
164
+ BraTS24_TumorLesionSize_Task10_Coronal_Train
165
+ BraTS24_TumorLesionSize_Task10_Axial_Train
166
+ BraTS24_TumorLesionSize_Task11_Sagittal_Train
167
+ BraTS24_TumorLesionSize_Task11_Coronal_Train
168
+ BraTS24_TumorLesionSize_Task11_Axial_Train
169
+ BraTS24_TumorLesionSize_Task12_Sagittal_Train
170
+ BraTS24_TumorLesionSize_Task12_Coronal_Train
171
+ BraTS24_TumorLesionSize_Task12_Axial_Train
172
+ CAMUS_MaskSize_Task01_Sagittal_Train
173
+ CAMUS_MaskSize_Task01_Coronal_Train
174
+ CAMUS_MaskSize_Task01_Axial_Train
175
+ CAMUS_BoxSize_Task01_Sagittal_Train
176
+ CAMUS_BoxSize_Task01_Coronal_Train
177
+ CAMUS_BoxSize_Task01_Axial_Train
178
+ Ceph-Biometrics-400_BiometricsFromLandmarks_Distance_Task01_Sagittal_Train
179
+ Ceph-Biometrics-400_BiometricsFromLandmarks_Angle_Task01_Sagittal_Train
180
+ CrossMoDA_MaskSize_Task01_Sagittal_Train
181
+ CrossMoDA_MaskSize_Task01_Coronal_Train
182
+ CrossMoDA_MaskSize_Task01_Axial_Train
183
+ CrossMoDA_BoxSize_Task01_Sagittal_Train
184
+ CrossMoDA_BoxSize_Task01_Coronal_Train
185
+ CrossMoDA_BoxSize_Task01_Axial_Train
186
+ FeTA24_MaskSize_Task01_Sagittal_Train
187
+ FeTA24_MaskSize_Task01_Coronal_Train
188
+ FeTA24_MaskSize_Task01_Axial_Train
189
+ FeTA24_BoxSize_Task01_Sagittal_Train
190
+ FeTA24_BoxSize_Task01_Coronal_Train
191
+ FeTA24_BoxSize_Task01_Axial_Train
192
+ FeTA24_BiometricsFromLandmarks_Task01_Sagittal_Train
193
+ FeTA24_BiometricsFromLandmarks_Task01_Coronal_Train
194
+ FeTA24_BiometricsFromLandmarks_Task01_Axial_Train
195
+ FLARE22_MaskSize_Task01_Sagittal_Train
196
+ FLARE22_MaskSize_Task01_Coronal_Train
197
+ FLARE22_MaskSize_Task01_Axial_Train
198
+ FLARE22_BoxSize_Task01_Sagittal_Train
199
+ FLARE22_BoxSize_Task01_Coronal_Train
200
+ FLARE22_BoxSize_Task01_Axial_Train
201
+ HNTSMRG24_MaskSize_Task01_Sagittal_Train
202
+ HNTSMRG24_MaskSize_Task01_Coronal_Train
203
+ HNTSMRG24_MaskSize_Task01_Axial_Train
204
+ HNTSMRG24_MaskSize_Task02_Sagittal_Train
205
+ HNTSMRG24_MaskSize_Task02_Coronal_Train
206
+ HNTSMRG24_MaskSize_Task02_Axial_Train
207
+ HNTSMRG24_BoxSize_Task01_Sagittal_Train
208
+ HNTSMRG24_BoxSize_Task01_Coronal_Train
209
+ HNTSMRG24_BoxSize_Task01_Axial_Train
210
+ HNTSMRG24_BoxSize_Task02_Sagittal_Train
211
+ HNTSMRG24_BoxSize_Task02_Coronal_Train
212
+ HNTSMRG24_BoxSize_Task02_Axial_Train
213
+ HNTSMRG24_TumorLesionSize_Task01_Sagittal_Train
214
+ HNTSMRG24_TumorLesionSize_Task01_Coronal_Train
215
+ HNTSMRG24_TumorLesionSize_Task01_Axial_Train
216
+ HNTSMRG24_TumorLesionSize_Task02_Sagittal_Train
217
+ HNTSMRG24_TumorLesionSize_Task02_Coronal_Train
218
+ HNTSMRG24_TumorLesionSize_Task02_Axial_Train
219
+ HNTSMRG24_TumorLesionSize_Task03_Sagittal_Train
220
+ HNTSMRG24_TumorLesionSize_Task03_Coronal_Train
221
+ HNTSMRG24_TumorLesionSize_Task03_Axial_Train
222
+ HNTSMRG24_TumorLesionSize_Task04_Sagittal_Train
223
+ HNTSMRG24_TumorLesionSize_Task04_Coronal_Train
224
+ HNTSMRG24_TumorLesionSize_Task04_Axial_Train
225
+ ISLES24_MaskSize_Task01_Sagittal_Train
226
+ ISLES24_MaskSize_Task01_Coronal_Train
227
+ ISLES24_MaskSize_Task01_Axial_Train
228
+ ISLES24_MaskSize_Task02_Sagittal_Train
229
+ ISLES24_MaskSize_Task02_Coronal_Train
230
+ ISLES24_MaskSize_Task02_Axial_Train
231
+ ISLES24_BoxSize_Task01_Sagittal_Train
232
+ ISLES24_BoxSize_Task01_Coronal_Train
233
+ ISLES24_BoxSize_Task01_Axial_Train
234
+ ISLES24_BoxSize_Task02_Sagittal_Train
235
+ ISLES24_BoxSize_Task02_Coronal_Train
236
+ ISLES24_BoxSize_Task02_Axial_Train
237
+ KiPA22_MaskSize_Task01_Sagittal_Train
238
+ KiPA22_MaskSize_Task01_Coronal_Train
239
+ KiPA22_MaskSize_Task01_Axial_Train
240
+ KiPA22_BoxSize_Task01_Sagittal_Train
241
+ KiPA22_BoxSize_Task01_Coronal_Train
242
+ KiPA22_BoxSize_Task01_Axial_Train
243
+ KiPA22_TumorLesionSize_Task01_Sagittal_Train
244
+ KiPA22_TumorLesionSize_Task01_Coronal_Train
245
+ KiPA22_TumorLesionSize_Task01_Axial_Train
246
+ KiTS23_MaskSize_Task01_Sagittal_Train
247
+ KiTS23_MaskSize_Task01_Coronal_Train
248
+ KiTS23_MaskSize_Task01_Axial_Train
249
+ KiTS23_BoxSize_Task01_Sagittal_Train
250
+ KiTS23_BoxSize_Task01_Coronal_Train
251
+ KiTS23_BoxSize_Task01_Axial_Train
252
+ KiTS23_TumorLesionSize_Task01_Sagittal_Train
253
+ KiTS23_TumorLesionSize_Task01_Coronal_Train
254
+ KiTS23_TumorLesionSize_Task01_Axial_Train
255
+ MSD_MaskSize_Task01_Sagittal_Train
256
+ MSD_MaskSize_Task01_Coronal_Train
257
+ MSD_MaskSize_Task01_Axial_Train
258
+ MSD_MaskSize_Task02_Sagittal_Train
259
+ MSD_MaskSize_Task02_Coronal_Train
260
+ MSD_MaskSize_Task02_Axial_Train
261
+ MSD_MaskSize_Task03_Sagittal_Train
262
+ MSD_MaskSize_Task03_Coronal_Train
263
+ MSD_MaskSize_Task03_Axial_Train
264
+ MSD_MaskSize_Task04_Sagittal_Train
265
+ MSD_MaskSize_Task04_Coronal_Train
266
+ MSD_MaskSize_Task04_Axial_Train
267
+ MSD_MaskSize_Task05_Sagittal_Train
268
+ MSD_MaskSize_Task05_Coronal_Train
269
+ MSD_MaskSize_Task05_Axial_Train
270
+ MSD_MaskSize_Task06_Sagittal_Train
271
+ MSD_MaskSize_Task06_Coronal_Train
272
+ MSD_MaskSize_Task06_Axial_Train
273
+ MSD_MaskSize_Task07_Sagittal_Train
274
+ MSD_MaskSize_Task07_Coronal_Train
275
+ MSD_MaskSize_Task07_Axial_Train
276
+ MSD_MaskSize_Task08_Sagittal_Train
277
+ MSD_MaskSize_Task08_Coronal_Train
278
+ MSD_MaskSize_Task08_Axial_Train
279
+ MSD_MaskSize_Task09_Sagittal_Train
280
+ MSD_MaskSize_Task09_Coronal_Train
281
+ MSD_MaskSize_Task09_Axial_Train
282
+ MSD_MaskSize_Task10_Sagittal_Train
283
+ MSD_MaskSize_Task10_Coronal_Train
284
+ MSD_MaskSize_Task10_Axial_Train
285
+ MSD_MaskSize_Task11_Sagittal_Train
286
+ MSD_MaskSize_Task11_Coronal_Train
287
+ MSD_MaskSize_Task11_Axial_Train
288
+ MSD_MaskSize_Task12_Sagittal_Train
289
+ MSD_MaskSize_Task12_Coronal_Train
290
+ MSD_MaskSize_Task12_Axial_Train
291
+ MSD_MaskSize_Task13_Sagittal_Train
292
+ MSD_MaskSize_Task13_Coronal_Train
293
+ MSD_MaskSize_Task13_Axial_Train
294
+ MSD_MaskSize_Task14_Sagittal_Train
295
+ MSD_MaskSize_Task14_Coronal_Train
296
+ MSD_MaskSize_Task14_Axial_Train
297
+ MSD_BoxSize_Task01_Sagittal_Train
298
+ MSD_BoxSize_Task01_Coronal_Train
299
+ MSD_BoxSize_Task01_Axial_Train
300
+ MSD_BoxSize_Task02_Sagittal_Train
301
+ MSD_BoxSize_Task02_Coronal_Train
302
+ MSD_BoxSize_Task02_Axial_Train
303
+ MSD_BoxSize_Task03_Sagittal_Train
304
+ MSD_BoxSize_Task03_Coronal_Train
305
+ MSD_BoxSize_Task03_Axial_Train
306
+ MSD_BoxSize_Task04_Sagittal_Train
307
+ MSD_BoxSize_Task04_Coronal_Train
308
+ MSD_BoxSize_Task04_Axial_Train
309
+ MSD_BoxSize_Task05_Sagittal_Train
310
+ MSD_BoxSize_Task05_Coronal_Train
311
+ MSD_BoxSize_Task05_Axial_Train
312
+ MSD_BoxSize_Task06_Sagittal_Train
313
+ MSD_BoxSize_Task06_Coronal_Train
314
+ MSD_BoxSize_Task06_Axial_Train
315
+ MSD_BoxSize_Task07_Sagittal_Train
316
+ MSD_BoxSize_Task07_Coronal_Train
317
+ MSD_BoxSize_Task07_Axial_Train
318
+ MSD_BoxSize_Task08_Sagittal_Train
319
+ MSD_BoxSize_Task08_Coronal_Train
320
+ MSD_BoxSize_Task08_Axial_Train
321
+ MSD_BoxSize_Task09_Sagittal_Train
322
+ MSD_BoxSize_Task09_Coronal_Train
323
+ MSD_BoxSize_Task09_Axial_Train
324
+ MSD_BoxSize_Task10_Sagittal_Train
325
+ MSD_BoxSize_Task10_Coronal_Train
326
+ MSD_BoxSize_Task10_Axial_Train
327
+ MSD_BoxSize_Task11_Sagittal_Train
328
+ MSD_BoxSize_Task11_Coronal_Train
329
+ MSD_BoxSize_Task11_Axial_Train
330
+ MSD_BoxSize_Task12_Sagittal_Train
331
+ MSD_BoxSize_Task12_Coronal_Train
332
+ MSD_BoxSize_Task12_Axial_Train
333
+ MSD_BoxSize_Task13_Sagittal_Train
334
+ MSD_BoxSize_Task13_Coronal_Train
335
+ MSD_BoxSize_Task13_Axial_Train
336
+ MSD_BoxSize_Task14_Sagittal_Train
337
+ MSD_BoxSize_Task14_Coronal_Train
338
