Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- flash-attention/csrc/flash_attn/flash_api.cpp +1550 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim128_bf16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim128_bf16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim128_fp16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim128_fp16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim160_bf16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim160_bf16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim160_fp16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim160_fp16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim192_bf16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim192_bf16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim192_fp16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim192_fp16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim224_bf16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim224_bf16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim224_fp16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim224_fp16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim256_bf16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim256_bf16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim256_fp16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim256_fp16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim32_bf16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim32_bf16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim32_fp16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim32_fp16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim64_bf16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim64_bf16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim64_fp16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim64_fp16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim96_bf16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim96_bf16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim96_fp16_causal_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim96_fp16_sm80.cu +7 -0
- flash-attention/csrc/flash_attn/src/generate_kernels.py +111 -0
- flash-attention/csrc/flash_attn/src/kernel_traits.h +344 -0
- flash-attention/csrc/flash_attn/src/mask.h +213 -0
- flash-attention/csrc/flash_attn/src/philox.cuh +51 -0
- flash-attention/csrc/flash_attn/src/rotary.h +152 -0
- flash-attention/csrc/flash_attn/src/softmax.h +188 -0
- flash-attention/csrc/flash_attn/src/static_switch.h +117 -0
- flash-attention/csrc/flash_attn/src/utils.h +393 -0
- flash-attention/csrc/ft_attention/README.md +14 -0
- flash-attention/csrc/ft_attention/cuda_bf16_fallbacks.cuh +257 -0
- flash-attention/csrc/ft_attention/cuda_bf16_wrapper.h +23 -0
- flash-attention/csrc/ft_attention/decoder_masked_multihead_attention.cu +149 -0
- flash-attention/csrc/ft_attention/decoder_masked_multihead_attention.h +192 -0
- flash-attention/csrc/ft_attention/decoder_masked_multihead_attention_template.hpp +1619 -0
- flash-attention/csrc/ft_attention/decoder_masked_multihead_attention_utils.h +2017 -0
- flash-attention/csrc/ft_attention/ft_attention.cpp +232 -0
- flash-attention/csrc/ft_attention/setup.py +153 -0
flash-attention/csrc/flash_attn/flash_api.cpp
ADDED
|
@@ -0,0 +1,1550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/******************************************************************************
|
| 2 |
+
* Copyright (c) 2024, Tri Dao.
|
| 3 |
+
******************************************************************************/
|
| 4 |
+
|
| 5 |
+
// Include these 2 headers instead of torch/extension.h since we don't need all of the torch headers.
|
| 6 |
+
#include <torch/python.h>
|
| 7 |
+
#include <torch/nn/functional.h>
|
| 8 |
+
#include <ATen/cuda/CUDAContext.h>
|
| 9 |
+
#include <c10/cuda/CUDAGuard.h>
|
| 10 |
+
|
| 11 |
+
#include <cutlass/numeric_types.h>
|
| 12 |
+
|
| 13 |
+
#include "flash.h"
|
| 14 |
+
#include "static_switch.h"
|
| 15 |
+
|
| 16 |
+
#define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
|
| 17 |
+
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
|
| 18 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
void set_params_fprop(Flash_fwd_params ¶ms,
|
| 22 |
+
// sizes
|
| 23 |
+
const size_t b,
|
| 24 |
+
const size_t seqlen_q,
|
| 25 |
+
const size_t seqlen_k,
|
| 26 |
+
const size_t seqlen_q_rounded,
|
| 27 |
+
const size_t seqlen_k_rounded,
|
| 28 |
+
const size_t h,
|
| 29 |
+
const size_t h_k,
|
| 30 |
+
const size_t d,
|
| 31 |
+
const size_t d_rounded,
|
| 32 |
+
// device pointers
|
| 33 |
+
const at::Tensor q,
|
| 34 |
+
const at::Tensor k,
|
| 35 |
+
const at::Tensor v,
|
| 36 |
+
at::Tensor out,
|
| 37 |
+
void *cu_seqlens_q_d,
|
| 38 |
+
void *cu_seqlens_k_d,
|
| 39 |
+
void *seqused_k,
|
| 40 |
+
void *p_d,
|
| 41 |
+
void *softmax_lse_d,
|
| 42 |
+
float p_dropout,
|
| 43 |
+
float softmax_scale,
|
| 44 |
+
int window_size_left,
|
| 45 |
+
int window_size_right,
|
| 46 |
+
const float softcap,
|
| 47 |
+
bool seqlenq_ngroups_swapped=false,
|
| 48 |
+
const bool unpadded_lse=false) {
|
| 49 |
+
|
| 50 |
+
// Reset the parameters
|
| 51 |
+
params = {};
|
| 52 |
+
|
| 53 |
+
params.is_bf16 = q.dtype() == torch::kBFloat16;
|
| 54 |
+
|
| 55 |
+
// Set the pointers and strides.
|
| 56 |
+
params.q_ptr = q.data_ptr();
|
| 57 |
+
params.k_ptr = k.data_ptr();
|
| 58 |
+
params.v_ptr = v.data_ptr();
|
| 59 |
+
// All stride are in elements, not bytes.
|
| 60 |
+
params.q_row_stride = q.stride(-3);
|
| 61 |
+
params.k_row_stride = k.stride(-3);
|
| 62 |
+
params.v_row_stride = v.stride(-3);
|
| 63 |
+
params.q_head_stride = q.stride(-2);
|
| 64 |
+
params.k_head_stride = k.stride(-2);
|
| 65 |
+
params.v_head_stride = v.stride(-2);
|
| 66 |
+
params.o_ptr = out.data_ptr();
|
| 67 |
+
params.o_row_stride = out.stride(-3);
|
| 68 |
+
params.o_head_stride = out.stride(-2);
|
| 69 |
+
|
| 70 |
+
if (cu_seqlens_q_d == nullptr) {
|
| 71 |
+
params.q_batch_stride = q.stride(0);
|
| 72 |
+
params.k_batch_stride = k.stride(0);
|
| 73 |
+
params.v_batch_stride = v.stride(0);
|
| 74 |
+
params.o_batch_stride = out.stride(0);
|
| 75 |
+
if (seqlenq_ngroups_swapped) {
|
| 76 |
+
params.q_batch_stride *= seqlen_q;
|
| 77 |
+
params.o_batch_stride *= seqlen_q;
|
| 78 |
+
}
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
params.cu_seqlens_q = static_cast<int *>(cu_seqlens_q_d);
|
| 82 |
+
params.cu_seqlens_k = static_cast<int *>(cu_seqlens_k_d);
|
| 83 |
+
params.seqused_k = static_cast<int *>(seqused_k);
|
| 84 |
+
|
| 85 |
+
// P = softmax(QK^T)
|
| 86 |
+
params.p_ptr = p_d;
|
| 87 |
+
|
| 88 |
+
// Softmax sum
|
| 89 |
+
params.softmax_lse_ptr = softmax_lse_d;
|
| 90 |
+
|
| 91 |
+
// Set the dimensions.
|
| 92 |
+
params.b = b;
|
| 93 |
+
params.h = h;
|
| 94 |
+
params.h_k = h_k;
|
| 95 |
+
params.h_h_k_ratio = h / h_k;
|
| 96 |
+
params.seqlen_q = seqlen_q;
|
| 97 |
+
params.seqlen_k = seqlen_k;
|
| 98 |
+
params.seqlen_q_rounded = seqlen_q_rounded;
|
| 99 |
+
params.seqlen_k_rounded = seqlen_k_rounded;
|
| 100 |
+
params.d = d;
|
| 101 |
+
params.d_rounded = d_rounded;
|
| 102 |
+
|
| 103 |
+
// Set the different scale values.
|
| 104 |
+
#ifdef FLASHATTENTION_DISABLE_SOFTCAP
|
| 105 |
+
TORCH_CHECK(softcap <= 0.0, "This flash attention build does not support softcap.");
|
| 106 |
+
#endif
|
| 107 |
+
if (softcap > 0.0) {
|
| 108 |
+
params.softcap = softmax_scale / softcap;
|
| 109 |
+
params.scale_softmax = softcap;
|
| 110 |
+
params.scale_softmax_log2 = softcap * M_LOG2E;
|
| 111 |
+
} else{
|
| 112 |
+
// Remove potential NaN
|
| 113 |
+
params.softcap = 0.0;
|
| 114 |
+
params.scale_softmax = softmax_scale;
|
| 115 |
+
params.scale_softmax_log2 = softmax_scale * M_LOG2E;
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
// Set this to probability of keeping an element to simplify things.
|
| 119 |
+
params.p_dropout = 1.f - p_dropout;
|
| 120 |
+
// Convert p from float to int so we don't have to convert the random uint to float to compare.
|
| 121 |
+
// [Minor] We want to round down since when we do the comparison we use <= instead of <
|
| 122 |
+
// params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0));
|
| 123 |
+
// params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0));
|
| 124 |
+
params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0));
|
| 125 |
+
params.rp_dropout = 1.f / params.p_dropout;
|
| 126 |
+
params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax;
|
| 127 |
+
TORCH_CHECK(p_dropout < 1.f);
|
| 128 |
+
#ifdef FLASHATTENTION_DISABLE_DROPOUT
|
| 129 |
+
TORCH_CHECK(p_dropout == 0.0f, "This flash attention build does not support dropout.");
|
| 130 |
+
#endif
|
| 131 |
+
|
| 132 |
+
// Causal is the special case where window_size_right == 0 and window_size_left < 0.
