Datasets:
Tasks:
Image Classification
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
ai-generated images
ai-generated image detection
test-set
deepfake
forgery-detection
computer-vision
License:
File size: 3,392 Bytes
6d2760e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
license: mit
tags:
- ai-generated images
- ai-generated image detection
- test-set
- deepfake
- forgery-detection
- computer-vision
task_categories:
- image-classification
language:
- en
dataset_info:
features:
- name: file_name
dtype: string
description: "Relative path to the image under root."
- name: image
dtype: image
- name: is_real
dtype: string
- name: content_type
dtype: string
data_files:
- split: test
path: test.parquet
---
# π Mirage-Test Dataset
[](https://arxiv.org/abs/2511.08423)
[](https://github.com/yunncheng/OmniAID)
[](https://huggingface.co/Yunncheng/OmniAID/tree/main)
[](https://huggingface.co/spaces/Yunncheng/OmniAID-Demo)
[](https://opensource.org/licenses/MIT)
**Mirage-Test** is a modern **test-only dataset** for benchmarking AI-generated image detection models.
It contains **real** (`0_real`) and **fake** (`1_fake`) images across five distinct content domains, designed to evaluate generalization across diverse visual semantics.
The fake images are generated using state-of-the-art generative models specifically optimized for perceptual realism and visual fidelity.
> π **This dataset is for evaluation only. No training split is provided.**
## π Dataset Structure
Images are organized hierarchically by content type and authenticity:
```bash
Mirage-Test/
βββ Animal/
β βββ 0_real/ # Real animal photos
β βββ 1_fake/ # AI-generated animal images
βββ Anime/
β βββ 1_fake/ # AI-generated anime-style images
βββ Human/
β βββ 0_real/ # Real human photos
β βββ 1_fake/ # AI-generated human images
βββ Object/
β βββ 0_real/ # Real object photos
β βββ 1_fake/ # AI-generated object images
βββ Scene/
β βββ 0_real/ # Real landscape/architecture photos
β βββ 1_fake/ # AI-generated scenes images
βββ metadata.parquet
βββ README.md
```
- **Total samples**: 49000
## π₯ Downloading Raw Files
To download the dataset with original folder structure:
```python
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="Yunncheng/Mirage-Test",
repo_type="dataset",
local_dir="./Mirage-Test"
)
```
## π Acknowledgements
- Generated using state-of-the-art diffusion models (e.g., [Stable Diffusion](https://github.com/Stability-AI/stablediffusion), [FLUX](https://github.com/black-forest-labs/flux))
- Real images sourced from publicly available, royalty-free image platforms (e.g., [Pexels](https://www.pexels.com/))
## π Citation
If you find this work useful for your research, please cite our paper:
```bibtex
@article{guo2025omniaid,
title={OmniAID: Decoupling Semantic and Artifacts for Universal AI-Generated Image Detection in the Wild},
author={Guo, Yuncheng and Ye, Junyan and Zhang, Chenjue and Kang, Hengrui and Fu, Haohuan and He, Conghui and Li, Weijia},
journal={arXiv preprint arXiv:2511.08423},
year={2025}
}
``` |