+ MSD_BoxSize_Task14_Axial_Train
339
+ MSD_TumorLesionSize_Task01_Sagittal_Train
340
+ MSD_TumorLesionSize_Task01_Coronal_Train
341
+ MSD_TumorLesionSize_Task01_Axial_Train
342
+ MSD_TumorLesionSize_Task02_Sagittal_Train
343
+ MSD_TumorLesionSize_Task02_Coronal_Train
344
+ MSD_TumorLesionSize_Task02_Axial_Train
345
+ MSD_TumorLesionSize_Task03_Sagittal_Train
346
+ MSD_TumorLesionSize_Task03_Coronal_Train
347
+ MSD_TumorLesionSize_Task03_Axial_Train
348
+ MSD_TumorLesionSize_Task04_Sagittal_Train
349
+ MSD_TumorLesionSize_Task04_Coronal_Train
350
+ MSD_TumorLesionSize_Task04_Axial_Train
351
+ MSD_TumorLesionSize_Task05_Sagittal_Train
352
+ MSD_TumorLesionSize_Task05_Coronal_Train
353
+ MSD_TumorLesionSize_Task05_Axial_Train
354
+ MSD_TumorLesionSize_Task06_Sagittal_Train
355
+ MSD_TumorLesionSize_Task06_Coronal_Train
356
+ MSD_TumorLesionSize_Task06_Axial_Train
357
+ MSD_TumorLesionSize_Task07_Sagittal_Train
358
+ MSD_TumorLesionSize_Task07_Coronal_Train
359
+ MSD_TumorLesionSize_Task07_Axial_Train
360
+ MSD_TumorLesionSize_Task08_Sagittal_Train
361
+ MSD_TumorLesionSize_Task08_Coronal_Train
362
+ MSD_TumorLesionSize_Task08_Axial_Train
363
+ OAIZIB-CM_MaskSize_Task01_Sagittal_Train
364
+ OAIZIB-CM_MaskSize_Task01_Coronal_Train
365
+ OAIZIB-CM_MaskSize_Task01_Axial_Train
366
+ OAIZIB-CM_BoxSize_Task01_Sagittal_Train
367
+ OAIZIB-CM_BoxSize_Task01_Coronal_Train
368
+ OAIZIB-CM_BoxSize_Task01_Axial_Train
369
+ SKM-TEA_MaskSize_Task01_Sagittal_Train
370
+ SKM-TEA_MaskSize_Task01_Coronal_Train
371
+ SKM-TEA_MaskSize_Task01_Axial_Train
372
+ SKM-TEA_MaskSize_Task02_Sagittal_Train
373
+ SKM-TEA_MaskSize_Task02_Coronal_Train
374
+ SKM-TEA_MaskSize_Task02_Axial_Train
375
+ SKM-TEA_BoxSize_Task01_Sagittal_Train
376
+ SKM-TEA_BoxSize_Task01_Coronal_Train
377
+ SKM-TEA_BoxSize_Task01_Axial_Train
378
+ SKM-TEA_BoxSize_Task02_Sagittal_Train
379
+ SKM-TEA_BoxSize_Task02_Coronal_Train
380
+ SKM-TEA_BoxSize_Task02_Axial_Train
381
+ ToothFairy2_MaskSize_Task01_Sagittal_Train
382
+ ToothFairy2_MaskSize_Task01_Coronal_Train
383
+ ToothFairy2_MaskSize_Task01_Axial_Train
384
+ ToothFairy2_BoxSize_Task01_Sagittal_Train
385
+ ToothFairy2_BoxSize_Task01_Coronal_Train
386
+ ToothFairy2_BoxSize_Task01_Axial_Train
387
+ TopCoW24_MaskSize_Task01_Sagittal_Train
388
+ TopCoW24_MaskSize_Task01_Coronal_Train
389
+ TopCoW24_MaskSize_Task01_Axial_Train
390
+ TopCoW24_MaskSize_Task02_Sagittal_Train
391
+ TopCoW24_MaskSize_Task02_Coronal_Train
392
+ TopCoW24_MaskSize_Task02_Axial_Train
393
+ TopCoW24_BoxSize_Task01_Sagittal_Train
394
+ TopCoW24_BoxSize_Task01_Coronal_Train
395
+ TopCoW24_BoxSize_Task01_Axial_Train
396
+ TopCoW24_BoxSize_Task02_Sagittal_Train
397
+ TopCoW24_BoxSize_Task02_Coronal_Train
398
+ TopCoW24_BoxSize_Task02_Axial_Train
399
+ TotalSegmentator_MaskSize_Task01_Sagittal_Train
400
+ TotalSegmentator_MaskSize_Task01_Coronal_Train
401
+ TotalSegmentator_MaskSize_Task01_Axial_Train
402
+ TotalSegmentator_MaskSize_Task02_Sagittal_Train
403
+ TotalSegmentator_MaskSize_Task02_Coronal_Train
404
+ TotalSegmentator_MaskSize_Task02_Axial_Train
405
+ TotalSegmentator_BoxSize_Task01_Sagittal_Train
406
+ TotalSegmentator_BoxSize_Task01_Coronal_Train
407
+ TotalSegmentator_BoxSize_Task01_Axial_Train
408
+ TotalSegmentator_BoxSize_Task02_Sagittal_Train
409
+ TotalSegmentator_BoxSize_Task02_Coronal_Train
410
+ TotalSegmentator_BoxSize_Task02_Axial_Train
src/medvision_ds/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ """BiometricVQA package."""
2
+ from . import utils
3
+ from . import datasets
4
+ from .__version__ import __version__
5
+
6
+ __all__ = ["utils", "datasets", "__version__"]
src/medvision_ds/__version__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ __version__ = "1.0.0"
src/medvision_ds/datasets/ACDC/__init__.py ADDED
File without changes
src/medvision_ds/datasets/ACDC/download_fast.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import argparse
4
+ import zipfile
5
+ from huggingface_hub import hf_hub_download
6
+ from medvision_ds.utils.preprocess_utils import move_folder
7
+
8
+
9
+ # ====================================
10
+ # Dataset Info [!]
11
+ # ====================================
12
+ # Dataset: ACDC
13
+ # Data: https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
14
+ # Format: nii.gz
15
+ # ====================================
16
+
17
+
18
+ def download_and_extract(dataset_dir, dataset_name, **kwargs):
19
+ """
20
+ Download and extract the AbdomenAtlas dataset.
21
+
22
+ NOTE: Function signature: the first 2 arguments must be dataset_dir and dataset_name
23
+ the other arguments must be kwargs
24
+ """
25
+ # Download files
26
+ current_dir = os.getcwd()
27
+ os.chdir(dataset_dir)
28
+ tmp_dir = os.path.join(dataset_dir, "tmp")
29
+ os.makedirs(tmp_dir, exist_ok=True)
30
+ os.chdir(tmp_dir)
31
+ print(f"Downloading {dataset_name} dataset to {dataset_dir}...")
32
+
33
+ # ====================================
34
+ # Add download logic here [!]
35
+ # ====================================
36
+ # Download and extract dataset
37
+ for file in ["Images.zip", "Masks.zip"]:
38
+ # Download and extract dataset
39
+ hf_hub_download(
40
+ repo_id="YongchengYAO/ACDC",
41
+ filename=file,
42
+ repo_type="dataset",
43
+ revision="660f25484d2bd11d0416acdf332b97fd97f9c453", # commit hash on 2025-02-20
44
+ local_dir=".",
45
+ )
46
+ print(f"Extracting {file}... This may take some time.")
47
+ with zipfile.ZipFile(file, "r") as zip_ref:
48
+ zip_ref.extractall()
49
+ os.remove(file)
50
+
51
+ # Move folder to dataset_dir
52
+ folders_to_move = [
53
+ "Images",
54
+ "Masks",
55
+ ]
56
+ for folder in folders_to_move:
57
+ move_folder(
58
+ os.path.join(tmp_dir, folder),
59
+ os.path.join(dataset_dir, folder),
60
+ create_dest=True,
61
+ )
62
+ # ====================================
63
+
64
+ print(f"Download and extraction completed for {dataset_name}")
65
+ os.chdir(dataset_dir)
66
+ shutil.rmtree(tmp_dir)
67
+ os.chdir(current_dir)
68
+
69
+
70
+ def main(dir_datasets_data, dataset_name, **kwargs):
71
+ # Create dataset directory
72
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
73
+ os.makedirs(dataset_dir, exist_ok=True)
74
+
75
+ # Change to dataset directory
76
+ os.chdir(dataset_dir)
77
+
78
+ # Download and extract dataset
79
+ download_and_extract(dataset_dir, dataset_name, **kwargs)
80
+
81
+
82
+ if __name__ == "__main__":
83
+ # Set up argument parser
84
+ parser = argparse.ArgumentParser(description="Download and extract dataset")
85
+ parser.add_argument(
86
+ "-d",
87
+ "--dir_datasets_data",
88
+ help="Directory path where datasets will be stored",
89
+ required=True,
90
+ )
91
+ parser.add_argument(
92
+ "-n",
93
+ "--dataset_name",
94
+ help="Name of the dataset",
95
+ required=True,
96
+ )
97
+ args = parser.parse_args()
98
+
99
+ main(
100
+ dir_datasets_data=args.dir_datasets_data,
101
+ dataset_name=args.dataset_name,
102
+ )
src/medvision_ds/datasets/ACDC/download_raw.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import argparse
4
+ import zipfile
5
+ import urllib.request
6
+ from medvision_ds.utils.preprocess_utils import process_dataset, move_folder
7
+
8
+
9
+ # ====================================
10
+ # Dataset Info [!]
11
+ # ====================================
12
+ # Dataset: ACDC
13
+ # Data: https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
14
+ # Format: nii.gz
15
+ # ====================================
16
+
17
+
18
+ def download_and_extract(dataset_dir, dataset_name, **kwargs):
19
+ """
20
+ Download and extract the AbdomenAtlas dataset.
