File size: 41,603 Bytes
39049ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 |
from diffusers_helper.hf_login import login
import os
import random
hf_home = os.environ.get('HF_HOME')
if hf_home is None:
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import argparse
import math
import re
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
import torchvision
def save_bcthw_as_png(x, output_filename):
# UIと合わせる
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
x = torch.clamp(x.float(), 0, 1) * 255
x = x.detach().cpu().to(torch.uint8)
x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)')
torchvision.io.write_png(x, output_filename)
return output_filename
parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument("--server", type=str, default='0.0.0.0')
parser.add_argument("--port", type=int, required=False)
parser.add_argument("--inbrowser", action='store_true')
args = parser.parse_args()
# for win desktop probably use --server 127.0.0.1 --inbrowser
# For linux server probably use --server 127.0.0.1 or do not use any cmd flags
print(args)
free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 60
print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
if not high_vram:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')
transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
if not high_vram:
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
text_encoder_2.to(gpu)
image_encoder.to(gpu)
vae.to(gpu)
transformer.to(gpu)
stream = AsyncStream()
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
def loop_worker(input_image, prompt, n_prompt, generation_count, seed, total_second_length, connection_second_length,padding_second_length, loop_num, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf, reduce_file_output, without_preview, output_latent_image, latent_input_file):
for generation_count_index in range(generation_count):
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
break
if generation_count != 1:
seed = random.randint(0, 2**32 - 1)
stream.output_queue.push(('generation count', f"Generation index:{generation_count_index + 1}"))
worker(input_image, prompt, n_prompt, seed, total_second_length, connection_second_length,padding_second_length, loop_num, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf, reduce_file_output, without_preview, output_latent_image, latent_input_file)
stream.output_queue.push(('end', None))
@torch.no_grad()
def worker(input_image, prompt, n_prompt, seed, total_second_length, connection_second_length, padding_second_length, loop_num, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf, reduce_file_output, without_preview, output_latent_image, latent_input_file):
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
return
if reduce_file_output:
tmp_filename = "system_preview.mp4"
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
total_latent_sections = total_second_length
connection_latent_sections = (connection_second_length * 30) / (latent_window_size * 4)
connection_latent_sections = int(max(round(connection_second_length), 1))
connection_latent_sections = connection_second_length
all_latent_section = total_latent_sections + connection_latent_sections
# print(total_latent_sections)
# print(connection_latent_sections)
job_id = generate_timestamp()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
if latent_input_file is None:
# Clean GPU
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
# Text encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
if not high_vram:
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
load_model_as_complete(text_encoder_2, target_device=gpu)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# Processing input image
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
H, W, C = input_image.shape
height, width = find_nearest_bucket(H, W, resolution=640)
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
if not without_preview:
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}_{seed}.png'))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
# VAE encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
if not high_vram:
load_model_as_complete(vae, target_device=gpu)
start_latent = vae_encode(input_image_pt, vae)
# CLIP Vision
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
# Dtype
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
# Sampling
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
num_frames = latent_window_size * 4 - 3
##メイン作成
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
history_pixels = None
total_generated_latent_frames = 0
latent_paddings = [i for i in reversed(range(total_latent_sections))]
if total_latent_sections > 4:
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
# items looks better than expanding it when total_latent_sections > 4
# One can try to remove below trick and just
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
last_frame = total_second_length * 30
for latent_padding in latent_paddings:
is_last_section = latent_padding == 0