|
| 133 |
+
// Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
|
| 134 |
+
params.is_causal = window_size_left < 0 && window_size_right == 0;
|
| 135 |
+
|
| 136 |
+
if (window_size_left < 0 && window_size_right >= 0) { window_size_left = seqlen_k; }
|
| 137 |
+
if (window_size_left >= 0 && window_size_right < 0) { window_size_right = seqlen_k; }
|
| 138 |
+
params.window_size_left = window_size_left;
|
| 139 |
+
params.window_size_right = window_size_right;
|
| 140 |
+
|
| 141 |
+
#ifdef FLASHATTENTION_DISABLE_LOCAL
|
| 142 |
+
TORCH_CHECK(params.is_causal || (window_size_left < 0 && window_size_right < 0),
|
| 143 |
+
"This flash attention build does not support local attention.");
|
| 144 |
+
#endif
|
| 145 |
+
|
| 146 |
+
params.is_seqlens_k_cumulative = true;
|
| 147 |
+
|
| 148 |
+
#ifdef FLASHATTENTION_DISABLE_UNEVEN_K
|
| 149 |
+
TORCH_CHECK(d == d_rounded, "This flash attention build does not support headdim not being a multiple of 32.");
|
| 150 |
+
#endif
|
| 151 |
+
|
| 152 |
+
params.unpadded_lse = unpadded_lse;
|
| 153 |
+
params.seqlenq_ngroups_swapped = seqlenq_ngroups_swapped;
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
void set_params_dgrad(Flash_bwd_params ¶ms,
|
| 157 |
+
// sizes
|
| 158 |
+
const size_t b,
|
| 159 |
+
const size_t seqlen_q,
|
| 160 |
+
const size_t seqlen_k,
|
| 161 |
+
const size_t seqlen_q_rounded,
|
| 162 |
+
const size_t seqlen_k_rounded,
|
| 163 |
+
const size_t h,
|
| 164 |
+
const size_t h_k,
|
| 165 |
+
const size_t d,
|
| 166 |
+
const size_t d_rounded,
|
| 167 |
+
// device pointers
|
| 168 |
+
const at::Tensor q,
|
| 169 |
+
const at::Tensor k,
|
| 170 |
+
const at::Tensor v,
|
| 171 |
+
const at::Tensor out,
|
| 172 |
+
const at::Tensor dout,
|
| 173 |
+
at::Tensor dq,
|
| 174 |
+
at::Tensor dk,
|
| 175 |
+
at::Tensor dv,
|
| 176 |
+
void *cu_seqlens_q_d,
|
| 177 |
+
void *cu_seqlens_k_d,
|
| 178 |
+
void *dq_accum_d,
|
| 179 |
+
void *dk_accum_d,
|
| 180 |
+
void *dv_accum_d,
|
| 181 |
+
void *softmax_lse_d,
|
| 182 |
+
void *dsoftmax_sum_d,
|
| 183 |
+
float p_dropout,
|
| 184 |
+
float softmax_scale,
|
| 185 |
+
int window_size_left,
|
| 186 |
+
int window_size_right,
|
| 187 |
+
const float softcap,
|
| 188 |
+
bool deterministic,
|
| 189 |
+
const bool unpadded_lse) {
|
| 190 |
+
|
| 191 |
+
set_params_fprop(params,
|
| 192 |
+
b, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, h, h_k, d, d_rounded,
|
| 193 |
+
q, k, v, out,
|
| 194 |
+
cu_seqlens_q_d,
|
| 195 |
+
cu_seqlens_k_d,
|
| 196 |
+
nullptr,
|
| 197 |
+
nullptr,
|
| 198 |
+
softmax_lse_d,
|
| 199 |
+
p_dropout,
|
| 200 |
+
softmax_scale,
|
| 201 |
+
window_size_left,
|
| 202 |
+
window_size_right,
|
| 203 |
+
softcap,
|
| 204 |
+
false, // seqlenq_ngroups_swapped
|
| 205 |
+
unpadded_lse);
|
| 206 |
+
|
| 207 |
+
// Set the pointers and strides.
|
| 208 |
+
params.do_ptr = dout.data_ptr();
|
| 209 |
+
params.do_row_stride = dout.stride(-3);
|
| 210 |
+
params.do_head_stride = dout.stride(-2);
|
| 211 |
+
params.dq_ptr = dq.data_ptr();
|
| 212 |
+
params.dk_ptr = dk.data_ptr();
|
| 213 |
+
params.dv_ptr = dv.data_ptr();
|
| 214 |
+
params.dq_row_stride = dq.stride(-3);
|
| 215 |
+
params.dk_row_stride = dk.stride(-3);
|
| 216 |
+
params.dv_row_stride = dv.stride(-3);
|
| 217 |
+
params.dq_head_stride = dq.stride(-2);
|
| 218 |
+
params.dk_head_stride = dk.stride(-2);
|
| 219 |
+
params.dv_head_stride = dv.stride(-2);
|
| 220 |
+
|
| 221 |
+
if (cu_seqlens_q_d == nullptr) {
|
| 222 |
+
params.do_batch_stride = dout.stride(0);
|
| 223 |
+
params.dq_batch_stride = dq.stride(0);
|
| 224 |
+
params.dk_batch_stride = dk.stride(0);
|
| 225 |
+
params.dv_batch_stride = dv.stride(0);
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
params.dq_accum_ptr = dq_accum_d;
|
| 229 |
+
params.dk_accum_ptr = dk_accum_d;
|
| 230 |
+
params.dv_accum_ptr = dv_accum_d;
|
| 231 |
+
|
| 232 |
+
// Softmax sum
|
| 233 |
+
params.dsoftmax_sum = dsoftmax_sum_d;
|
| 234 |
+
|
| 235 |
+
params.deterministic = deterministic;
|
| 236 |
+
}
|
| 237 |
+
|
| 238 |
+
void run_mha_fwd(Flash_fwd_params ¶ms, cudaStream_t stream, bool force_split_kernel=false) {
|
| 239 |
+
FP16_SWITCH(!params.is_bf16, [&] {
|
| 240 |
+
HEADDIM_SWITCH(params.d, [&] {
|
| 241 |
+
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
|
| 242 |
+
if (params.num_splits <= 1 && !force_split_kernel) { // If we don't set it num_splits == 0
|
| 243 |
+
run_mha_fwd_<elem_type, kHeadDim, Is_causal>(params, stream);
|
| 244 |
+
} else {
|
| 245 |
+
run_mha_fwd_splitkv_dispatch<elem_type, kHeadDim, Is_causal>(params, stream);
|
| 246 |
+
}
|
| 247 |
+
});
|
| 248 |
+
});
|
| 249 |
+
});
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
// Find the number of splits that maximizes the occupancy. For example, if we have
|
| 253 |
+
// batch * n_heads = 48 and we have 108 SMs, having 2 splits (efficiency = 0.89) is
|
| 254 |
+
// better than having 3 splits (efficiency = 0.67). However, we also don't want too many
|
| 255 |
+
// splits as that would incur more HBM reads/writes.
|
| 256 |
+
// So we find the best efficiency, then find the smallest number of splits that gets 85%
|
| 257 |
+
// of the best efficiency.
|
| 258 |
+
inline int num_splits_heuristic(int batch_nheads_mblocks, int num_SMs, int num_n_blocks, int max_splits) {
|
| 259 |
+
// If we have enough to almost fill the SMs, then just use 1 split
|
| 260 |
+
if (batch_nheads_mblocks >= 0.8f * num_SMs) { return 1; }
|
| 261 |
+
max_splits = std::min({max_splits, num_SMs, num_n_blocks});
|
| 262 |
+
float max_efficiency = 0.f;
|
| 263 |
+
std::vector<float> efficiency;
|
| 264 |
+
efficiency.reserve(max_splits);
|
| 265 |
+
auto ceildiv = [](int a, int b) { return (a + b - 1) / b; };
|
| 266 |
+
// Some splits are not eligible. For example, if we have 64 blocks and choose 11 splits,
|
| 267 |
+
// we'll have 6 * 10 + 4 blocks. If we choose 12 splits, we'll have 6 * 11 + (-2) blocks
|
| 268 |
+
// (i.e. it's 11 splits anyway).
|
| 269 |
+
// So we check if the number of blocks per split is the same as the previous num_splits.