21
+
22
+ NOTE: Function signature: the first 2 arguments must be dataset_dir and dataset_name
23
+ the other arguments must be kwargs
24
+ """
25
+ # Download files
26
+ current_dir = os.getcwd()
27
+ os.chdir(dataset_dir)
28
+ tmp_dir = os.path.join(dataset_dir, "tmp")
29
+ os.makedirs(tmp_dir, exist_ok=True)
30
+ os.chdir(tmp_dir)
31
+ print(f"Downloading {dataset_name} dataset to {dataset_dir}...")
32
+
33
+ # ====================================
34
+ # Add download logic here [!]
35
+ # ====================================
36
+ # Download dataset using pure Python
37
+ print("Downloading ACDC.zip...")
38
+ urllib.request.urlretrieve(
39
+ "https://humanheart-project.creatis.insa-lyon.fr/database/api/v1/collection/637218c173e9f0047faa00fb/download",
40
+ "ACDC.zip",
41
+ )
42
+
43
+ # Extract and cleanup
44
+ print("Extracting ACDC.zip...")
45
+ with zipfile.ZipFile("ACDC.zip", "r") as zip_ref:
46
+ zip_ref.extractall()
47
+ os.remove("ACDC.zip")
48
+
49
+ # Reorganize directory structure
50
+ shutil.move(os.path.join("ACDC", "database"), ".")
51
+ shutil.rmtree("ACDC")
52
+
53
+ # Remove documentation and consolidate data
54
+ shutil.move(os.path.join("database", "testing"), ".")
55
+ shutil.move(os.path.join("database", "training"), ".")
56
+ shutil.rmtree("database")
57
+
58
+ # Move testing contents to training
59
+ for item in os.listdir("testing"):
60
+ if item.startswith("patient"):
61
+ shutil.move(os.path.join("testing", item), "training")
62
+ shutil.rmtree("testing")
63
+
64
+ # Create directories
65
+ os.makedirs("Images", exist_ok=True)
66
+ os.makedirs("Masks", exist_ok=True)
67
+
68
+ # Process and organize files
69
+ process_dataset(["training"], "*_gt.nii.gz", "_gt.nii.gz", replace=False)
70
+
71
+ # Move folder to dataset_dir
72
+ folders_to_move = [
73
+ "Images",
74
+ "Masks",
75
+ ]
76
+ for folder in folders_to_move:
77
+ move_folder(
78
+ os.path.join(tmp_dir, folder),
79
+ os.path.join(dataset_dir, folder),
80
+ create_dest=True,
81
+ )
82
+ # ====================================
83
+
84
+ print(f"Download and extraction completed for {dataset_name}")
85
+ os.chdir(dataset_dir)
86
+ shutil.rmtree(tmp_dir)
87
+ os.chdir(current_dir)
88
+
89
+
90
+ def main(dir_datasets_data, dataset_name, **kwargs):
91
+ # Create dataset directory
92
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
93
+ os.makedirs(dataset_dir, exist_ok=True)
94
+
95
+ # Change to dataset directory
96
+ os.chdir(dataset_dir)
97
+
98
+ # Download and extract dataset
99
+ download_and_extract(dataset_dir, dataset_name, **kwargs)
100
+
101
+
102
+ if __name__ == "__main__":
103
+ # Set up argument parser
104
+ parser = argparse.ArgumentParser(description="Download and extract dataset")
105
+ parser.add_argument(
106
+ "-d",
107
+ "--dir_datasets_data",
108
+ help="Directory path where datasets will be stored",
109
+ required=True,
110
+ )
111
+ parser.add_argument(
112
+ "-n",
113
+ "--dataset_name",
114
+ help="Name of the dataset",
115
+ required=True,
116
+ )
117
+ args = parser.parse_args()
118
+
119
+ main(
120
+ dir_datasets_data=args.dir_datasets_data,
121
+ dataset_name=args.dataset_name,
122
+ )
src/medvision_ds/datasets/ACDC/preprocess_detection.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ from medvision_ds.utils.preprocess_utils import _get_cgroup_limited_cpus
4
+ from medvision_ds.utils.benchmark_planner import MedVision_BenchmarkPlannerDetection
5
+
6
+ # ====================================
7
+ # Dataset Info [!]
8
+ # Do not change keys in
9
+ # - benchmark_plan
10
+ # ====================================
11
+ dataset_info = {
12
+ "dataset": "ACDC",
13
+ "dataset_website": " https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html",
14
+ "dataset_data": [
15
+ "https://humanheart-project.creatis.insa-lyon.fr/database/#collection/637218c173e9f0047faa00fb",
16
+ ],
17
+ "license": ["CC BY-NC-SA 4.0"],
18
+ "paper": ["https://doi.org/10.1109/TMI.2018.2837502"],
19
+ }
20
+
21
+ labels_map = {
22
+ "1": "right ventricular cavity",
23
+ "2": "myocardium",
24
+ "3": "left ventricular cavity",
25
+ }
26
+
27
+ benchmark_plan = {
28
+ "dataset_info": dataset_info,
29
+ "tasks": [
30
+ {
31
+ "image_modality": "MRI",
32
+ "image_description": "cardiac magnetic resonance imaging (MRI) scan",
33
+ "image_folder": "Images",
34
+ "mask_folder": "Masks",
35
+ "image_prefix": "",
36
+ "image_suffix": ".nii.gz",
37
+ "mask_prefix": "",
38
+ "mask_suffix": "_gt.nii.gz",
39
+ "labels_map": labels_map,
40
+ },
41
+ ],
42
+ }
43
+ # ====================================
44
+
45
+
46
+ def main(
47
+ dir_datasets_data,
48
+ dataset_name,
49
+ benchmark_plan=benchmark_plan,
50
+ random_seed=1024,
51
+ split_ratio=0.7,
52
+ force_uint16_mask=False,
53
+ reorient2RAS=False,
54
+ ):
55
+ # Create dataset directory
56
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
57
+ os.makedirs(dataset_dir, exist_ok=True)
58
+
59
+ # Change to dataset directory
60
+ os.chdir(dataset_dir)
61
+
62
+ # Process dataset for detection task
63
+ planner = MedVision_BenchmarkPlannerDetection(
64
+ dataset_dir=dataset_dir,
65
+ bm_plan=benchmark_plan,
66
+ dataset_name=dataset_name,
67
+ seed=random_seed,
68
+ split_ratio=split_ratio,
69
+ force_uint16_mask=force_uint16_mask,
70
+ reorient2RAS=reorient2RAS,
71
+ num_proc=_get_cgroup_limited_cpus(),
72
+ )
73
+ planner.process()
74
+
75
+
76
+ if __name__ == "__main__":
77
+ # Set up argument parser
78
+ parser = argparse.ArgumentParser(
79
+ description="Generate benchmark planner for detection task."
80
+ )
81
+ parser.add_argument(
82
+ "-d",
83
+ "--dir_datasets_data",
84
+ type=str,
85
+ help="Directory path where datasets will be stored",
86
+ required=True,
87
+ )
88
+ parser.add_argument(
89
+ "-n",
90
+ "--dataset_name",
91
+ type=str,
92
+ help="Name of the dataset",
93
+ required=True,
94
+ )
95
+ parser.add_argument(
96
+ "--random_seed",
97
+ type=int,
98
+ default=1024,
99
+ help="Random seed for reproducibility",
100
+ )
101
+ parser.add_argument(
102
+ "--split_ratio",
103
+ type=float,
104
+ default=0.7,
105
+ help="Train/test split ratio (0-1)",
106
+ )
107
+ parser.add_argument(
108
+ "--force_uint16_mask",
109
+ action="store_true",
110
+ help="Force mask to be uint16",
111
+ )
112
+ parser.add_argument(
113
+ "--reorient2RAS",
114
+ action="store_true",
115
+ help="Reorient images and masks to RAS orientation",
116
+ )
117
+
118
+ args = parser.parse_args()
119
+
120
+ main(
121
+ benchmark_plan=benchmark_plan, # global variable
122
+ dir_datasets_data=args.dir_datasets_data,
123
+ dataset_name=args.dataset_name,
124
+ random_seed=args.random_seed,
125
+ split_ratio=args.split_ratio,
126
+ force_uint16_mask=args.force_uint16_mask,
127
+ reorient2RAS=args.reorient2RAS,
128
+ )
src/medvision_ds/datasets/ACDC/preprocess_segmentation.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ from medvision_ds.utils.preprocess_utils import _get_cgroup_limited_cpus
4
+ from medvision_ds.utils.benchmark_planner import MedVision_BenchmarkPlannerSegmentation
5
+
6
+ # ====================================
7
+ # Dataset Info [!]
8
+ # Do not change keys in
9
+ # - benchmark_plan
10
+ # ====================================
11
+ dataset_info = {
12
+ "dataset": "ACDC",
13
+ "dataset_website": " https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html",
14
+ "dataset_data": [
15
+ "https://humanheart-project.creatis.insa-lyon.fr/database/#collection/637218c173e9f0047faa00fb",
16
+ ],
17
+ "license": ["CC BY-NC-SA 4.0"],
18
+ "paper": ["https://doi.org/10.1109/TMI.2018.2837502"],
19
+ }
20
+
21
+ labels_map = {
22
+ "1": "right ventricular cavity",
23
+ "2": "myocardium",
24
+ "3": "left ventricular cavity",
25
+ }
26
+
27
+ benchmark_plan = {
28
+ "dataset_info": dataset_info,
29
+ "tasks": [
30
+ {
31
+ "image_modality": "MRI",
32
+ "image_description": "cardiac magnetic resonance imaging (MRI) scan",
33
+ "image_folder": "Images",
34
+ "mask_folder": "Masks",
35
+ "image_prefix": "",
36
+ "image_suffix": ".nii.gz",
37
+ "mask_prefix": "",
38
+ "mask_suffix": "_gt.nii.gz",
39
+ "labels_map": labels_map,
40
+ },
41
+ ],
42
+ }
43
+ # ====================================
44
+
45
+
46
+ def main(
47
+ dir_datasets_data,
48
+ dataset_name,
49
+ benchmark_plan=benchmark_plan,
50
+ random_seed=1024,
51
+ split_ratio=0.7,
52
+ force_uint16_mask=False,
53
+ reorient2RAS=False,
54
+ ):
55
+ # Create dataset directory
56
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
57
+ os.makedirs(dataset_dir, exist_ok=True)
58
+
59
+ # Change to dataset directory
60
+ os.chdir(dataset_dir)
61
+
62
+ # Process dataset for segmentation task
63
+ planner = MedVision_BenchmarkPlannerSegmentation(
64
+ dataset_dir=dataset_dir,
65
+ bm_plan=benchmark_plan,
66
+ dataset_name=dataset_name,
67
+ seed=random_seed,
68
+ split_ratio=split_ratio,
69
+ force_uint16_mask=force_uint16_mask,
70
+ reorient2RAS=reorient2RAS,
71
+ num_proc=_get_cgroup_limited_cpus(),
72
+ )
73
+ planner.process()
74
+
75
+
76
+ if __name__ == "__main__":
77
+ # Set up argument parser
78
+ parser = argparse.ArgumentParser(
79
+ description="Generate benchmark planner for segmentation task."