latent_padding_init_size = int(padding_second_length * latent_window_size)
latent_padding_size = (latent_padding * latent_window_size) + latent_padding_init_size
print(latent_padding_size)
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
return
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
#print(clean_latent_indices_pre)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
clean_latents_pre = start_latent.to(history_latents)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
if not high_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
if use_teacache:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User ends the task.')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
return
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=num_frames,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
# shift=3.0,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
# if is_last_section:
# generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
if not without_preview:
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = (latent_window_size * 2)
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
if not high_vram:
unload_complete_models()
if reduce_file_output:
output_filename = os.path.join(outputs_folder, tmp_filename)
else:
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}_{seed}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
stream.output_queue.push(('file', output_filename))
if is_last_section:
break
##コネクション作成
#post_history_latents = torch.zeros(size=(1, 16, 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
post_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
post_history_pixels = history_pixels
print(post_history_latents.shape)
post_total_generated_latent_frames = total_generated_latent_frames
print("generate post history")
latent_paddings = [i for i in reversed(range(connection_latent_sections))]
print(latent_paddings)
if connection_latent_sections > 4:
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
# items looks better than expanding it when total_latent_sections > 4
# One can try to remove below trick and just
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
latent_paddings = [3] + [2] * (connection_latent_sections - 3) + [1, 0]
if total_latent_sections > 2:
N = 16
elif total_latent_sections == 2:
N= 15
else:
N=6
for latent_padding in latent_paddings:
print("latent_padding")
is_last_section = latent_padding == 0
latent_padding_size = latent_padding * latent_window_size
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
return
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
indices = torch.arange(0, sum([1,latent_padding_size, latent_window_size, 1, 2, N])).unsqueeze(0)
clean_latent_indices_pre,blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = \
indices.split([1,latent_padding_size, latent_window_size, 1, 2, N], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
clean_latent_2x_indices = torch.cat([clean_latent_2x_indices], dim=1)
clean_latent_4x_indices = torch.cat([clean_latent_4x_indices], dim=1)
clean_latents_pre = post_history_latents[:, :, -1:, :, :]
clean_latents_post, clean_latents_2x, clean_latents_4x = post_history_latents[:, :, :1 + 2 + N, :, :].split([1, 2, N], dim=2)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
clean_latents_2x = torch.cat([clean_latents_2x], dim=2)
clean_latents_4x = torch.cat([clean_latents_4x], dim=2)
if not high_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
if use_teacache:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User ends the task.')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Now making connection video.'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
return
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=num_frames,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
# shift=3.0,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
# if is_last_section:
# generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
post_total_generated_latent_frames += int(generated_latents.shape[2])
post_history_latents = torch.cat([generated_latents.to(post_history_latents), post_history_latents], dim=2)
post_real_history_latents = post_history_latents[:, :, :post_total_generated_latent_frames, :, :]
if not without_preview:
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
if post_history_pixels is None:
post_history_pixels = vae_decode(post_real_history_latents, vae).cpu()
else:
section_latent_frames = (latent_window_size * 2) if is_last_section else (latent_window_size * 2)
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(post_real_history_latents[:, :, :section_latent_frames], vae).cpu()
#print(current_pixels.shape)
#print(post_history_pixels.shape)
post_history_pixels = soft_append_bcthw(current_pixels, post_history_pixels, overlapped_frames)
if not high_vram:
unload_complete_models()
if reduce_file_output:
output_filename = os.path.join(outputs_folder, tmp_filename)
else:
output_filename = os.path.join(outputs_folder, f'{job_id}_{post_total_generated_latent_frames}_{seed}_post.mp4')