|
| 270 |
+
auto is_split_eligible = [&ceildiv, &num_n_blocks](int num_splits) {
|
| 271 |
+
return num_splits == 1 || ceildiv(num_n_blocks, num_splits) != ceildiv(num_n_blocks, num_splits - 1);
|
| 272 |
+
};
|
| 273 |
+
for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
|
| 274 |
+
if (!is_split_eligible(num_splits)) {
|
| 275 |
+
efficiency.push_back(0.f);
|
| 276 |
+
} else {
|
| 277 |
+
float n_waves = float(batch_nheads_mblocks * num_splits) / num_SMs;
|
| 278 |
+
float eff = n_waves / ceil(n_waves);
|
| 279 |
+
// printf("num_splits = %d, eff = %f\n", num_splits, eff);
|
| 280 |
+
if (eff > max_efficiency) { max_efficiency = eff; }
|
| 281 |
+
efficiency.push_back(eff);
|
| 282 |
+
}
|
| 283 |
+
}
|
| 284 |
+
for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
|
| 285 |
+
if (!is_split_eligible(num_splits)) { continue; }
|
| 286 |
+
if (efficiency[num_splits - 1] >= 0.85 * max_efficiency) {
|
| 287 |
+
// printf("num_splits chosen = %d\n", num_splits);
|
| 288 |
+
return num_splits;
|
| 289 |
+
}
|
| 290 |
+
}
|
| 291 |
+
return 1;
|
| 292 |
+
}
|
| 293 |
+
|
| 294 |
+
void set_params_splitkv(Flash_fwd_params ¶ms, const int batch_size,
|
| 295 |
+
const int num_heads, const int head_size, const int max_seqlen_k, const int max_seqlen_q,
|
| 296 |
+
const int head_size_rounded, const float p_dropout,
|
| 297 |
+
const int num_splits, cudaDeviceProp *dprops, struct c10::TensorOptions opts) {
|
| 298 |
+
|
| 299 |
+
// This needs to match with run_mha_fwd_splitkv_dispatch
|
| 300 |
+
const int block_n = head_size <= 64 ? 256 : (head_size <= 128 ? 128 : 64);
|
| 301 |
+
const int num_n_blocks = (max_seqlen_k + block_n - 1) / block_n;
|
| 302 |
+
// Technically kBlockM = 64 only for the splitKV kernels, not the standard kernel.
|
| 303 |
+
// In any case we don't expect seqlen_q to be larger than 64 for inference.
|
| 304 |
+
const int num_m_blocks = (max_seqlen_q + 64 - 1) / 64;
|
| 305 |
+
params.num_splits = num_splits;
|
| 306 |
+
if (p_dropout == 0.0f) { // SplitKV is not implemented for dropout
|
| 307 |
+
if (num_splits < 1) {
|
| 308 |
+
// We multiply number of SMs by 2 to hard-code the fact that we're using 128 threads per block.
|
| 309 |
+
params.num_splits = num_splits_heuristic(batch_size * num_heads * num_m_blocks, dprops->multiProcessorCount * 2, num_n_blocks, 128);
|
| 310 |
+
}
|
| 311 |
+
if (params.num_splits > 1) {
|
| 312 |
+
at::Tensor softmax_lse_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q}, opts.dtype(at::kFloat));
|
| 313 |
+
at::Tensor out_accum = torch::empty({params.num_splits, batch_size, num_heads, max_seqlen_q, head_size_rounded}, opts.dtype(at::kFloat));
|
| 314 |
+
params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr();
|
| 315 |
+
params.oaccum_ptr = out_accum.data_ptr();
|
| 316 |
+
}
|
| 317 |
+
TORCH_CHECK(params.num_splits <= 128, "num_splits > 128 not supported");
|
| 318 |
+
}
|
| 319 |
+
}
|
| 320 |
+
|
| 321 |
+
void set_params_alibi(Flash_fwd_params ¶ms, c10::optional<at::Tensor> &alibi_slopes_, int batch_size, int num_heads){
|
| 322 |
+
#ifdef FLASHATTENTION_DISABLE_ALIBI
|
| 323 |
+
TORCH_CHECK(!alibi_slopes_.has_value(), "This flash attention build does not support alibi.");
|
| 324 |
+
params.alibi_slopes_ptr = nullptr;
|
| 325 |
+
#else
|
| 326 |
+
if (alibi_slopes_.has_value()) {
|
| 327 |
+
auto alibi_slopes = alibi_slopes_.value();
|
| 328 |
+
TORCH_CHECK(alibi_slopes.dtype() == torch::kFloat32, "ALiBi slopes must have dtype fp32");
|
| 329 |
+
CHECK_DEVICE(alibi_slopes);
|
| 330 |
+
TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
|
| 331 |
+
TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({num_heads}) || alibi_slopes.sizes() == torch::IntArrayRef({batch_size, num_heads}));
|
| 332 |
+
params.alibi_slopes_ptr = alibi_slopes.data_ptr();
|
| 333 |
+
params.alibi_slopes_batch_stride = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
|
| 334 |
+
} else {
|
| 335 |
+
params.alibi_slopes_ptr = nullptr;
|
| 336 |
+
}
|
| 337 |
+
#endif
|
| 338 |
+
}
|
| 339 |
+
|
| 340 |
+
std::vector<at::Tensor>
|
| 341 |
+
mha_fwd(at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
|
| 342 |
+
const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
|
| 343 |
+
const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
|
| 344 |
+
c10::optional<at::Tensor> &out_, // batch_size x seqlen_q x num_heads x head_size
|
| 345 |
+
c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
| 346 |
+
const float p_dropout,
|
| 347 |
+
const float softmax_scale,
|
| 348 |
+
bool is_causal,
|
| 349 |
+
int window_size_left,
|
| 350 |
+
int window_size_right,
|
| 351 |
+
const float softcap,
|
| 352 |
+
const bool return_softmax,
|
| 353 |
+
c10::optional<at::Generator> gen_) {
|
| 354 |
+
|
| 355 |
+
auto dprops = at::cuda::getCurrentDeviceProperties();
|
| 356 |
+
// bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
|
| 357 |
+
bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
|
| 358 |
+
bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
|
| 359 |
+
TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
|
| 360 |
+
// We will support Turing in the near future
|
| 361 |
+
// TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");
|
| 362 |
+
|
| 363 |
+
auto q_dtype = q.dtype();
|
| 364 |
+
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
|
| 365 |
+
"FlashAttention only support fp16 and bf16 data type");
|
| 366 |
+
if (q_dtype == torch::kBFloat16) {
|
| 367 |
+
TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
|
| 368 |
+
}
|
| 369 |
+
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
|
| 370 |
+
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
|
| 371 |
+
|
| 372 |
+
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
|
| 373 |
+
|
| 374 |
+
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 375 |
+
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 376 |
+
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 377 |
+
|
| 378 |
+
const auto sizes = q.sizes();
|
| 379 |
+
|
| 380 |
+
const int batch_size = sizes[0];
|
| 381 |
+
int seqlen_q = sizes[1];
|
| 382 |
+
int num_heads = sizes[2];
|
| 383 |
+
const int head_size_og = sizes[3];
|
| 384 |
+
const int seqlen_k = k.size(1);
|
| 385 |
+
const int num_heads_k = k.size(2);
|
| 386 |
+
TORCH_CHECK(batch_size > 0, "batch size must be postive");
|
| 387 |
+
TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
|
| 388 |
+
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
|
| 389 |
+
|
| 390 |
+
if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); }
|
| 391 |
+
|
| 392 |
+
if (window_size_left >= seqlen_k) { window_size_left = -1; }
|
| 393 |
+
if (window_size_right >= seqlen_k) { window_size_right = -1; }
|
| 394 |
+
|
| 395 |
+
// causal=true is the same as causal=false in this case
|
| 396 |
+
if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
|
| 397 |
+
if (is_causal) { window_size_right = 0; }
|
| 398 |
+
|
| 399 |
+
// Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
|
| 400 |
+
// H/t Daniel Haziza
|
| 401 |
+
const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
|
| 402 |
+
const int ngroups = num_heads / num_heads_k;
|
| 403 |
+
if (seqlenq_ngroups_swapped) {
|
| 404 |
+
q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
|
| 405 |
+
seqlen_q = ngroups;
|
| 406 |
+
num_heads = num_heads_k;
|
| 407 |
+
}
|
| 408 |
+
|
| 409 |
+
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
|
| 410 |
+
CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size_og);
|
| 411 |
+
CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size_og);
|
| 412 |
+
|
| 413 |
+
at::Tensor q_padded, k_padded, v_padded;
|
| 414 |
+
if (head_size_og % 8 != 0) {
|
| 415 |
+
q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
| 416 |
+
k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
| 417 |
+
v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
| 418 |
+
} else {
|
| 419 |
+
q_padded = q;
|
| 420 |
+
k_padded = k;
|
| 421 |
+
v_padded = v;
|
| 422 |
+
}
|
| 423 |
+
|
| 424 |
+
at::Tensor out;
|
| 425 |
+
if (out_.has_value()) {
|
| 426 |
+
out = out_.value();
|
| 427 |
+
TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
|
| 428 |
+
CHECK_DEVICE(out);
|
| 429 |
+
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
|
| 430 |
+
CHECK_SHAPE(out, batch_size, sizes[1], sizes[2], head_size_og);
|
| 431 |
+
if (seqlenq_ngroups_swapped) {
|
| 432 |
+
out = out.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
|
| 433 |
+
}
|
| 434 |
+
if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
|
| 435 |
+
} else {
|
| 436 |
+
out = torch::empty_like(q_padded);
|
| 437 |
+
}
|
| 438 |
+
|
| 439 |
+
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
|
| 440 |
+
const int head_size = round_multiple(head_size_og, 8);
|
| 441 |
+
const int head_size_rounded = round_multiple(head_size, 32);
|
| 442 |
+
const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
|
| 443 |
+
const int seqlen_k_rounded = round_multiple(seqlen_k, 128);
|
| 444 |
+
|
| 445 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
| 446 |
+
// Cast to char to avoid compiler warning about narrowing
|
| 447 |
+
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
|
| 448 |
+
|
| 449 |
+
auto opts = q.options();
|
| 450 |
+
|
| 451 |
+
auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
|
| 452 |
+
at::Tensor p;
|
| 453 |
+
// Only return softmax if there's dropout to reduce compilation time
|
| 454 |
+
if (return_softmax) {
|
| 455 |
+
TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0");
|
| 456 |
+
p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts);
|
| 457 |
+
}
|
| 458 |
+
|
| 459 |
+
Flash_fwd_params params;
|
| 460 |
+
set_params_fprop(params,
|
| 461 |
+
batch_size,
|
| 462 |
+
seqlen_q, seqlen_k,
|
| 463 |
+
seqlen_q_rounded, seqlen_k_rounded,
|
| 464 |
+
num_heads, num_heads_k,
|
| 465 |
+
head_size, head_size_rounded,
|
| 466 |
+
q_padded, k_padded, v_padded, out,
|
| 467 |
+
/*cu_seqlens_q_d=*/nullptr,
|
| 468 |
+
/*cu_seqlens_k_d=*/nullptr,
|
| 469 |
+
/*seqused_k=*/nullptr,
|
| 470 |
+
return_softmax ? p.data_ptr() : nullptr,
|
| 471 |
+
softmax_lse.data_ptr(),
|
| 472 |
+
p_dropout,
|
| 473 |
+
softmax_scale,
|
| 474 |
+
window_size_left,
|
| 475 |
+
window_size_right,
|
| 476 |
+
softcap
|
| 477 |
+
);
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
set_params_splitkv(params, batch_size, num_heads,
|
| 481 |
+
head_size, seqlen_k, seqlen_q,
|
| 482 |
+
head_size_rounded, p_dropout, /*num_splits*/0, dprops, opts);
|
| 483 |
+
|
| 484 |
+
// number of times random will be generated per thread, to offset philox counter in thc random
|
| 485 |
+
// state
|
| 486 |
+
// We use a custom RNG that increases the offset by batch_size * nheads * 32.