80
+ )
81
+ parser.add_argument(
82
+ "-d",
83
+ "--dir_datasets_data",
84
+ type=str,
85
+ help="Directory path where datasets will be stored",
86
+ required=True,
87
+ )
88
+ parser.add_argument(
89
+ "-n",
90
+ "--dataset_name",
91
+ type=str,
92
+ help="Name of the dataset",
93
+ required=True,
94
+ )
95
+ parser.add_argument(
96
+ "--random_seed",
97
+ type=int,
98
+ default=1024,
99
+ help="Random seed for reproducibility",
100
+ )
101
+ parser.add_argument(
102
+ "--split_ratio",
103
+ type=float,
104
+ default=0.7,
105
+ help="Train/test split ratio (0-1)",
106
+ )
107
+ parser.add_argument(
108
+ "--force_uint16_mask",
109
+ action="store_true",
110
+ help="Force mask to be uint16",
111
+ )
112
+ parser.add_argument(
113
+ "--reorient2RAS",
114
+ action="store_true",
115
+ help="Reorient images and masks to RAS orientation",
116
+ )
117
+
118
+ args = parser.parse_args()
119
+
120
+ main(
121
+ benchmark_plan=benchmark_plan, # global variable
122
+ dir_datasets_data=args.dir_datasets_data,
123
+ dataset_name=args.dataset_name,
124
+ random_seed=args.random_seed,
125
+ split_ratio=args.split_ratio,
126
+ force_uint16_mask=args.force_uint16_mask,
127
+ reorient2RAS=args.reorient2RAS,
128
+ )
src/medvision_ds/datasets/AMOS22/__init__.py ADDED
File without changes
src/medvision_ds/datasets/AMOS22/download.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import argparse
4
+ import glob
5
+ import zipfile
6
+ import urllib.request
7
+ from medvision_ds.utils.preprocess_utils import move_folder
8
+
9
+ # ====================================
10
+ # Dataset Info [!]
11
+ # ====================================
12
+ # Dataset: AMOS22
13
+ # Challenge: https://amos22.grand-challenge.org
14
+ # Data: https://zenodo.org/records/7262581
15
+ # Format: nii.gz
16
+ # ====================================
17
+
18
+
19
+ def download_and_extract(dataset_dir, dataset_name, **kwargs):
20
+ """
21
+ Download and extract the AbdomenAtlas dataset.
22
+
23
+ NOTE: Function signature: the first 2 arguments must be dataset_dir and dataset_name
24
+ the other arguments must be kwargs
25
+ """
26
+ # Download files
27
+ current_dir = os.getcwd()
28
+ os.chdir(dataset_dir)
29
+ tmp_dir = os.path.join(dataset_dir, "tmp")
30
+ os.makedirs(tmp_dir, exist_ok=True)
31
+ os.chdir(tmp_dir)
32
+ print(f"Downloading {dataset_name} dataset to {dataset_dir}...")
33
+
34
+ # ====================================
35
+ # Add download logic here [!]
36
+ # ====================================
37
+ # Download dataset
38
+ print("Downloading amos22.zip...")
39
+ urllib.request.urlretrieve(
40
+ "https://zenodo.org/records/7155725/files/amos22.zip?download=1", "amos22.zip"
41
+ )
42
+
43
+ # Extract zip
44
+ print("Extracting amos22.zip...")
45
+ with zipfile.ZipFile("amos22.zip", "r") as zip_ref:
46
+ zip_ref.extractall()
47
+
48
+ # Move contents
49
+ for item in os.listdir("amos22"):
50
+ shutil.move(os.path.join("amos22", item), ".")
51
+
52
+ # Create directories
53
+ for modality in ["CT", "MRI"]:
54
+ for subdir in ["Images", "Masks"]:
55
+ os.makedirs(os.path.join(f"AMOS22-{modality}", subdir), exist_ok=True)
56
+
57
+ # Move image files
58
+ for folder in ["imagesTr", "imagesVa"]:
59
+ if os.path.exists(folder):
60
+ for f in glob.glob(os.path.join(folder, "amos_????.nii.gz")):
61
+ # Extract the number from filename
62
+ num = int(os.path.basename(f)[5:9])
63
+ if num < 507:
64
+ shutil.move(f, os.path.join("AMOS22-CT", "Images"))
65
+ else:
66
+ shutil.move(f, os.path.join("AMOS22-MRI", "Images"))
67
+
68
+ # Move mask files
69
+ for folder in ["labelsTr", "labelsVa"]:
70
+ if os.path.exists(folder):
71
+ for f in glob.glob(os.path.join(folder, "amos_????.nii.gz")):
72
+ # Extract the number from filename
73
+ num = int(os.path.basename(f)[5:9])
74
+ if num < 507:
75
+ shutil.move(f, os.path.join("AMOS22-CT", "Masks"))
76
+ else:
77
+ shutil.move(f, os.path.join("AMOS22-MRI", "Masks"))
78
+
79
+ # Move folder to dataset_dir
80
+ folders_to_move = [
81
+ "AMOS22-CT",
82
+ "AMOS22-MRI",
83
+ ]
84
+ for folder in folders_to_move:
85
+ move_folder(
86
+ os.path.join(tmp_dir, folder),
87
+ os.path.join(dataset_dir, folder),
88
+ create_dest=True,
89
+ )
90
+ # ====================================
91
+
92
+ print(f"Download and extraction completed for {dataset_name}")
93
+ os.chdir(dataset_dir)
94
+ shutil.rmtree(tmp_dir)
95
+ os.chdir(current_dir)
96
+
97
+
98
+ def main(dir_datasets_data, dataset_name, **kwargs):
99
+ # Create dataset directory
100
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
101
+ os.makedirs(dataset_dir, exist_ok=True)
102
+
103
+ # Change to dataset directory
104
+ os.chdir(dataset_dir)
105
+
106
+ # Download and extract dataset
107
+ download_and_extract(dataset_dir, dataset_name, **kwargs)
108
+
109
+
110
+ if __name__ == "__main__":
111
+ # Set up argument parser
112
+ parser = argparse.ArgumentParser(description="Download and extract dataset")
113
+ parser.add_argument(
114
+ "-d",
115
+ "--dir_datasets_data",
116
+ help="Directory path where datasets will be stored",
117
+ required=True,
118
+ )
119
+ parser.add_argument(
120
+ "-n",
121
+ "--dataset_name",
122
+ help="Name of the dataset",
123
+ required=True,
124
+ )
125
+ args = parser.parse_args()
126
+
127
+ main(
128
+ dir_datasets_data=args.dir_datasets_data,
129
+ dataset_name=args.dataset_name,
130
+ )
src/medvision_ds/datasets/AMOS22/preprocess_detection.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ from medvision_ds.utils.preprocess_utils import _get_cgroup_limited_cpus
4
+ from medvision_ds.utils.benchmark_planner import MedVision_BenchmarkPlannerDetection
5
+
6
+
7
+ # ====================================
8
+ # Dataset Info [!]
9
+ # Do not change keys in
10
+ # - benchmark_plan
11
+ # ====================================
12
+ dataset_info = {
13
+ "dataset": "AMOS22",
14
+ "dataset_website": "https://amos22.grand-challenge.org",
15
+ "dataset_data": [
16
+ "https://zenodo.org/records/7262581",
17
+ ],
18
+ "license": ["CC BY 4.0"],
19
+ "paper": ["https://doi.org/10.48550/arXiv.2206.08023"],
20
+ }
21
+
22
+ labels_map = {
23
+ "1": "spleen",
24
+ "2": "right kidney",
25
+ "3": "left kidney",
26
+ "4": "gall bladder",
27
+ "5": "esophagus",
28
+ "6": "liver",
29
+ "7": "stomach",
30
+ "8": "arota",
31
+ "9": "postcava",
32
+ "10": "pancreas",
33
+ "11": "right adrenal gland",
34
+ "12": "left adrenal gland",
35
+ "13": "duodenum",
36
+ "14": "bladder",
37
+ "15": "prostate/uterus",
38
+ }
39
+
40
+ benchmark_plan = {
41
+ "dataset_info": dataset_info,
42
+ "tasks": [
43
+ {
44
+ "image_modality": "CT",
45
+ "image_description": "abdominal computed tomography (CT) scan",
46
+ "image_folder": "AMOS22-CT/Images",
47
+ "mask_folder": "AMOS22-CT/Masks",
48
+ "image_prefix": "",
49
+ "image_suffix": ".nii.gz",
50
+ "mask_prefix": "",
51
+ "mask_suffix": ".nii.gz",
52
+ "labels_map": labels_map,
53
+ },
54
+ {
55
+ "image_modality": "MRI",
56
+ "image_description": "abdominal magnetic resonance imaging (MRI) scan",
57
+ "image_folder": "AMOS22-MRI/Images",
58
+ "mask_folder": "AMOS22-MRI/Masks",
59
+ "image_prefix": "",
60
+ "image_suffix": ".nii.gz",
61
+ "mask_prefix": "",
62
+ "mask_suffix": ".nii.gz",
63
+ "labels_map": labels_map,
64
+ },
65
+ ],
66
+ }
67
+ # ====================================
68
+
69
+
70
+ def main(
71
+ dir_datasets_data,
72
+ dataset_name,
73
+ benchmark_plan=benchmark_plan,
74
+ random_seed=1024,
75
+ split_ratio=0.7,
76
+ force_uint16_mask=False,
77
+ reorient2RAS=False,
78
+ ):
79
+ # Create dataset directory
80
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
81
+ os.makedirs(dataset_dir, exist_ok=True)
82
+
83
+ # Change to dataset directory
84
+ os.chdir(dataset_dir)
85
+
86
+ # Process dataset for detection task
87
+ planner = MedVision_BenchmarkPlannerDetection(
88
+ dataset_dir=dataset_dir,
89
+ bm_plan=benchmark_plan,
90
+ dataset_name=dataset_name,
91
+ seed=random_seed,
92
+ split_ratio=split_ratio,
93
+ force_uint16_mask=force_uint16_mask,
94
+ reorient2RAS=reorient2RAS,
95
+ num_proc=_get_cgroup_limited_cpus(),
96
+ )
97
+ planner.process()
98
+
99
+
100
+ if __name__ == "__main__":
101
+ # Set up argument parser
102
+ parser = argparse.ArgumentParser(
103
+ description="Generate benchmark planner for detection task."