save_bcthw_as_mp4(post_history_pixels, output_filename, fps=30, crf=mp4_crf)
print(f'Decoded. Current latent shape {post_real_history_latents.shape}; pixel shape {post_history_pixels.shape}')
stream.output_queue.push(('file', output_filename))
if is_last_section:
break
#1ループ作成
#print(all_latent_section)
#print(history_latents.shape)
connection_hisotry_latents = post_real_history_latents[:,:,:latent_window_size*connection_latent_sections,:,:]
main_history_latents = real_history_latents[:,:,:latent_window_size*total_latent_sections,:,:]
final_latents = torch.cat([connection_hisotry_latents[:,:,-latent_window_size:,:,:],
main_history_latents,
connection_hisotry_latents,
main_history_latents[:,:,-latent_window_size:,:,:]],dim=2)
if output_latent_image:
to_pixcel_latents = torch.cat([main_history_latents,
connection_hisotry_latents],dim=2)
to_pixcel_latents_png = vae_decode_fake(to_pixcel_latents)
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}_{seed}_latent.png')
save_bcthw_as_png(to_pixcel_latents_png, output_filename)
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}_{seed}_latent.pt')
torch.save(final_latents,output_filename)
return
else:
final_latents = torch.load(latent_input_file)
filename = os.path.basename(latent_input_file)
match = re.match(r"(\d+_\d+_\d+_\d+)_([0-9]+)_([0-9]+)_latent\.pt", filename)
job_id = match.group(1) # '250502_204151_409_9042'
total_generated_latent_frames = match.group(2) # '9'
seed = match.group(3) # '31337'
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
#final_latents = final_latents.repeat(1,1,loop_num,1,1)
#print(final_latents.shape)
final_history_pixels = None
MAX = all_latent_section + 2
pixel_map = dict()
for i in range(MAX):
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
return
pixel_map_key = i % all_latent_section
#print(i)
latent_index = (all_latent_section-1 - pixel_map_key)
latent_offset = latent_index*9
#print(latent_index)
#print(pixel_map_key)
percentage = int(100.0 * i / MAX)
hint = f'Make 1 loop {i}/{MAX}'
desc = f'Now making 1 loop decoding'
stream.output_queue.push(('progress', (None, desc, make_progress_bar_html(percentage, hint))))
section_latent_frames = (latent_window_size * 2) if i == (MAX-1) else (latent_window_size * 2)
if final_history_pixels is None:
#if pixel_map.get(latent_index) is None:
final_history_pixels = vae_decode(final_latents[:,:,latent_offset:latent_offset + latent_window_size,:,:], vae).cpu()
#pixel_map[latent_index] = final_history_pixels
else:
current_pixels = pixel_map.get(latent_index)
if current_pixels is None:
current_pixels = vae_decode(final_latents[:, :, latent_offset:latent_offset + section_latent_frames], vae).cpu()
pixel_map[latent_index] = current_pixels
overlapped_frames = latent_window_size * 4 - 3
#print(section_latent_frames)
#print(current_pixels.shape)
#print(final_history_pixels.shape)
final_history_pixels = soft_append_bcthw(current_pixels, final_history_pixels, overlapped_frames)
# ループ1素材だけを取るために前1セクションフレームと、後ろ1セクションフレーム - 3を削除
final_history_pixels = final_history_pixels[:,:,latent_window_size * 4:,:,:]
final_history_pixels = final_history_pixels[:,:,:-(latent_window_size* 4 - 3),:,:]
print(final_history_pixels.shape)
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}_{seed}_1loop_{loop_num}.mp4')
save_bcthw_as_mp4(final_history_pixels, output_filename, fps=30, crf=mp4_crf)
final_history_pixels = final_history_pixels.repeat(1,1,loop_num,1,1)
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}_{seed}_loop_{loop_num}.mp4')
save_bcthw_as_mp4(final_history_pixels, output_filename, fps=30, crf=mp4_crf)
stream.output_queue.push(('file', output_filename))
except:
traceback.print_exc()
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
return
def process(input_image, prompt, n_prompt, generation_count, seed, total_second_length, connection_second_length,padding_second_length, loop_num, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf,progress_preview_option, latent_input_file):
global stream
# 表示名と値のマッピング
options = {
"All Progress File Output": 1,
"Reduce Progress File Output": 2,
"Without Preview": 3,
"Without VAE Decode": 4,
"Decode Latent File": 5
}
if options[progress_preview_option] == 1:
reduce_file_output = False
without_preview = False
output_latent_image = False
latent_input_file = None
elif options[progress_preview_option] == 2:
reduce_file_output = True
without_preview = False
output_latent_image = False
latent_input_file = None
elif options[progress_preview_option] == 3:
reduce_file_output = True
without_preview = True
output_latent_image = False
latent_input_file = None
elif options[progress_preview_option] == 4:
reduce_file_output = True
without_preview = True
output_latent_image = True
latent_input_file = None
elif options[progress_preview_option] == 5:
reduce_file_output = True
without_preview = True
output_latent_image = False
if options[progress_preview_option] != 5:
assert input_image is not None, 'No input image!'
else:
assert latent_input_file is not None, 'No input Lantet file!'