|
| 487 |
+
int64_t counter_offset = params.b * params.h * 32;
|
| 488 |
+
auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
|
| 489 |
+
auto rng_state = torch::empty({2}, options.dtype(torch::kInt64));
|
| 490 |
+
// Forward kernel will populate memory with the seed and offset.
|
| 491 |
+
params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr());
|
| 492 |
+
|
| 493 |
+
if (p_dropout > 0.0) {
|
| 494 |
+
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
|
| 495 |
+
gen_, at::cuda::detail::getDefaultCUDAGenerator());
|
| 496 |
+
// See Note [Acquire lock when using random generators]
|
| 497 |
+
std::lock_guard<std::mutex> lock(gen->mutex_);
|
| 498 |
+
params.philox_args = gen->philox_cuda_state(counter_offset);
|
| 499 |
+
}
|
| 500 |
+
|
| 501 |
+
set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
|
| 502 |
+
|
| 503 |
+
if (seqlen_k > 0) {
|
| 504 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
| 505 |
+
run_mha_fwd(params, stream);
|
| 506 |
+
} else {
|
| 507 |
+
// If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
|
| 508 |
+
out.zero_();
|
| 509 |
+
softmax_lse.fill_(std::numeric_limits<float>::infinity());
|
| 510 |
+
}
|
| 511 |
+
|
| 512 |
+
at::Tensor out_padded = out;
|
| 513 |
+
if (head_size_og % 8 != 0) {
|
| 514 |
+
out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
|
| 515 |
+
if (out_.has_value()) { out_.value().copy_(out); }
|
| 516 |
+
}
|
| 517 |
+
|
| 518 |
+
if (seqlenq_ngroups_swapped) {
|
| 519 |
+
out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
|
| 520 |
+
out_padded = out_padded.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
|
| 521 |
+
q_padded = q_padded.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
|
| 522 |
+
softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
|
| 523 |
+
}
|
| 524 |
+
return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state};
|
| 525 |
+
}
|
| 526 |
+
|
| 527 |
+
std::vector<at::Tensor>
|
| 528 |
+
mha_varlen_fwd(at::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
|
| 529 |
+
const at::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
| 530 |
+
const at::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
| 531 |
+
c10::optional<at::Tensor> &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
|
| 532 |
+
const at::Tensor &cu_seqlens_q, // b+1
|
| 533 |
+
const at::Tensor &cu_seqlens_k, // b+1
|
| 534 |
+
c10::optional<at::Tensor> &seqused_k, // b. If given, only this many elements of each batch element's keys are used.
|
| 535 |
+
c10::optional<at::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
|
| 536 |
+
c10::optional<at::Tensor> &alibi_slopes_, // num_heads or b x num_heads
|
| 537 |
+
int max_seqlen_q,
|
| 538 |
+
const int max_seqlen_k,
|
| 539 |
+
const float p_dropout,
|
| 540 |
+
const float softmax_scale,
|
| 541 |
+
const bool zero_tensors,
|
| 542 |
+
bool is_causal,
|
| 543 |
+
int window_size_left,
|
| 544 |
+
int window_size_right,
|
| 545 |
+
const float softcap,
|
| 546 |
+
const bool return_softmax,
|
| 547 |
+
c10::optional<at::Generator> gen_) {
|
| 548 |
+
|
| 549 |
+
auto dprops = at::cuda::getCurrentDeviceProperties();
|
| 550 |
+
// bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
|
| 551 |
+
bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
|
| 552 |
+
bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
|
| 553 |
+
TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
|
| 554 |
+
// We will support Turing in the near future
|
| 555 |
+
// TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");
|
| 556 |
+
|
| 557 |
+
auto q_dtype = q.dtype();
|
| 558 |
+
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
|
| 559 |
+
"FlashAttention only support fp16 and bf16 data type");
|
| 560 |
+
if (q_dtype == torch::kBFloat16) {
|
| 561 |
+
TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
|
| 562 |
+
}
|
| 563 |
+
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
|
| 564 |
+
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
|
| 565 |
+
TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
|
| 566 |
+
TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");
|
| 567 |
+
|
| 568 |
+
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
|
| 569 |
+
CHECK_DEVICE(cu_seqlens_q);
|
| 570 |
+
CHECK_DEVICE(cu_seqlens_k);
|
| 571 |
+
|
| 572 |
+
at::Tensor block_table;
|
| 573 |
+
const bool paged_KV = block_table_.has_value();
|
| 574 |
+
if (paged_KV) {
|
| 575 |
+
block_table = block_table_.value();
|
| 576 |
+
CHECK_DEVICE(block_table);
|
| 577 |
+
TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
|
| 578 |
+
TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension");
|
| 579 |
+
}
|
| 580 |
+
|
| 581 |
+
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 582 |
+
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 583 |
+
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 584 |
+
CHECK_CONTIGUOUS(cu_seqlens_q);
|
| 585 |
+
CHECK_CONTIGUOUS(cu_seqlens_k);
|
| 586 |
+
|
| 587 |
+
const auto sizes = q.sizes();
|
| 588 |
+
|
| 589 |
+
const int batch_size = cu_seqlens_q.numel() - 1;
|
| 590 |
+
int num_heads = sizes[1];
|
| 591 |
+
const int head_size_og = sizes[2];
|
| 592 |
+
const int num_heads_k = paged_KV ? k.size(2) : k.size(1);
|
| 593 |
+
|
| 594 |
+
if (softcap > 0.f) { TORCH_CHECK(p_dropout == 0.f, "Softcapping does not support dropout for now"); }
|
| 595 |
+
|
| 596 |
+
const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1);
|
| 597 |
+
const int num_blocks = !paged_KV ? 0 : k.size(0);
|
| 598 |
+
const int page_block_size = !paged_KV ? 1 : k.size(1);
|
| 599 |
+
TORCH_CHECK(!paged_KV || page_block_size % 256 == 0, "Paged KV cache block size must be divisible by 256");
|
| 600 |
+
|
| 601 |
+
if (max_seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; } // causal=true is the same as causal=false in this case
|
| 602 |
+
if (is_causal) { window_size_right = 0; }
|
| 603 |
+
|
| 604 |
+
void *cu_seqlens_q_d = cu_seqlens_q.data_ptr();
|
| 605 |
+
|
| 606 |
+
// Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
|
| 607 |
+
// H/t Daniel Haziza
|
| 608 |
+
const int seqlenq_ngroups_swapped = max_seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && p_dropout == 0.f && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