104
+ )
105
+ parser.add_argument(
106
+ "-d",
107
+ "--dir_datasets_data",
108
+ type=str,
109
+ help="Directory path where datasets will be stored",
110
+ required=True,
111
+ )
112
+ parser.add_argument(
113
+ "-n",
114
+ "--dataset_name",
115
+ type=str,
116
+ help="Name of the dataset",
117
+ required=True,
118
+ )
119
+ parser.add_argument(
120
+ "--random_seed",
121
+ type=int,
122
+ default=1024,
123
+ help="Random seed for reproducibility",
124
+ )
125
+ parser.add_argument(
126
+ "--split_ratio",
127
+ type=float,
128
+ default=0.7,
129
+ help="Train/test split ratio (0-1)",
130
+ )
131
+ parser.add_argument(
132
+ "--force_uint16_mask",
133
+ action="store_true",
134
+ help="Force mask to be uint16",
135
+ )
136
+ parser.add_argument(
137
+ "--reorient2RAS",
138
+ action="store_true",
139
+ help="Reorient images and masks to RAS orientation",
140
+ )
141
+
142
+ args = parser.parse_args()
143
+
144
+ main(
145
+ benchmark_plan=benchmark_plan, # global variable
146
+ dir_datasets_data=args.dir_datasets_data,
147
+ dataset_name=args.dataset_name,
148
+ random_seed=args.random_seed,
149
+ split_ratio=args.split_ratio,
150
+ force_uint16_mask=args.force_uint16_mask,
151
+ reorient2RAS=args.reorient2RAS,
152
+ )
src/medvision_ds/datasets/AMOS22/preprocess_segmentation.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ from medvision_ds.utils.preprocess_utils import _get_cgroup_limited_cpus
4
+ from medvision_ds.utils.benchmark_planner import MedVision_BenchmarkPlannerSegmentation
5
+
6
+
7
+ # ====================================
8
+ # Dataset Info [!]
9
+ # Do not change keys in
10
+ # - benchmark_plan
11
+ # ====================================
12
+ dataset_info = {
13
+ "dataset": "AMOS22",
14
+ "dataset_website": "https://amos22.grand-challenge.org",
15
+ "dataset_data": [
16
+ "https://zenodo.org/records/7262581",
17
+ ],
18
+ "license": ["CC BY 4.0"],
19
+ "paper": ["https://doi.org/10.48550/arXiv.2206.08023"],
20
+ }
21
+
22
+ labels_map = {
23
+ "1": "spleen",
24
+ "2": "right kidney",
25
+ "3": "left kidney",
26
+ "4": "gall bladder",
27
+ "5": "esophagus",
28
+ "6": "liver",
29
+ "7": "stomach",
30
+ "8": "aorta",
31
+ "9": "postcava",
32
+ "10": "pancreas",
33
+ "11": "right adrenal gland",
34
+ "12": "left adrenal gland",
35
+ "13": "duodenum",
36
+ "14": "bladder",
37
+ "15": "prostate/uterus",
38
+ }
39
+
40
+ benchmark_plan = {
41
+ "dataset_info": dataset_info,
42
+ "tasks": [
43
+ {
44
+ "image_modality": "CT",
45
+ "image_description": "abdominal computed tomography (CT) scan",
46
+ "image_folder": "AMOS22-CT/Images",
47
+ "mask_folder": "AMOS22-CT/Masks",
48
+ "image_prefix": "",
49
+ "image_suffix": ".nii.gz",
50
+ "mask_prefix": "",
51
+ "mask_suffix": ".nii.gz",
52
+ "labels_map": labels_map,
53
+ },
54
+ {
55
+ "image_modality": "MRI",
56
+ "image_description": "abdominal magnetic resonance imaging (MRI) scan",
57
+ "image_folder": "AMOS22-MRI/Images",
58
+ "mask_folder": "AMOS22-MRI/Masks",
59
+ "image_prefix": "",
60
+ "image_suffix": ".nii.gz",
61
+ "mask_prefix": "",
62
+ "mask_suffix": ".nii.gz",
63
+ "labels_map": labels_map,
64
+ },
65
+ ],
66
+ }
67
+ # ====================================
68
+
69
+
70
+ def main(
71
+ dir_datasets_data,
72
+ dataset_name,
73
+ benchmark_plan=benchmark_plan,
74
+ random_seed=1024,
75
+ split_ratio=0.7,
76
+ force_uint16_mask=False,
77
+ reorient2RAS=False,
78
+ ):
79
+ # Create dataset directory
80
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
81
+ os.makedirs(dataset_dir, exist_ok=True)
82
+
83
+ # Change to dataset directory
84
+ os.chdir(dataset_dir)
85
+
86
+ # Process dataset for segmentation task
87
+ planner = MedVision_BenchmarkPlannerSegmentation(
88
+ dataset_dir=dataset_dir,
89
+ bm_plan=benchmark_plan,
90
+ dataset_name=dataset_name,
91
+ seed=random_seed,
92
+ split_ratio=split_ratio,
93
+ force_uint16_mask=force_uint16_mask,
94
+ reorient2RAS=reorient2RAS,
95
+ num_proc=_get_cgroup_limited_cpus(),
96
+ )
97
+ planner.process()
98
+
99
+
100
+ if __name__ == "__main__":
101
+ # Set up argument parser
102
+ parser = argparse.ArgumentParser(
103
+ description="Generate benchmark planner for segmentation task."
104
+ )
105
+ parser.add_argument(
106
+ "-d",
107
+ "--dir_datasets_data",
108
+ type=str,
109
+ help="Directory path where datasets will be stored",
110
+ required=True,
111
+ )
112
+ parser.add_argument(
113
+ "-n",
114
+ "--dataset_name",
115
+ type=str,
116
+ help="Name of the dataset",
117
+ required=True,
118
+ )
119
+ parser.add_argument(
120
+ "--random_seed",
121
+ type=int,
122
+ default=1024,
123
+ help="Random seed for reproducibility",
124
+ )
125
+ parser.add_argument(
126
+ "--split_ratio",
127
+ type=float,
128
+ default=0.7,
129
+ help="Train/test split ratio (0-1)",
130
+ )
131
+ parser.add_argument(
132
+ "--force_uint16_mask",
133
+ action="store_true",
134
+ help="Force mask to be uint16",
135
+ )
136
+ parser.add_argument(
137
+ "--reorient2RAS",
138
+ action="store_true",
139
+ help="Reorient images and masks to RAS orientation",
140
+ )
141
+
142
+ args = parser.parse_args()
143
+
144
+ main(
145
+ benchmark_plan=benchmark_plan, # global variable
146
+ dir_datasets_data=args.dir_datasets_data,
147
+ dataset_name=args.dataset_name,
148
+ random_seed=args.random_seed,
149
+ split_ratio=args.split_ratio,
150
+ force_uint16_mask=args.force_uint16_mask,
151
+ reorient2RAS=args.reorient2RAS,
152
+ )
src/medvision_ds/datasets/AbdomenAtlas__1_0__Mini/__init__.py ADDED
File without changes
src/medvision_ds/datasets/AbdomenAtlas__1_0__Mini/download_raw.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import argparse
4
+ import glob
5
+ import nibabel as nib
6
+ from tqdm import tqdm
7
+ from huggingface_hub import snapshot_download
8
+ from medvision_ds.utils.preprocess_utils import move_folder, _get_cgroup_limited_cpus
9
+ from medvision_ds.utils.data_conversion import convert_mask_to_uint16_per_dir, copy_img_header_to_mask
10
+ from medvision_ds.datasets.AbdomenAtlas__1_0__Mini.preprocess_segmentation import (
11
+ benchmark_plan as AbdomenAtlas1_0_Mini_benchmark_plan,
12
+ )
13
+
14
+
15
+ # ====================================
16
+ # Dataset Info [!]
17
+ # ====================================
18
+ # Dataset: AbdomenAtlas1.0Mini
19
+ # Website: https://github.com/MrGiovanni/AbdomenAtlas
20
+ # Data: https://huggingface.co/datasets/AbdomenAtlas/AbdomenAtlas1.0Mini
21
+ # Format: nii.gz
22
+ # ====================================
23
+
24
+
25
+ def convert_masks_to_uint16(dataset_dir):
26
+ mask_folders = _get_mask_folders(AbdomenAtlas1_0_Mini_benchmark_plan)
27
+ for folder in mask_folders:
28
+ mask_folder = os.path.join(dataset_dir, folder)
29
+ available_cpus = _get_cgroup_limited_cpus()
30
+ convert_mask_to_uint16_per_dir(mask_folder, workers_limit=available_cpus)
31
+
32
+
33
+
34
+ def wrapper_copy_img_header_to_mask(img_files, mask_dir):
35
+ available_cpus = _get_cgroup_limited_cpus()
36
+ copy_img_header_to_mask(img_files, mask_dir, workers_limit=available_cpus)
37
+
38
+
39
+ def _get_mask_folders(bm_plan):
40
+ """Get unique mask folders from tasks"""
41
+ mask_folders = []
42
+ for task in bm_plan["tasks"]:
43
+ mask_folders.append(task["mask_folder"])
44
+ return list(set(mask_folders))
45
+
46
+
47
+ def download_and_extract(dataset_dir, dataset_name, **kwargs):
48
+ """
49
+ Download and extract the AbdomenAtlas dataset.
50
+
51
+ NOTE: Function signature: the first 2 arguments must be dataset_dir and dataset_name
52
+ the other arguments must be kwargs
53
+ """
54
+ # Download files
55
+ current_dir = os.getcwd()
56
+ os.chdir(dataset_dir)
57
+ tmp_dir = os.path.join(dataset_dir, "tmp")
58
+ os.makedirs(tmp_dir, exist_ok=True)
59
+ os.chdir(tmp_dir)
60
+ print(f"Downloading {dataset_name} dataset to {dataset_dir}...")
61
+
62
+ # ====================================
63
+ # Add download logic here [!]
64
+ # ====================================
65
+ # Download dataset
66
+ dest_dir = "Images-raw"
67
+ snapshot_download(
68
+ repo_id="AbdomenAtlas/AbdomenAtlas1.0Mini",
69
+ repo_type="dataset",
70
+ local_dir=dest_dir,
71
+ revision="4dff62f03f7e4f17cd8c62617bc75fde9893a1e9", # commit hash on 2025-02-20
72
+ max_workers=kwargs.get('max_workers', 1),
73
+ )
74
+
75
+ # Create Images and Masks directories
76
+ os.makedirs("Images", exist_ok=True)
77
+ os.makedirs("Masks", exist_ok=True)
78
+
79
+ # Process each case folder
80
+ for case_dir in glob.glob(os.path.join(dest_dir, "BDMAP*")):
81
+ if os.path.isdir(case_dir):
82
+ case_name = os.path.basename(case_dir)
83
+ # Move CT images
84
+ ct_src = os.path.join(case_dir, "ct.nii.gz")
85
+ if os.path.exists(ct_src):
86
+ shutil.move(ct_src, os.path.join("Images", f"{case_name}.nii.gz"))
87
+ # Move mask files
88
+ mask_src = os.path.join(case_dir, "combined_labels.nii.gz")
89
+ if os.path.exists(mask_src):
90
+ shutil.move(mask_src, os.path.join("Masks", f"{case_name}.nii.gz"))
91
+
92
+ # Copy Nifti header of images to masks (Multiprocessing)
93
+ print("Copying Nifti headers from images to masks...")
