--- license: mit tags: - ai-generated images - ai-generated image detection - test-set - deepfake - forgery-detection - computer-vision task_categories: - image-classification language: - en dataset_info: features: - name: file_name dtype: string description: "Relative path to the image under root." - name: image dtype: image - name: is_real dtype: string - name: content_type dtype: string data_files: - split: test path: test.parquet --- # 🌊 Mirage-Test Dataset [![Paper](https://img.shields.io/badge/arXiv-2511.08423-B31B1B.svg)](https://arxiv.org/abs/2511.08423) [![GitHub](https://img.shields.io/badge/GitHub-Code-181717.svg?logo=github)](https://github.com/yunncheng/OmniAID) [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-yellow)](https://huggingface.co/Yunncheng/OmniAID/tree/main) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Yunncheng/OmniAID-Demo) [![License](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT) **Mirage-Test** is a modern **test-only dataset** for benchmarking AI-generated image detection models. It contains **real** (`0_real`) and **fake** (`1_fake`) images across five distinct content domains, designed to evaluate generalization across diverse visual semantics. The fake images are generated using state-of-the-art generative models specifically optimized for perceptual realism and visual fidelity. > 📌 **This dataset is for evaluation only. No training split is provided.** ## 📁 Dataset Structure Images are organized hierarchically by content type and authenticity: ```bash Mirage-Test/ ├── Animal/ │ ├── 0_real/ # Real animal photos │ └── 1_fake/ # AI-generated animal images ├── Anime/ │ └── 1_fake/ # AI-generated anime-style images ├── Human/ │ ├── 0_real/ # Real human photos │ └── 1_fake/ # AI-generated human images ├── Object/ │ ├── 0_real/ # Real object photos │ └── 1_fake/ # AI-generated object images ├── Scene/ │ ├── 0_real/ # Real landscape/architecture photos │ └── 1_fake/ # AI-generated scenes images ├── metadata.parquet └── README.md ``` - **Total samples**: 49000 ## 📥 Downloading Raw Files To download the dataset with original folder structure: ```python from huggingface_hub import snapshot_download snapshot_download( repo_id="Yunncheng/Mirage-Test", repo_type="dataset", local_dir="./Mirage-Test" ) ``` ## 🙏 Acknowledgements - Generated using state-of-the-art diffusion models (e.g., [Stable Diffusion](https://github.com/Stability-AI/stablediffusion), [FLUX](https://github.com/black-forest-labs/flux)) - Real images sourced from publicly available, royalty-free image platforms (e.g., [Pexels](https://www.pexels.com/)) ## 📝 Citation If you find this work useful for your research, please cite our paper: ```bibtex @article{guo2025omniaid, title={OmniAID: Decoupling Semantic and Artifacts for Universal AI-Generated Image Detection in the Wild}, author={Guo, Yuncheng and Ye, Junyan and Zhang, Chenjue and Kang, Hengrui and Fu, Haohuan and He, Conghui and Li, Weijia}, journal={arXiv preprint arXiv:2511.08423}, year={2025} } ```