|
| 609 |
+
const int ngroups = num_heads / num_heads_k;
|
| 610 |
+
if (seqlenq_ngroups_swapped) {
|
| 611 |
+
q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2).reshape({batch_size * ngroups, num_heads_k, head_size_og});
|
| 612 |
+
max_seqlen_q = ngroups;
|
| 613 |
+
num_heads = num_heads_k;
|
| 614 |
+
cu_seqlens_q_d = nullptr;
|
| 615 |
+
}
|
| 616 |
+
|
| 617 |
+
const int total_q = q.sizes()[0];
|
| 618 |
+
|
| 619 |
+
TORCH_CHECK(batch_size > 0, "batch size must be positive");
|
| 620 |
+
TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
|
| 621 |
+
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
|
| 622 |
+
|
| 623 |
+
if (window_size_left >= max_seqlen_k) { window_size_left = -1; }
|
| 624 |
+
if (window_size_right >= max_seqlen_k) { window_size_right = -1; }
|
| 625 |
+
|
| 626 |
+
CHECK_SHAPE(q, total_q, num_heads, head_size_og);
|
| 627 |
+
if (!paged_KV) {
|
| 628 |
+
const int total_k = k.size(0);
|
| 629 |
+
CHECK_SHAPE(k, total_k, num_heads_k, head_size_og);
|
| 630 |
+
CHECK_SHAPE(v, total_k, num_heads_k, head_size_og);
|
| 631 |
+
} else {
|
| 632 |
+
CHECK_SHAPE(k, num_blocks, page_block_size, num_heads_k, head_size_og);
|
| 633 |
+
CHECK_SHAPE(v, num_blocks, page_block_size, num_heads_k, head_size_og);
|
| 634 |
+
CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
|
| 635 |
+
}
|
| 636 |
+
|
| 637 |
+
CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
|
| 638 |
+
CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
|
| 639 |
+
if (seqused_k.has_value()){
|
| 640 |
+
auto seqused_k_ = seqused_k.value();
|
| 641 |
+
TORCH_CHECK(seqused_k_.dtype() == torch::kInt32, "seqused_k must have dtype int32");
|
| 642 |
+
TORCH_CHECK(seqused_k_.is_cuda(), "seqused_k must be on CUDA device");
|
| 643 |
+
TORCH_CHECK(seqused_k_.is_contiguous(), "seqused_k must be contiguous");
|
| 644 |
+
CHECK_SHAPE(seqused_k_, batch_size);
|
| 645 |
+
}
|
| 646 |
+
|
| 647 |
+
at::Tensor q_padded, k_padded, v_padded;
|
| 648 |
+
if (head_size_og % 8 != 0) {
|
| 649 |
+
q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
| 650 |
+
k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
| 651 |
+
v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
| 652 |
+
} else {
|
| 653 |
+
q_padded = q;
|
| 654 |
+
k_padded = k;
|
| 655 |
+
v_padded = v;
|
| 656 |
+
}
|
| 657 |
+
|
| 658 |
+
at::Tensor out;
|
| 659 |
+
if (out_.has_value()) {
|
| 660 |
+
out = out_.value();
|
| 661 |
+
TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
|
| 662 |
+
CHECK_DEVICE(out);
|
| 663 |
+
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
|
| 664 |
+
CHECK_SHAPE(out, sizes[0], sizes[1], head_size_og);
|
| 665 |
+
if (seqlenq_ngroups_swapped) {
|
| 666 |
+
out = out.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2).reshape({batch_size * ngroups, num_heads_k, head_size_og});
|
| 667 |
+
}
|
| 668 |
+
if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
|
| 669 |
+
} else {
|
| 670 |
+
out = torch::empty_like(q_padded);
|
| 671 |
+
}
|
| 672 |
+
|
| 673 |
+
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
|
| 674 |
+
const int head_size = round_multiple(head_size_og, 8);
|
| 675 |
+
const int head_size_rounded = round_multiple(head_size, 32);
|
| 676 |
+
const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128);
|
| 677 |
+
const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);
|
| 678 |
+
|
| 679 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
| 680 |
+
// Cast to char to avoid compiler warning about narrowing
|
| 681 |
+
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
|
| 682 |
+
|
| 683 |
+
auto opts = q.options();
|
| 684 |
+
auto softmax_lse = torch::empty({num_heads, total_q}, opts.dtype(at::kFloat));
|
| 685 |
+
at::Tensor p;
|
| 686 |
+
// Only return softmax if there's dropout to reduce compilation time
|
| 687 |
+
if (return_softmax) {
|
| 688 |
+
TORCH_CHECK(p_dropout > 0.0f, "return_softmax is only supported when p_dropout > 0.0");
|
| 689 |
+
p = torch::empty({ batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded }, opts);
|
| 690 |
+
}
|
| 691 |
+
|
| 692 |
+
if (zero_tensors) {
|
| 693 |
+
out.zero_();
|
| 694 |
+
softmax_lse.fill_(-std::numeric_limits<float>::infinity());
|
| 695 |
+
if (return_softmax) {p.zero_();}
|
| 696 |
+
}
|
| 697 |
+
|
| 698 |
+
Flash_fwd_params params;
|
| 699 |
+
set_params_fprop(params,
|
| 700 |
+
batch_size,
|
| 701 |
+
max_seqlen_q, max_seqlen_k,
|
| 702 |
+
seqlen_q_rounded, seqlen_k_rounded,
|
| 703 |
+
num_heads, num_heads_k,
|
| 704 |
+
head_size, head_size_rounded,
|
| 705 |
+
q_padded, k_padded, v_padded, out,
|
| 706 |
+
cu_seqlens_q_d,
|
| 707 |
+
cu_seqlens_k.data_ptr(),
|
| 708 |
+
seqused_k.has_value() ? seqused_k.value().data_ptr() : nullptr,
|
| 709 |
+
return_softmax ? p.data_ptr() : nullptr,
|
| 710 |
+
softmax_lse.data_ptr(),
|
| 711 |
+
p_dropout,
|
| 712 |
+
softmax_scale,
|
| 713 |
+
window_size_left,
|
| 714 |
+
window_size_right,
|
| 715 |
+
softcap,
|
| 716 |
+
seqlenq_ngroups_swapped,
|
| 717 |
+
/*unpadded_lse*/true);
|
| 718 |
+
params.total_q = total_q;
|
| 719 |
+
|
| 720 |
+
if (paged_KV) {
|
| 721 |
+
params.block_table = block_table.data_ptr<int>();
|
| 722 |
+
params.block_table_batch_stride = block_table.stride(0);
|
| 723 |
+
params.k_batch_stride = k_padded.stride(0);
|
| 724 |
+
params.v_batch_stride = v_padded.stride(0);
|
| 725 |
+
}
|
| 726 |
+
params.page_block_size = page_block_size;
|
| 727 |
+
if (seqlenq_ngroups_swapped) {
|
| 728 |
+
// Only apply split-k for decoding
|
| 729 |
+
set_params_splitkv(params, batch_size, num_heads,
|
| 730 |
+
head_size, max_seqlen_k, max_seqlen_q,
|
| 731 |
+
head_size_rounded, p_dropout, /*num_splits*/0, dprops, opts);
|
| 732 |
+
}
|
| 733 |
+
|
| 734 |
+
// number of times random will be generated per thread, to offset philox counter in thc random
|
| 735 |
+
// state
|
| 736 |
+
// We use a custom RNG that increases the offset by batch_size * nheads * 32.
|
| 737 |
+
int64_t counter_offset = params.b * params.h * 32;
|
| 738 |
+
auto options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA);
|
| 739 |
+
auto rng_state = torch::empty({2}, options.dtype(torch::kInt64));
|
| 740 |
+
// Forward kernel will populate memory with the seed and offset.