94
+ img_files = list(glob.glob(os.path.join("Images", "*.nii.gz")))
95
+ wrapper_copy_img_header_to_mask(img_files, "Masks")
96
+
97
+ # Convert masks to uint16 (Multiprocessing)
98
+ convert_masks_to_uint16(tmp_dir)
99
+
100
+ # Move folder to dataset_dir
101
+ folders_to_move = [
102
+ "Images",
103
+ "Masks",
104
+ ]
105
+ for folder in folders_to_move:
106
+ move_folder(
107
+ os.path.join(tmp_dir, folder),
108
+ os.path.join(dataset_dir, folder),
109
+ create_dest=True,
110
+ )
111
+ # ====================================
112
+
113
+ print(f"Download and extraction completed for {dataset_name}")
114
+ os.chdir(dataset_dir)
115
+ shutil.rmtree(tmp_dir)
116
+ os.chdir(current_dir)
117
+
118
+
119
+ def main(dir_datasets_data, dataset_name, **kwargs):
120
+ # Create dataset directory
121
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
122
+ os.makedirs(dataset_dir, exist_ok=True)
123
+
124
+ # Change to dataset directory
125
+ os.chdir(dataset_dir)
126
+
127
+ # Download and extract dataset
128
+ download_and_extract(dataset_dir, dataset_name, **kwargs)
129
+
130
+
131
+ if __name__ == "__main__":
132
+ # Set up argument parser
133
+ parser = argparse.ArgumentParser(description="Download and extract dataset")
134
+ parser.add_argument(
135
+ "-d",
136
+ "--dir_datasets_data",
137
+ help="Directory path where datasets will be stored",
138
+ required=True,
139
+ )
140
+ parser.add_argument(
141
+ "-n",
142
+ "--dataset_name",
143
+ help="Name of the dataset",
144
+ required=True,
145
+ )
146
+ parser.add_argument(
147
+ "--max_workers",
148
+ type=int,
149
+ default=1,
150
+ help="Maximum number of workers for download",
151
+ )
152
+ args = parser.parse_args()
153
+
154
+ # Extract known arguments and pass the rest as kwargs
155
+ kwargs = {"max_workers": args.max_workers}
156
+
157
+ main(
158
+ dir_datasets_data=args.dir_datasets_data,
159
+ dataset_name=args.dataset_name,
160
+ **kwargs
161
+ )
src/medvision_ds/datasets/AbdomenAtlas__1_0__Mini/preprocess_detection.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ from medvision_ds.utils.preprocess_utils import _get_cgroup_limited_cpus
4
+ from medvision_ds.utils.benchmark_planner import MedVision_BenchmarkPlannerDetection
5
+
6
+
7
+ # ====================================
8
+ # Dataset Info [!]
9
+ # Do not change:
10
+ # - keys in benchmark_plan
11
+ # - variable names: dataset_info, labels_map, benchmark_plan
12
+ # ====================================
13
+ dataset_info = {
14
+ "dataset": "AbdomenAtlas1.0Mini",
15
+ "dataset_website": "https://github.com/MrGiovanni/AbdomenAtlas",
16
+ "dataset_data": [
17
+ "https://huggingface.co/datasets/AbdomenAtlas/AbdomenAtlas1.0Mini"
18
+ ],
19
+ "license": ["CC BY-NC-SA 4.0"],
20
+ "paper": ["https://doi.org/10.1016/j.media.2024.103285"],
21
+ }
22
+
23
+ labels_map = {
24
+ "1": "aorta",
25
+ "2": "gallbladder",
26
+ "3": "left kidney",
27
+ "4": "right kidney",
28
+ "5": "liver",
29
+ "6": "pancreas",
30
+ "7": "postcava (inferior vena cava)",
31
+ "8": "spleen",
32
+ "9": "stomach",
33
+ }
34
+
35
+ benchmark_plan = {
36
+ "dataset_info": dataset_info,
37
+ "tasks": [
38
+ {
39
+ "image_modality": "CT",
40
+ "image_description": "abdominal CT scan",
41
+ "image_folder": "Images",
42
+ "mask_folder": "Masks",
43
+ "image_prefix": "",
44
+ "image_suffix": ".nii.gz",
45
+ "mask_prefix": "",
46
+ "mask_suffix": ".nii.gz",
47
+ "labels_map": labels_map,
48
+ },
49
+ ],
50
+ }
51
+ # ====================================
52
+
53
+
54
+ def main(
55
+ dir_datasets_data,
56
+ dataset_name,
57
+ benchmark_plan=benchmark_plan,
58
+ random_seed=1024,
59
+ split_ratio=0.7,
60
+ force_uint16_mask=False,
61
+ reorient2RAS=False,
62
+ ):
63
+ # Create dataset directory
64
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
65
+ os.makedirs(dataset_dir, exist_ok=True)
66
+
67
+ # Change to dataset directory
68
+ os.chdir(dataset_dir)
69
+
70
+ # Process dataset for detection task
71
+ planner = MedVision_BenchmarkPlannerDetection(
72
+ dataset_dir=dataset_dir,
73
+ bm_plan=benchmark_plan,
74
+ dataset_name=dataset_name,
75
+ seed=random_seed,
76
+ split_ratio=split_ratio,
77
+ force_uint16_mask=force_uint16_mask,
78
+ reorient2RAS=reorient2RAS,
79
+ num_proc=_get_cgroup_limited_cpus(),
80
+ )
81
+ planner.process()
82
+
83
+
84
+ if __name__ == "__main__":
85
+ # Set up argument parser
86
+ parser = argparse.ArgumentParser(
87
+ description="Generate benchmark planner for detection task."
88
+ )
89
+ parser.add_argument(
90
+ "-d",
91
+ "--dir_datasets_data",
92
+ type=str,
93
+ help="Directory path where datasets will be stored",
94
+ required=True,
95
+ )
96
+ parser.add_argument(
97
+ "-n",
98
+ "--dataset_name",
99
+ type=str,
100
+ help="Name of the dataset",
101
+ required=True,
102
+ )
103
+ parser.add_argument(
104
+ "--random_seed",
105
+ type=int,
106
+ default=1024,
107
+ help="Random seed for reproducibility",
108
+ )
109
+ parser.add_argument(
110
+ "--split_ratio",
111
+ type=float,
112
+ default=0.7,
113
+ help="Train/test split ratio (0-1)",
114
+ )
115
+ parser.add_argument(
116
+ "--force_uint16_mask",
117
+ action="store_true",
118
+ help="Force mask to be uint16",
119
+ )
120
+ parser.add_argument(
121
+ "--reorient2RAS",
122
+ action="store_true",
123
+ help="Reorient images and masks to RAS orientation",
124
+ )
125
+
126
+ args = parser.parse_args()
127
+
128
+ main(
129
+ benchmark_plan=benchmark_plan, # global variable
130
+ dir_datasets_data=args.dir_datasets_data,
131
+ dataset_name=args.dataset_name,
132
+ random_seed=args.random_seed,
133
+ split_ratio=args.split_ratio,
134
+ force_uint16_mask=args.force_uint16_mask,
135
+ reorient2RAS=args.reorient2RAS,
136
+ )
src/medvision_ds/datasets/AbdomenAtlas__1_0__Mini/preprocess_segmentation.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ from medvision_ds.utils.preprocess_utils import _get_cgroup_limited_cpus
4
+ from medvision_ds.utils.benchmark_planner import (
5
+ MedVision_BenchmarkPlannerSegmentation,
6
+ )
7
+
8
+
9
+ # ====================================
10
+ # Dataset Info [!]
11
+ # Do not change keys in
12
+ # - benchmark_plan
13
+ # ====================================
14
+ dataset_info = {
15
+ "dataset": "AbdomenAtlas1.0Mini",
16
+ "dataset_website": "https://github.com/MrGiovanni/AbdomenAtlas",
17
+ "dataset_data": [
18
+ "https://huggingface.co/datasets/AbdomenAtlas/AbdomenAtlas1.0Mini"
19
+ ],
20
+ "license": ["CC BY-NC-SA 4.0"],
21
+ "paper": ["https://doi.org/10.1016/j.media.2024.103285"],
22
+ }
23
+
24
+ labels_map = {
25
+ "1": "aorta",
26
+ "2": "gallbladder",
27
+ "3": "left kidney",
28
+ "4": "right kidney",
29
+ "5": "liver",
30
+ "6": "pancreas",
31
+ "7": "postcava (inferior vena cava)",
32
+ "8": "spleen",
33
+ "9": "stomach",
34
+ }
35
+
36
+ benchmark_plan = {
37
+ "dataset_info": dataset_info,
38
+ "tasks": [
39
+ {
40
+ "image_modality": "CT",
41
+ "image_description": "abdominal CT scan",
42
+ "image_folder": "Images",
43
+ "mask_folder": "Masks",
44
+ "image_prefix": "",
45
+ "image_suffix": ".nii.gz",
46
+ "mask_prefix": "",
47
+ "mask_suffix": ".nii.gz",
48
+ "labels_map": labels_map,
49
+ },
50
+ ],
51
+ }
52
+ # ====================================
53
+
54
+
55
+ def main(
56
+ dir_datasets_data,
57
+ dataset_name,
58
+ benchmark_plan=benchmark_plan,
59
+ random_seed=1024,
60
+ split_ratio=0.7,
61
+ force_uint16_mask=False,
62
+ reorient2RAS=False,
63
+ ):
64
+ # Create dataset directory
65
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
66
+ os.makedirs(dataset_dir, exist_ok=True)
67
+
68
+ # Change to dataset directory
69
+ os.chdir(dataset_dir)
70
+
71
+ # Process dataset for segmentation task
72
+ planner = MedVision_BenchmarkPlannerSegmentation(
73
+ dataset_dir=dataset_dir,
74
+ bm_plan=benchmark_plan,
75
+ dataset_name=dataset_name,
76
+ seed=random_seed,
77
+ split_ratio=split_ratio,
78
+ force_uint16_mask=force_uint16_mask,
79
+ reorient2RAS=reorient2RAS,
80
+ num_proc=_get_cgroup_limited_cpus(),
81
+ )
82
+ planner.process()
83
+
84
+
85
+ if __name__ == "__main__":
86
+ # Set up argument parser
87
+ parser = argparse.ArgumentParser(
88
+ description="Generate benchmark planner for segmentation task."