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True), ''
stream = AsyncStream()
async_run(loop_worker, input_image, prompt, n_prompt, generation_count, seed, total_second_length,connection_second_length,padding_second_length, loop_num, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf, reduce_file_output, without_preview, output_latent_image, latent_input_file)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True), gr.update()
if flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True), gr.update()
if flag == 'generation count':
generation_count_index = data
yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), generation_count_index
if flag == 'end':
yield output_filename, gr.update(visible=False), '', '', gr.update(interactive=True), gr.update(interactive=False), ''
break
def end_process():
stream.input_queue.push('end')
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]
css = make_progress_bar_css()
block = gr.Blocks(css=css).queue()
with block:
gr.Markdown('# FramePackLoop')
with gr.Row():
with gr.Column():
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
def process_file(file):
return file
file_input = gr.File(label="Latentファイルをアップロード",file_types=[".pt"],height=30)
prompt = gr.Textbox(label="Prompt", value='')
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
with gr.Row():
start_button = gr.Button(value="Start Generation")
end_button = gr.Button(value="End Generation", interactive=False)
with gr.Group():
use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used
generation_count = gr.Slider(label="Generation Count", minimum=1, maximum=500, value=1, step=1,
info='生成回数です。この値が2以上の場合、Seedはランダムな値が使用されます。')
progress_preview_option = gr.Radio(
choices=["All Progress File Output",
"Reduce Progress File Output",
"Without Preview",
"Without VAE Decode",
"Decode Latent File"],
label="Progress Option",
info = "経過動画のプレビューとファイルの保存方式を設定します。説明は下記。",
value="Reduce Progress File Output" # ←ここでデフォルト選択!
)
gr.Markdown("""
- **All Progress File Output**: すべての経過ファイルを出力します。
- **Reduce Progress File Output**: 途中経過のファイルを同じ名前で上書き保存し、出力ファイル数を減らします。
outputフォルダに system_preview.mp4 というファイルが生成され、プレビュー用に使用されます。
※動画生成中はこのファイルを開かないでください。
- **Without Preview**: 途中経過のプレビューは出力されません。入力画像や経過ファイルも保存されず、最終的な出力のみが行われます。そのため、最終アウトプットの生成速度がやや向上します。
- **Without VAE Decode**: (上級者向け)Latentを画像化したImageとLatentファイルを出力します。
- **Decode Latent File**: (上級者向け)指定したLatentファイルを動画にします。
""",)
#reduce_file_output = gr.Checkbox(label='Reduce File Output', value=False, info='途中経過のファイルの出力を減らします.ただし、outputフォルダにsystem_progress_preview.mp4というファイルが生成されます。これは、プレビューに使用する動画ファイルです。動画生成中は開かないでください。')
#without_preview = gr.Checkbox(label='Without Preview', value=False, info='途中経過の動画のプレビューが出力されません。その代わりに、最終アウトプットの出力が早くなります。')
seed = gr.Number(label="Seed", value=31337, precision=0, info='この値はGeneration Countが1の時のみ有効です。')
total_second_length = gr.Slider(label="Main Video Length (Section)", minimum=1, maximum=120, value=1, step=1)
connection_second_length = gr.Slider(label="Connection Video Length (Section)", minimum=1, maximum=120, value=1, step=1)
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change
def update_text(slider_value,latent_window_size):
return str(int(slider_value * latent_window_size))
with gr.Group():
padding_second_length = gr.Slider(label="Padding Video Length (Section)", minimum=0, maximum=10, value=0, step=0.1, info="この値を0にすると元画像を経由します。1以上にすると、元画像から離れます。")
text = gr.Textbox(label="Padding Video Length Checker", info="この値が変わらなければ、Padding Video Length (Section)の変更の効果はありません。")
padding_second_length.change(fn=update_text, inputs=[padding_second_length,latent_window_size], outputs=text)
loop_num = gr.Slider(label="Loop Num", minimum=1, maximum=100, value=5, step=1, info='Loop num.')
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
with gr.Column():
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
gr.Markdown('Note that the ending actions will be generated before the starting actions due to the inverted sampling. If the starting action is not in the video, you just need to wait, and it will be generated later.')
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
progress_gcounter = gr.Markdown('', elem_classes='no-generating-animation')
ips = [input_image, prompt, n_prompt, generation_count, seed, total_second_length, connection_second_length,padding_second_length, loop_num, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf, progress_preview_option, file_input]
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button, progress_gcounter])
end_button.click(fn=end_process)
block.launch(
server_name=args.server,
server_port=args.port,
share=args.share,
inbrowser=args.inbrowser,
) |