|
| 741 |
+
params.rng_state = reinterpret_cast<uint64_t*>(rng_state.data_ptr());
|
| 742 |
+
|
| 743 |
+
if (p_dropout > 0.0) {
|
| 744 |
+
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
|
| 745 |
+
gen_, at::cuda::detail::getDefaultCUDAGenerator());
|
| 746 |
+
// See Note [Acquire lock when using random generators]
|
| 747 |
+
std::lock_guard<std::mutex> lock(gen->mutex_);
|
| 748 |
+
params.philox_args = gen->philox_cuda_state(counter_offset);
|
| 749 |
+
}
|
| 750 |
+
|
| 751 |
+
set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
|
| 752 |
+
|
| 753 |
+
if (max_seqlen_k > 0) {
|
| 754 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
| 755 |
+
run_mha_fwd(params, stream, paged_KV);
|
| 756 |
+
} else {
|
| 757 |
+
// If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
|
| 758 |
+
out.zero_();
|
| 759 |
+
softmax_lse.fill_(std::numeric_limits<float>::infinity());
|
| 760 |
+
}
|
| 761 |
+
|
| 762 |
+
at::Tensor out_padded = out;
|
| 763 |
+
if (head_size_og % 8 != 0) {
|
| 764 |
+
out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
|
| 765 |
+
if (out_.has_value()) { out_.value().copy_(out); }
|
| 766 |
+
}
|
| 767 |
+
|
| 768 |
+
if (seqlenq_ngroups_swapped) {
|
| 769 |
+
int64_t size_before[] = {batch_size, max_seqlen_q, num_heads_k, head_size_og};
|
| 770 |
+
int64_t size_after[] = {batch_size, num_heads_k * max_seqlen_q, head_size_og};
|
| 771 |
+
out = out.reshape(size_before).transpose(1, 2).reshape(size_after);
|
| 772 |
+
out_padded = out_padded.reshape(size_before).transpose(1, 2).reshape(size_after);
|
| 773 |
+
q_padded = q_padded.reshape(size_before).transpose(1, 2).reshape(size_after);
|
| 774 |
+
softmax_lse = softmax_lse.reshape({num_heads * max_seqlen_q, batch_size});
|
| 775 |
+
}
|
| 776 |
+
|
| 777 |
+
return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse, p, rng_state};
|
| 778 |
+
}
|
| 779 |
+
|
| 780 |
+
void run_mha_bwd(Flash_bwd_params ¶ms, cudaStream_t stream) {
|
| 781 |
+
FP16_SWITCH(!params.is_bf16, [&] {
|
| 782 |
+
HEADDIM_SWITCH(params.d, [&] {
|
| 783 |
+
run_mha_bwd_<elem_type, kHeadDim>(params, stream);
|
| 784 |
+
});
|
| 785 |
+
});
|
| 786 |
+
}
|
| 787 |
+
|
| 788 |
+
std::vector<at::Tensor>
|
| 789 |
+
mha_bwd(const at::Tensor &dout, // batch_size x seqlen_q x num_heads, x head_size_og
|
| 790 |
+
const at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
|
| 791 |
+
const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
|
| 792 |
+
const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
|
| 793 |
+
const at::Tensor &out, // batch_size x seqlen_q x num_heads x head_size
|
| 794 |
+
const at::Tensor &softmax_lse, // b x h x seqlen_q
|
| 795 |
+
c10::optional<at::Tensor> &dq_, // batch_size x seqlen_q x num_heads x head_size
|
| 796 |
+
c10::optional<at::Tensor> &dk_, // batch_size x seqlen_k x num_heads_k x head_size
|
| 797 |
+
c10::optional<at::Tensor> &dv_, // batch_size x seqlen_k x num_heads_k x head_size
|
| 798 |
+
c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
| 799 |
+
const float p_dropout, // probability to drop
|
| 800 |
+
const float softmax_scale,
|
| 801 |
+
const bool is_causal,
|
| 802 |
+
int window_size_left,
|
| 803 |
+
int window_size_right,
|
| 804 |
+
const float softcap,
|
| 805 |
+
const bool deterministic,
|
| 806 |
+
c10::optional<at::Generator> gen_,
|
| 807 |
+
c10::optional<at::Tensor> &rng_state) {
|
| 808 |
+
|
| 809 |
+
#ifdef FLASHATTENTION_DISABLE_BACKWARD
|
| 810 |
+
TORCH_CHECK(false, "This flash attention build does not support backward.");
|
| 811 |
+
#endif
|
| 812 |
+
if (is_causal) { window_size_right = 0; }
|
| 813 |
+
auto dprops = at::cuda::getCurrentDeviceProperties();
|
| 814 |
+
// bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
|
| 815 |
+
bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
|
| 816 |
+
bool is_sm80 = dprops->major == 8 && dprops->minor == 0;
|
| 817 |
+
bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
|
| 818 |
+
TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
|
| 819 |
+
// We will support Turing in the near future
|
| 820 |
+
// TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");
|
| 821 |
+
|
| 822 |
+
bool is_dropout = p_dropout > 0.0;
|
| 823 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
| 824 |
+
|
| 825 |
+
auto q_dtype = q.dtype();
|
| 826 |
+
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
|
| 827 |
+
"FlashAttention only support fp16 and bf16 data type");
|
| 828 |
+
if (q_dtype == torch::kBFloat16) {
|
| 829 |
+
TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
|
| 830 |
+
}
|
| 831 |
+
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
|
| 832 |
+
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
|
| 833 |
+
TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype");
|
| 834 |
+
TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype");
|
| 835 |
+
|
| 836 |
+
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
|
| 837 |
+
CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
|
| 838 |
+
|
| 839 |
+
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 840 |
+
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 841 |
+
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 842 |
+
TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
|
| 843 |
+
TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
|
| 844 |
+
|
| 845 |
+
const auto sizes = q.sizes();
|
| 846 |
+
|
| 847 |
+
const int batch_size = sizes[0];
|
| 848 |
+
const int seqlen_q = sizes[1];
|
| 849 |
+
const int num_heads = sizes[2];
|
| 850 |
+
const int head_size_og = dout.size(3);
|
| 851 |
+
const int head_size = sizes[3];
|
| 852 |
+
const int seqlen_k = k.size(1);
|
| 853 |
+
const int num_heads_k = k.size(2);
|
| 854 |
+
TORCH_CHECK(batch_size > 0, "batch size must be positive");
|
| 855 |
+
TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
|
| 856 |
+
TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256");
|
| 857 |
+
if (head_size > 192 && (head_size <= 224 || is_dropout)) {
|
| 858 |
+
TORCH_CHECK(is_sm80 || is_sm90, "FlashAttention backward for head dim 256 with dropout, or head dim 224 with/without dropout requires A100/A800 or H100/H800");
|
| 859 |
+
}
|
| 860 |
+
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
|
| 861 |
+
|
| 862 |
+
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
|
| 863 |
+
const int head_size_rounded = round_multiple(head_size, 32);
|
| 864 |
+
const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
|
| 865 |
+
const int seqlen_k_rounded = round_multiple(seqlen_k, 128);
|
| 866 |
+
|
| 867 |
+
TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8");
|
| 868 |
+
|
| 869 |
+
if (window_size_left >= seqlen_k) { window_size_left = -1; }
|
| 870 |
+
if (window_size_right >= seqlen_k) { window_size_right = -1; }
|
| 871 |
+
|
| 872 |
+
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
|
| 873 |
+
CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size);
|
| 874 |
+
CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size);
|
| 875 |
+
CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size);
|
| 876 |
+
CHECK_SHAPE(dout, batch_size, seqlen_q, num_heads, head_size_og);
|
| 877 |
+
|
| 878 |
+
at::Tensor dq, dk, dv;
|
| 879 |
+
if (dq_.has_value()) {
|
| 880 |
+
dq = dq_.value();
|
| 881 |
+
TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q");
|
| 882 |
+
CHECK_DEVICE(dq);
|
| 883 |
+
TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
|
| 884 |
+
CHECK_SHAPE(dq, batch_size, seqlen_q, num_heads, head_size);
|
| 885 |
+
} else {
|
| 886 |
+
dq = torch::empty_like(q);
|
| 887 |
+
}
|
| 888 |
+
if (dk_.has_value()) {
|
| 889 |
+
dk = dk_.value();
|
| 890 |
+
TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q");
|
| 891 |
+
CHECK_DEVICE(dk);
|
| 892 |
+
TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
|
| 893 |
+
CHECK_SHAPE(dk, batch_size, seqlen_k, num_heads_k, head_size);
|
| 894 |
+
} else {
|
| 895 |
+
dk = torch::empty_like(k);
|
| 896 |
+
}
|
| 897 |
+
if (dv_.has_value()) {
|
| 898 |
+
dv = dv_.value();
|
| 899 |
+
TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q");
|
| 900 |
+
CHECK_DEVICE(dv);
|
| 901 |
+
TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
|
| 902 |
+
CHECK_SHAPE(dv, batch_size, seqlen_k, num_heads_k, head_size);
|
| 903 |
+
} else {
|
| 904 |
+
dv = torch::empty_like(v);
|
| 905 |
+
}
|
| 906 |
+
|
| 907 |
+
at::Tensor dout_padded;
|
| 908 |
+
if (head_size_og % 8 != 0) {
|
| 909 |
+
dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
| 910 |
+
} else {
|
| 911 |
+
dout_padded = dout;
|
| 912 |
+
}
|
| 913 |
+
|
| 914 |
+
// bool loop = seqlen_k > blocksize_c;
|
| 915 |
+
// TODO: change later, for now set to true for simplicity
|
| 916 |
+
bool loop = true;
|
| 917 |
+
|
| 918 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
| 919 |
+
// Cast to char to avoid compiler warning about narrowing
|
| 920 |
+
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
|
| 921 |
+
|
| 922 |
+
auto opts = q.options();
|
| 923 |
+
auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
|
| 924 |
+
at::Tensor dq_accum;
|
| 925 |
+
at::Tensor dk_accum, dv_accum;
|
| 926 |
+
if (loop) {
|
| 927 |
+
if (!deterministic) {
|
| 928 |
+
dq_accum = torch::empty({batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
|
| 929 |
+
} else {
|
| 930 |
+
const int nsplits = (dprops->multiProcessorCount + batch_size * num_heads - 1) / (batch_size * num_heads);
|
| 931 |
+
dq_accum = torch::zeros({nsplits, batch_size, seqlen_q_rounded, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
|
| 932 |
+
}
|
| 933 |
+
// dk_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
|
| 934 |
+
// dv_accum = torch::empty({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
|
| 935 |
+
}
|
| 936 |
+
|
| 937 |
+
at::Tensor dk_expanded, dv_expanded;
|
| 938 |
+
if (num_heads_k != num_heads) { // MQA / GQA
|
| 939 |
+
dk_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts);
|
| 940 |
+
dv_expanded = torch::empty({batch_size, seqlen_k, num_heads, head_size}, opts);
|
| 941 |
+
} else {
|
| 942 |
+
dk_expanded = dk;
|
| 943 |
+
dv_expanded = dv;
|
| 944 |
+
}
|
| 945 |
+
|
| 946 |
+
Flash_bwd_params params;
|
| 947 |
+
|
| 948 |
+
set_params_dgrad(params,
|
| 949 |
+
batch_size,
|
| 950 |
+
seqlen_q, seqlen_k,
|
| 951 |
+
seqlen_q_rounded, seqlen_k_rounded,
|
| 952 |
+
num_heads, num_heads_k,
|
| 953 |
+
head_size, head_size_rounded,
|
| 954 |
+
q, k, v, out,
|
| 955 |
+
dout_padded, dq, dk_expanded, dv_expanded,
|
| 956 |
+
nullptr,
|
| 957 |
+
nullptr,
|
| 958 |
+
loop ? dq_accum.data_ptr() : nullptr,
|
| 959 |
+
// loop ? dk_accum.data_ptr() : nullptr,
|
| 960 |
+
// loop ? dv_accum.data_ptr() : nullptr,
|
| 961 |
+
nullptr,
|
| 962 |
+
nullptr,
|
| 963 |
+
softmax_lse.data_ptr(),
|
| 964 |
+
softmax_d.data_ptr(),
|
| 965 |
+
p_dropout,
|
| 966 |
+
softmax_scale,
|
| 967 |
+
window_size_left,
|
| 968 |
+
window_size_right,
|
| 969 |
+
softcap,
|
| 970 |
+
deterministic,
|
| 971 |
+
/*unpadded_lse*/false);
|
| 972 |
+
params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0);
|
| 973 |
+
|
| 974 |
+
auto launch = &run_mha_bwd;
|
| 975 |
+
|
| 976 |
+
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
|
| 977 |
+
gen_, at::cuda::detail::getDefaultCUDAGenerator());
|
| 978 |
+
|
| 979 |
+
// We use a custom RNG that increases the offset by batch_size * nheads * 32.