89
+ )
90
+ parser.add_argument(
91
+ "-d",
92
+ "--dir_datasets_data",
93
+ type=str,
94
+ help="Directory path where datasets will be stored",
95
+ required=True,
96
+ )
97
+ parser.add_argument(
98
+ "-n",
99
+ "--dataset_name",
100
+ type=str,
101
+ help="Name of the dataset",
102
+ required=True,
103
+ )
104
+ parser.add_argument(
105
+ "--random_seed",
106
+ type=int,
107
+ default=1024,
108
+ help="Random seed for reproducibility",
109
+ )
110
+ parser.add_argument(
111
+ "--split_ratio",
112
+ type=float,
113
+ default=0.7,
114
+ help="Train/test split ratio (0-1)",
115
+ )
116
+ parser.add_argument(
117
+ "--force_uint16_mask",
118
+ action="store_true",
119
+ help="Force mask to be uint16",
120
+ )
121
+ parser.add_argument(
122
+ "--reorient2RAS",
123
+ action="store_true",
124
+ help="Reorient images and masks to RAS orientation",
125
+ )
126
+
127
+ args = parser.parse_args()
128
+
129
+ main(
130
+ benchmark_plan=benchmark_plan, # global variable
131
+ dir_datasets_data=args.dir_datasets_data,
132
+ dataset_name=args.dataset_name,
133
+ random_seed=args.random_seed,
134
+ split_ratio=args.split_ratio,
135
+ force_uint16_mask=args.force_uint16_mask,
136
+ reorient2RAS=args.reorient2RAS,
137
+ )
src/medvision_ds/datasets/AbdomenCT_1K/__init__.py ADDED
File without changes
src/medvision_ds/datasets/AbdomenCT_1K/download.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import argparse
4
+ import zipfile
5
+ import urllib.request
6
+ import py7zr
7
+ from medvision_ds.utils.preprocess_utils import match_and_clean_files, move_folder
8
+
9
+
10
+ # ====================================
11
+ # Dataset Info [!]
12
+ # ====================================
13
+ # Dataset: AbdomenCT-1K
14
+ # Website: https://github.com/JunMa11/AbdomenCT-1K
15
+ # Data: https://zenodo.org/records/5903099; https://zenodo.org/records/5903846; https://zenodo.org/records/5903769
16
+ # Format: nii.gz
17
+ # ====================================
18
+
19
+
20
+ def download_and_extract(dataset_dir, dataset_name, **kwargs):
21
+ """
22
+ Download and extract the AbdomenAtlas dataset.
23
+
24
+ NOTE: Function signature: the first 2 arguments must be dataset_dir and dataset_name
25
+ the other arguments must be kwargs
26
+ """
27
+ # Download files
28
+ current_dir = os.getcwd()
29
+ os.chdir(dataset_dir)
30
+ tmp_dir = os.path.join(dataset_dir, "tmp")
31
+ os.makedirs(tmp_dir, exist_ok=True)
32
+ os.chdir(tmp_dir)
33
+ print(f"Downloading {dataset_name} dataset to {dataset_dir}...")
34
+
35
+ # ====================================
36
+ # Add download logic here [!]
37
+ # ====================================
38
+ # Downloading dataset
39
+ urls = [
40
+ "https://zenodo.org/records/5903099/files/AbdomenCT-1K-ImagePart1.zip?download=1",
41
+ "https://zenodo.org/records/5903846/files/AbdomenCT-1K-ImagePart2.zip?download=1",
42
+ "https://zenodo.org/records/5903769/files/AbdomenCT-1K-ImagePart3.zip?download=1",
43
+ "https://zenodo.org/records/5903769/files/Mask.7z?download=1",
44
+ ]
45
+ filenames = [
46
+ "AbdomenCT-1K-ImagePart1.zip",
47
+ "AbdomenCT-1K-ImagePart2.zip",
48
+ "AbdomenCT-1K-ImagePart3.zip",
49
+ "Mask.7z",
50
+ ]
51
+ # Download files using urllib
52
+ for url, filename in zip(urls, filenames):
53
+ print(f"Downloading {filename}...")
54
+ urllib.request.urlretrieve(url, filename)
55
+ # Extract zip archives
56
+ for filename in filenames[:3]:
57
+ print(f"Extracting {filename}...")
58
+ with zipfile.ZipFile(filename, "r") as zip_ref:
59
+ zip_ref.extractall()
60
+ # Extract 7z archive
61
+ print(f"Extracting Mask.7z...")
62
+ with py7zr.SevenZipFile("Mask.7z", "r") as archive:
63
+ archive.extractall(path="Masks")
64
+
65
+ # Combine data
66
+ for part in ["AbdomenCT-1K-ImagePart2", "AbdomenCT-1K-ImagePart3"]:
67
+ for file in os.listdir(part):
68
+ if file.endswith(".nii.gz"):
69
+ shutil.move(os.path.join(part, file), "AbdomenCT-1K-ImagePart1")
70
+ shutil.rmtree("Images") if os.path.exists("Images") else None
71
+ shutil.move("AbdomenCT-1K-ImagePart1", "Images")
72
+
73
+ # Removing image files without corresponding mask files
74
+ match_and_clean_files("Images", "Masks")
75
+
76
+ # Move folder to dataset_dir
77
+ folders_to_move = [
78
+ "Images",
79
+ "Masks",
80
+ ]
81
+ for folder in folders_to_move:
82
+ move_folder(
83
+ os.path.join(tmp_dir, folder),
84
+ os.path.join(dataset_dir, folder),
85
+ create_dest=True,
86
+ )
87
+ # ====================================
88
+
89
+ print(f"Download and extraction completed for {dataset_name}")
90
+ os.chdir(dataset_dir)
91
+ shutil.rmtree(tmp_dir)
92
+ os.chdir(current_dir)
93
+
94
+
95
+ def main(dir_datasets_data, dataset_name, **kwargs):
96
+ # Create dataset directory
97
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
98
+ os.makedirs(dataset_dir, exist_ok=True)
99
+
100
+ # Change to dataset directory
101
+ os.chdir(dataset_dir)
102
+
103
+ # Download and extract dataset
104
+ download_and_extract(dataset_dir, dataset_name, **kwargs)
105
+
106
+
107
+ if __name__ == "__main__":
108
+ # Set up argument parser
109
+ parser = argparse.ArgumentParser(description="Download and extract dataset")
110
+ parser.add_argument(
111
+ "-d",
112
+ "--dir_datasets_data",
113
+ help="Directory path where datasets will be stored",
114
+ required=True,
115
+ )
116
+ parser.add_argument(
117
+ "-n",
118
+ "--dataset_name",
119
+ help="Name of the dataset",
120
+ required=True,
121
+ )
122
+ args = parser.parse_args()
123
+
124
+ main(
125
+ dir_datasets_data=args.dir_datasets_data,
126
+ dataset_name=args.dataset_name,
127
+ )
src/medvision_ds/datasets/AbdomenCT_1K/preprocess_detection.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ from medvision_ds.utils.preprocess_utils import _get_cgroup_limited_cpus
4
+ from medvision_ds.utils.benchmark_planner import MedVision_BenchmarkPlannerDetection
5
+
6
+ # ====================================
7
+ # Dataset Info [!]
8
+ # Do not change keys in
9
+ # - benchmark_plan
10
+ # ====================================
11
+ dataset_info = {
12
+ "dataset": "AbdomenCT-1K",
13
+ "dataset_website": "https://github.com/JunMa11/AbdomenCT-1K",
14
+ "dataset_data": [
15
+ "https://zenodo.org/records/5903099",
16
+ "https://zenodo.org/records/5903846",
17
+ "https://zenodo.org/records/5903769",
18
+ ],
19
+ "license": ["CC BY 4.0"],
20
+ "paper": ["https://doi.org/10.1109/TPAMI.2021.3100536"],
21
+ }
22
+
23
+ labels_map = {
24
+ "1": "liver",
25
+ "2": "kidney",
26
+ "3": "spleen",
27
+ "4": "pancreas",
28
+ }
29
+
30
+ benchmark_plan = {
31
+ "dataset_info": dataset_info,
32
+ "tasks": [
33
+ {
34
+ "image_modality": "CT",
35
+ "image_description": "abdominal computed tomography (CT) scan",
36
+ "image_folder": "Images",
37
+ "mask_folder": "Masks",
38
+ "image_prefix": "",
39
+ "image_suffix": "_0000.nii.gz",
40
+ "mask_prefix": "",
41
+ "mask_suffix": ".nii.gz",
42
+ "labels_map": labels_map,
43
+ },
44
+ ],
45
+ }
46
+ # ====================================
47
+
48
+
49
+ def main(
50
+ dir_datasets_data,
51
+ dataset_name,
52
+ benchmark_plan=benchmark_plan,
53
+ random_seed=1024,
54
+ split_ratio=0.7,
55
+ force_uint16_mask=False,
56
+ reorient2RAS=False,
57
+ ):
58
+ # Create dataset directory
59
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
60
+ os.makedirs(dataset_dir, exist_ok=True)
61
+
62
+ # Change to dataset directory
63
+ os.chdir(dataset_dir)
64
+
65
+ # Process dataset for detection task
66
+ planner = MedVision_BenchmarkPlannerDetection(
67
+ dataset_dir=dataset_dir,
68
+ bm_plan=benchmark_plan,
69
+ dataset_name=dataset_name,
70
+ seed=random_seed,
71
+ split_ratio=split_ratio,
72
+ force_uint16_mask=force_uint16_mask,
73
+ reorient2RAS=reorient2RAS,
74
+ num_proc=_get_cgroup_limited_cpus(),
75
+ )
76
+ planner.process()
77
+
78
+
79
+ if __name__ == "__main__":
80
+ # Set up argument parser
81
+ parser = argparse.ArgumentParser(
82
+ description="Generate benchmark planner for detection task."
83
+ )
84
+ parser.add_argument(
85
+ "-d",
86
+ "--dir_datasets_data",
87
+ type=str,
88
+ help="Directory path where datasets will be stored",
89
+ required=True,
90
+ )
91
+ parser.add_argument(
92
+ "-n",
93
+ "--dataset_name",
94
+ type=str,
95
+ help="Name of the dataset",
96
+ required=True,
97
+ )
98
+ parser.add_argument(
99
+ "--random_seed",
100
+ type=int,
101
+ default=1024,
102
+ help="Random seed for reproducibility",
103
+ )
104
+ parser.add_argument(
105
+ "--split_ratio",
106
+ type=float,
107
+ default=0.7,
108
+ help="Train/test split ratio (0-1)",
109
+ )
110
+ parser.add_argument(
111
+ "--force_uint16_mask",
112
+ action="store_true",
113
+ help="Force mask to be uint16",
114
+ )
115
+ parser.add_argument(
116
+ "--reorient2RAS",
117
+ action="store_true",
118
+ help="Reorient images and masks to RAS orientation",
119
+ )
120
+
121
+ args = parser.parse_args()
122
+
123
+ main(
124
+ benchmark_plan=benchmark_plan, # global variable
125
+ dir_datasets_data=args.dir_datasets_data,
126
+ dataset_name=args.dataset_name,
127
+ random_seed=args.random_seed,
128
+ split_ratio=args.split_ratio,
129
+ force_uint16_mask=args.force_uint16_mask,
130
+ reorient2RAS=args.reorient2RAS,
131
+ )
src/medvision_ds/datasets/AbdomenCT_1K/preprocess_segmentation.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ from medvision_ds.utils.preprocess_utils import _get_cgroup_limited_cpus
4
+ from medvision_ds.utils.benchmark_planner import MedVision_BenchmarkPlannerSegmentation
5
+
6
+ # ====================================
7
+ # Dataset Info [!]