|
| 980 |
+
int64_t counter_offset = params.b * params.h * 32;
|
| 981 |
+
|
| 982 |
+
if ( rng_state.has_value() ) {
|
| 983 |
+
params.rng_state = reinterpret_cast<uint64_t*>(rng_state.value().data_ptr());
|
| 984 |
+
} else if( is_dropout ) {
|
| 985 |
+
// See Note [Acquire lock when using random generators]
|
| 986 |
+
std::lock_guard<std::mutex> lock(gen->mutex_);
|
| 987 |
+
params.philox_args = gen->philox_cuda_state(counter_offset);
|
| 988 |
+
auto seeds = at::cuda::philox::unpack(params.philox_args);
|
| 989 |
+
params.rng_state[0] = std::get<0>(seeds);
|
| 990 |
+
params.rng_state[1] = std::get<1>(seeds);
|
| 991 |
+
}
|
| 992 |
+
|
| 993 |
+
set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
|
| 994 |
+
|
| 995 |
+
if (seqlen_q > 0) {
|
| 996 |
+
launch(params, stream);
|
| 997 |
+
} else {
|
| 998 |
+
// If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
|
| 999 |
+
dk_expanded.zero_();
|
| 1000 |
+
dv_expanded.zero_();
|
| 1001 |
+
softmax_d.zero_();
|
| 1002 |
+
}
|
| 1003 |
+
|
| 1004 |
+
// For MQA/GQA we need to sum dK and dV across the groups
|
| 1005 |
+
if (num_heads_k != num_heads) {
|
| 1006 |
+
at::sum_out(dk, at::reshape(dk_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3});
|
| 1007 |
+
at::sum_out(dv, at::reshape(dv_expanded, {batch_size, seqlen_k, num_heads_k, num_heads / num_heads_k, head_size}), {3});
|
| 1008 |
+
}
|
| 1009 |
+
if (head_size_og % 8 != 0) {
|
| 1010 |
+
dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
|
| 1011 |
+
dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
|
| 1012 |
+
dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
|
| 1013 |
+
}
|
| 1014 |
+
|
| 1015 |
+
return { dq, dk, dv, softmax_d };
|
| 1016 |
+
}
|
| 1017 |
+
|
| 1018 |
+
std::vector<at::Tensor>
|
| 1019 |
+
mha_varlen_bwd(const at::Tensor &dout, // total_q x num_heads, x head_size
|
| 1020 |
+
const at::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
|
| 1021 |
+
const at::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
|
| 1022 |
+
const at::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
|
| 1023 |
+
const at::Tensor &out, // total_q x num_heads x head_size
|
| 1024 |
+
const at::Tensor &softmax_lse, // h x total_q, softmax logsumexp
|
| 1025 |
+
c10::optional<at::Tensor> &dq_, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
|
| 1026 |
+
c10::optional<at::Tensor> &dk_, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
|
| 1027 |
+
c10::optional<at::Tensor> &dv_, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i
|
| 1028 |
+
const at::Tensor &cu_seqlens_q, // b+1
|
| 1029 |
+
const at::Tensor &cu_seqlens_k, // b+1
|
| 1030 |
+
c10::optional<at::Tensor> &alibi_slopes_, // num_heads or b x num_heads
|
| 1031 |
+
const int max_seqlen_q,
|
| 1032 |
+
const int max_seqlen_k, // max sequence length to choose the kernel
|
| 1033 |
+
const float p_dropout, // probability to drop
|
| 1034 |
+
const float softmax_scale,
|
| 1035 |
+
const bool zero_tensors,
|
| 1036 |
+
const bool is_causal,
|
| 1037 |
+
int window_size_left,
|
| 1038 |
+
int window_size_right,
|
| 1039 |
+
const float softcap,
|
| 1040 |
+
const bool deterministic,
|
| 1041 |
+
c10::optional<at::Generator> gen_,
|
| 1042 |
+
c10::optional<at::Tensor> &rng_state) {
|
| 1043 |
+
|
| 1044 |
+
#ifdef FLASHATTENTION_DISABLE_BACKWARD
|
| 1045 |
+
TORCH_CHECK(false, "This flash attention build does not support backward.");
|
| 1046 |
+
#endif
|
| 1047 |
+
|
| 1048 |
+
if (is_causal) { window_size_right = 0; }
|
| 1049 |
+
auto dprops = at::cuda::getCurrentDeviceProperties();
|
| 1050 |
+
// bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
|
| 1051 |
+
bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
|
| 1052 |
+
bool is_sm80 = dprops->major == 8 && dprops->minor == 0;
|
| 1053 |
+
bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
|
| 1054 |
+
TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
|
| 1055 |
+
// We will support Turing in the near future
|
| 1056 |
+
// TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");
|
| 1057 |
+
bool is_dropout = p_dropout > 0.0;
|
| 1058 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
| 1059 |
+
|
| 1060 |
+
auto q_dtype = q.dtype();
|
| 1061 |
+
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
|
| 1062 |
+
"FlashAttention only support fp16 and bf16 data type");
|
| 1063 |
+
if (q_dtype == torch::kBFloat16) {
|
| 1064 |
+
TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
|
| 1065 |
+
}
|
| 1066 |
+
TORCH_CHECK(k.dtype() == q_dtype, "query and key must have the same dtype");
|
| 1067 |
+
TORCH_CHECK(v.dtype() == q_dtype, "query and value must have the same dtype");
|
| 1068 |
+
TORCH_CHECK(out.dtype() == q_dtype, "query and out must have the same dtype");
|
| 1069 |
+
TORCH_CHECK(dout.dtype() == q_dtype, "query and dout must have the same dtype");
|
| 1070 |
+
TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
|
| 1071 |
+
TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");
|
| 1072 |
+
|
| 1073 |
+
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
|
| 1074 |
+
CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
|
| 1075 |
+
CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k);
|
| 1076 |
+
|
| 1077 |
+
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 1078 |
+
TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 1079 |
+
TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 1080 |
+
TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
|
| 1081 |
+
TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
|
| 1082 |
+
CHECK_CONTIGUOUS(cu_seqlens_q);
|
| 1083 |
+
CHECK_CONTIGUOUS(cu_seqlens_k);
|
| 1084 |
+
|
| 1085 |
+
const auto sizes = q.sizes();
|
| 1086 |
+
|
| 1087 |
+
const int total_q = sizes[0];
|
| 1088 |
+
const int batch_size = cu_seqlens_q.numel() - 1;
|
| 1089 |
+
const int num_heads = sizes[1];
|
| 1090 |
+
const int head_size_og = dout.size(2);
|
| 1091 |
+
const int head_size = sizes[2];
|
| 1092 |
+
const int total_k = k.size(0);
|
| 1093 |
+
const int num_heads_k = k.size(1);
|
| 1094 |
+
TORCH_CHECK(batch_size > 0, "batch size must be positive");
|
| 1095 |
+
TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
|
| 1096 |
+
TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256");
|
| 1097 |
+
if (head_size > 192 && (head_size <= 224 || is_dropout)) {
|
| 1098 |
+
TORCH_CHECK(is_sm80 || is_sm90, "FlashAttention backward for head dim 256 with dropout, or head dim 224 with/without dropout requires A100/A800 or H100/H800");
|
| 1099 |
+
}
|
| 1100 |
+
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
|
| 1101 |
+
|
| 1102 |
+
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
|
| 1103 |
+