8
+ # Do not change keys in
9
+ # - benchmark_plan
10
+ # ====================================
11
+ dataset_info = {
12
+ "dataset": "AbdomenCT-1K",
13
+ "dataset_website": "https://github.com/JunMa11/AbdomenCT-1K",
14
+ "dataset_data": [
15
+ "https://zenodo.org/records/5903099",
16
+ "https://zenodo.org/records/5903846",
17
+ "https://zenodo.org/records/5903769",
18
+ ],
19
+ "license": ["CC BY 4.0"],
20
+ "paper": ["https://doi.org/10.1109/TPAMI.2021.3100536"],
21
+ }
22
+
23
+ labels_map = {
24
+ "1": "liver",
25
+ "2": "kidney",
26
+ "3": "spleen",
27
+ "4": "pancreas",
28
+ }
29
+
30
+ benchmark_plan = {
31
+ "dataset_info": dataset_info,
32
+ "tasks": [
33
+ {
34
+ "image_modality": "CT",
35
+ "image_description": "abdominal computed tomography (CT) scan",
36
+ "image_folder": "Images",
37
+ "mask_folder": "Masks",
38
+ "image_prefix": "",
39
+ "image_suffix": "_0000.nii.gz",
40
+ "mask_prefix": "",
41
+ "mask_suffix": ".nii.gz",
42
+ "labels_map": labels_map,
43
+ },
44
+ ],
45
+ }
46
+ # ====================================
47
+
48
+
49
+ def main(
50
+ dir_datasets_data,
51
+ dataset_name,
52
+ benchmark_plan=benchmark_plan,
53
+ random_seed=1024,
54
+ split_ratio=0.7,
55
+ force_uint16_mask=False,
56
+ reorient2RAS=False,
57
+ ):
58
+ # Create dataset directory
59
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
60
+ os.makedirs(dataset_dir, exist_ok=True)
61
+
62
+ # Change to dataset directory
63
+ os.chdir(dataset_dir)
64
+
65
+ # Process dataset for segmentation task
66
+ planner = MedVision_BenchmarkPlannerSegmentation(
67
+ dataset_dir=dataset_dir,
68
+ bm_plan=benchmark_plan,
69
+ dataset_name=dataset_name,
70
+ seed=random_seed,
71
+ split_ratio=split_ratio,
72
+ force_uint16_mask=force_uint16_mask,
73
+ reorient2RAS=reorient2RAS,
74
+ num_proc=_get_cgroup_limited_cpus(),
75
+ )
76
+ planner.process()
77
+
78
+
79
+ if __name__ == "__main__":
80
+ # Set up argument parser
81
+ parser = argparse.ArgumentParser(
82
+ description="Generate benchmark planner for segmentation task."
83
+ )
84
+ parser.add_argument(
85
+ "-d",
86
+ "--dir_datasets_data",
87
+ type=str,
88
+ help="Directory path where datasets will be stored",
89
+ required=True,
90
+ )
91
+ parser.add_argument(
92
+ "-n",
93
+ "--dataset_name",
94
+ type=str,
95
+ help="Name of the dataset",
96
+ required=True,
97
+ )
98
+ parser.add_argument(
99
+ "--random_seed",
100
+ type=int,
101
+ default=1024,
102
+ help="Random seed for reproducibility",
103
+ )
104
+ parser.add_argument(
105
+ "--split_ratio",
106
+ type=float,
107
+ default=0.7,
108
+ help="Train/test split ratio (0-1)",
109
+ )
110
+ parser.add_argument(
111
+ "--force_uint16_mask",
112
+ action="store_true",
113
+ help="Force mask to be uint16",
114
+ )
115
+ parser.add_argument(
116
+ "--reorient2RAS",
117
+ action="store_true",
118
+ help="Reorient images and masks to RAS orientation",
119
+ )
120
+
121
+ args = parser.parse_args()
122
+
123
+ main(
124
+ benchmark_plan=benchmark_plan, # global variable
125
+ dir_datasets_data=args.dir_datasets_data,
126
+ dataset_name=args.dataset_name,
127
+ random_seed=args.random_seed,
128
+ split_ratio=args.split_ratio,
129
+ force_uint16_mask=args.force_uint16_mask,
130
+ reorient2RAS=args.reorient2RAS,
131
+ )
src/medvision_ds/datasets/BCV15/__init__.py ADDED
File without changes
src/medvision_ds/datasets/BCV15/download.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ import synapseclient
4
+ import zipfile
5
+ import argparse
6
+ from medvision_ds.utils.preprocess_utils import move_folder
7
+
8
+ # ====================================
9
+ # Dataset Info [!]
10
+ # ====================================
11
+ # Dataset: BCV15
12
+ # Challenge: https://www.synapse.org/Synapse:syn3193805/wiki/89480
13
+ # Data: Abdomen: https://www.synapse.org/Synapse:syn3193805/wiki/217789;
14
+ # Cervix: https://www.synapse.org/Synapse:syn3193805/wiki/217790
15
+ # Format: nii.gz
16
+ # ====================================
17
+
18
+
19
+ def download_and_extract(dataset_dir, dataset_name, **kwargs):
20
+ """
21
+ Download and extract the AbdomenAtlas dataset.
22
+
23
+ NOTE: Function signature: the first 2 arguments must be dataset_dir and dataset_name
24
+ the other arguments must be kwargs
25
+ """
26
+ # Download files
27
+ current_dir = os.getcwd()
28
+ os.chdir(dataset_dir)
29
+ tmp_dir = os.path.join(dataset_dir, "tmp")
30
+ os.makedirs(tmp_dir, exist_ok=True)
31
+ os.chdir(tmp_dir)
32
+ print(f"Downloading {dataset_name} dataset to {dataset_dir}...")
33
+
34
+ # ====================================
35
+ # Add download logic here [!]
36
+ # ====================================
37
+ # Initialize Synapse client
38
+ syn = synapseclient.Synapse()
39
+ token = os.environ.get("SYNAPSE_TOKEN")
40
+ if not token:
41
+ raise ValueError("SYNAPSE_TOKEN environment variable not set")
42
+ syn.login(authToken=token)
43
+
44
+ # Download datasets
45
+ syn.get("syn3379050", downloadLocation="Abdomen")
46
+ syn.get("syn3546986", downloadLocation="Cervix")
47
+
48
+ # Extract zip files
49
+ with zipfile.ZipFile(os.path.join("Abdomen", "RawData.zip"), "r") as zip_ref:
50
+ zip_ref.extractall("Abdomen")
51
+ with zipfile.ZipFile(os.path.join("Cervix", "CervixRawData.zip"), "r") as zip_ref:
52
+ zip_ref.extractall("Cervix")
53
+
54
+ # Create directories and move files for Abdomen
55
+ os.makedirs(os.path.join("Abdomen", "Images"), exist_ok=True)
56
+ os.makedirs(os.path.join("Abdomen", "Masks"), exist_ok=True)
57
+ for f in os.listdir(os.path.join("Abdomen", "RawData", "Training", "img")):
58
+ if f.endswith(".nii.gz"):
59
+ shutil.move(
60
+ os.path.join("Abdomen", "RawData", "Training", "img", f),
61
+ os.path.join("Abdomen", "Images", f),
62
+ )
63
+ for f in os.listdir(os.path.join("Abdomen", "RawData", "Training", "label")):
64
+ if f.endswith(".nii.gz"):
65
+ shutil.move(
66
+ os.path.join("Abdomen", "RawData", "Training", "label", f),
67
+ os.path.join("Abdomen", "Masks", f),
68
+ )
69
+
70
+ # Create directories and move files for Cervix
71
+ os.makedirs(os.path.join("Cervix", "Images"), exist_ok=True)
72
+ os.makedirs(os.path.join("Cervix", "Masks"), exist_ok=True)
73
+ for f in os.listdir(os.path.join("Cervix", "RawData", "Training", "img")):
74
+ if f.endswith(".nii.gz"):
75
+ shutil.move(
76
+ os.path.join("Cervix", "RawData", "Training", "img", f),
77
+ os.path.join("Cervix", "Images", f),
78
+ )
79
+ for f in os.listdir(os.path.join("Cervix", "RawData", "Training", "label")):
80
+ if f.endswith(".nii.gz"):
81
+ shutil.move(
82
+ os.path.join("Cervix", "RawData", "Training", "label", f),
83
+ os.path.join("Cervix", "Masks", f),
84
+ )
85
+
86
+ # Rename final directories
87
+ os.rename("Abdomen", "BCV15-Abdomen")
88
+ os.rename("Cervix", "BCV15-Cervix")
89
+
90
+ # Clean up raw data folders and zip files
91
+ shutil.rmtree(os.path.join("BCV15-Abdomen", "RawData"), ignore_errors=True)
92
+ os.remove(os.path.join("BCV15-Abdomen", "RawData.zip"))
93
+ shutil.rmtree(os.path.join("BCV15-Cervix", "RawData"), ignore_errors=True)
94
+ os.remove(os.path.join("BCV15-Cervix", "CervixRawData.zip"))
95
+
96
+ # Move folder to dataset_dir
97
+ folders_to_move = [
98
+ "BCV15-Cervix",
99
+ "BCV15-Abdomen",
100
+ ]
101
+ for folder in folders_to_move:
102
+ move_folder(
103
+ os.path.join(tmp_dir, folder),
104
+ os.path.join(dataset_dir, folder),
105
+ create_dest=True,
106
+ )
107
+ # ====================================
108
+
109
+ print(f"Download and extraction completed for {dataset_name}")
110
+ os.chdir(dataset_dir)
111
+ shutil.rmtree(tmp_dir)
112
+ os.chdir(current_dir)
113
+
114
+
115
+ def main(dir_datasets_data, dataset_name, **kwargs):
116
+ # Create dataset directory
117
+ dataset_dir = os.path.join(dir_datasets_data, dataset_name)
118
+ os.makedirs(dataset_dir, exist_ok=True)
119
+
120
+ # Change to dataset directory
121
+ os.chdir(dataset_dir)
122
+
123
+ # Download and extract dataset
124
+ download_and_extract(dataset_dir, dataset_name, **kwargs)
125
+
126
+
127
+ if __name__ == "__main__":
128
+ # Set up argument parser
129
+ parser = argparse.ArgumentParser(description="Download and extract dataset")
130
+ parser.add_argument(
131
+ "-d",
132
+ "--dir_datasets_data",
133
+ help="Directory path where datasets will be stored",
134
+ required=True,
135
+ )
136
+ parser.add_argument(
137
+ "-n",
138
+ "--dataset_name",
139
+ help="Name of the dataset",
140
+ required=True,
141
+ )
142
+ args = parser.parse_args()
143
+
144
+ main(
145
+ dir_datasets_data=args.dir_datasets_data,
146
+ dataset_name=args.dataset_name,
147
+ )