const int head_size_rounded = round_multiple(head_size, 32);
|
| 1104 |
+
const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128);
|
| 1105 |
+
const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);
|
| 1106 |
+
|
| 1107 |
+
TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8");
|
| 1108 |
+
|
| 1109 |
+
if (window_size_left >= max_seqlen_k) { window_size_left = -1; }
|
| 1110 |
+
if (window_size_right >= max_seqlen_k) { window_size_right = -1; }
|
| 1111 |
+
|
| 1112 |
+
CHECK_SHAPE(q, total_q, num_heads, head_size);
|
| 1113 |
+
CHECK_SHAPE(k, total_k, num_heads_k, head_size);
|
| 1114 |
+
CHECK_SHAPE(v, total_k, num_heads_k, head_size);
|
| 1115 |
+
CHECK_SHAPE(out, total_q, num_heads, head_size);
|
| 1116 |
+
CHECK_SHAPE(dout, total_q, num_heads, head_size_og);
|
| 1117 |
+
CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
|
| 1118 |
+
CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
|
| 1119 |
+
|
| 1120 |
+
at::Tensor dq, dk, dv;
|
| 1121 |
+
if (dq_.has_value()) {
|
| 1122 |
+
dq = dq_.value();
|
| 1123 |
+
TORCH_CHECK(dq.dtype() == q_dtype, "dq must have the same dtype as q");
|
| 1124 |
+
CHECK_DEVICE(dq);
|
| 1125 |
+
TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
|
| 1126 |
+
CHECK_SHAPE(dq, total_q, num_heads, head_size);
|
| 1127 |
+
} else {
|
| 1128 |
+
dq = torch::empty_like(q);
|
| 1129 |
+
}
|
| 1130 |
+
if (dk_.has_value()) {
|
| 1131 |
+
dk = dk_.value();
|
| 1132 |
+
TORCH_CHECK(dk.dtype() == q_dtype, "dk must have the same dtype as q");
|
| 1133 |
+
CHECK_DEVICE(dk);
|
| 1134 |
+
TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
|
| 1135 |
+
CHECK_SHAPE(dk, total_k, num_heads_k, head_size);
|
| 1136 |
+
} else {
|
| 1137 |
+
dk = torch::empty_like(k);
|
| 1138 |
+
}
|
| 1139 |
+
if (dv_.has_value()) {
|
| 1140 |
+
dv = dv_.value();
|
| 1141 |
+
TORCH_CHECK(dv.dtype() == q_dtype, "dv must have the same dtype as q");
|
| 1142 |
+
CHECK_DEVICE(dv);
|
| 1143 |
+
TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
|
| 1144 |
+
CHECK_SHAPE(dv, total_k, num_heads_k, head_size);
|
| 1145 |
+
} else {
|
| 1146 |
+
dv = torch::empty_like(v);
|
| 1147 |
+
}
|
| 1148 |
+
|
| 1149 |
+
at::Tensor dout_padded;
|
| 1150 |
+
if (head_size_og % 8 != 0) {
|
| 1151 |
+
dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
| 1152 |
+
} else {
|
| 1153 |
+
dout_padded = dout;
|
| 1154 |
+
}
|
| 1155 |
+
|
| 1156 |
+
// bool loop = max_seqlen_k > blocksize_c;
|
| 1157 |
+
// TODO: change later, for now set to true for simplicity
|
| 1158 |
+
bool loop = true;
|
| 1159 |
+
|
| 1160 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
| 1161 |
+
// Cast to char to avoid compiler warning about narrowing
|
| 1162 |
+
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
|
| 1163 |
+
|
| 1164 |
+
auto opts = q.options();
|
| 1165 |
+
auto softmax_d = torch::empty({num_heads, total_q + 128 * batch_size}, opts.dtype(at::kFloat));
|
| 1166 |
+
at::Tensor dq_accum;
|
| 1167 |
+
if (loop) {
|
| 1168 |
+
// We don't want to allocate dq_accum of size (batch, seqlen_q_rounded, num_heads, head_size_rounded)
|
| 1169 |
+
// because that would be too large if there is a very long sequence and the rest of the sequences are short.
|
| 1170 |
+
// Instead, we allocate dq_accum of size (total_q + 128 * batch, num_heads, head_size_rounded).
|
| 1171 |
+
// Note that 128 is the max block size on the seqlen_q dimension.
|
| 1172 |
+
// For dQ, the i-th sequence is stored in indices from cu_seqlens[i] + 128 * i to
|
| 1173 |
+
// cu_seqlens[i + 1] * 128 * i - 1. This ensures that the i-th sequence and (i + 1)-th sequence will
|
| 1174 |
+
// be at least 128 apart. It's ok for us to do atomicAdds up to 128 rows beyond what we're normally
|
| 1175 |
+
// allowed to do. So we won't have to do any bound checking, and performance should stay the same.
|
| 1176 |
+
// Same holds for softmax_d, since LSE is stored in unpadded format.
|
| 1177 |
+
if (!deterministic) {
|
| 1178 |
+
dq_accum = torch::empty({total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
|
| 1179 |
+
} else {
|
| 1180 |
+
const int nsplits = (dprops->multiProcessorCount + batch_size * num_heads - 1) / (batch_size * num_heads);
|
| 1181 |
+
dq_accum = torch::zeros({nsplits, total_q + 128 * batch_size, num_heads, head_size_rounded}, opts.dtype(at::kFloat));
|
| 1182 |
+
}
|
| 1183 |
+
}
|
| 1184 |
+
|
| 1185 |
+
at::Tensor dk_expanded, dv_expanded;
|
| 1186 |
+
if (num_heads_k != num_heads) { // MQA / GQA
|
| 1187 |
+
dk_expanded = torch::empty({total_k, num_heads, head_size}, opts);
|
| 1188 |
+
dv_expanded = torch::empty({total_k, num_heads, head_size}, opts);
|
| 1189 |
+
} else {
|
| 1190 |
+
dk_expanded = dk;
|
| 1191 |
+
dv_expanded = dv;
|
| 1192 |
+
}
|
| 1193 |
+
|
| 1194 |
+
if( zero_tensors ) {
|
| 1195 |
+
dq.zero_();
|
| 1196 |
+
dk_expanded.zero_();
|
| 1197 |
+
dv_expanded.zero_();
|
| 1198 |
+
softmax_d.zero_();
|
| 1199 |
+
}
|
| 1200 |
+
|
| 1201 |
+
Flash_bwd_params params;
|
| 1202 |
+
|
| 1203 |
+
set_params_dgrad(params,
|
| 1204 |
+
batch_size,
|
| 1205 |
+
max_seqlen_q, max_seqlen_k,
|
| 1206 |
+
seqlen_q_rounded, seqlen_k_rounded,
|
| 1207 |
+
num_heads, num_heads_k,
|
| 1208 |
+
head_size, head_size_rounded,
|
| 1209 |
+
q, k, v, out,
|
| 1210 |
+
dout_padded, dq, dk_expanded, dv_expanded,
|
| 1211 |
+
cu_seqlens_q.data_ptr(),
|
| 1212 |
+
cu_seqlens_k.data_ptr(),
|
| 1213 |
+
loop ? dq_accum.data_ptr() : nullptr,
|
| 1214 |
+
nullptr,
|
| 1215 |
+
nullptr,
|
| 1216 |
+
softmax_lse.data_ptr(),
|
| 1217 |
+
softmax_d.data_ptr(),
|
| 1218 |
+
p_dropout,
|
| 1219 |
+
softmax_scale,
|
| 1220 |
+
window_size_left,
|
| 1221 |
+
window_size_right,
|
| 1222 |
+
softcap,
|
| 1223 |
+
deterministic,
|
| 1224 |
+
/*unpadded_lse*/true);
|
| 1225 |
+
params.dq_accum_split_stride = !deterministic ? 0 : dq_accum.stride(0);
|
| 1226 |
+
params.total_q = total_q;
|
| 1227 |
+
|
| 1228 |
+
auto launch = &run_mha_bwd;
|
| 1229 |
+
|
| 1230 |
+
auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
|
| 1231 |
+
gen_, at::cuda::detail::getDefaultCUDAGenerator());
|
| 1232 |
+
|
| 1233 |
+
// We use a custom RNG that increases the offset by batch_size * nheads * 32.
|
| 1234 |
+
int64_t counter_offset = params.b * params.h * 32;
|
| 1235 |
+
|
| 1236 |
+
if ( rng_state.has_value() ) {
|
| 1237 |
+
params.rng_state = reinterpret_cast<uint64_t*>(rng_state.value().data_ptr());
|
| 1238 |
+
} else if( is_dropout ) {
|
| 1239 |
+
// See Note [Acquire lock when using random generators]
|
| 1240 |
+
std::lock_guard<std::mutex> lock(gen->mutex_);
|
| 1241 |
+
params.philox_args = gen->philox_cuda_state(counter_offset);
|
| 1242 |
+
auto seeds = at::cuda::philox::unpack(params.philox_args);
|
| 1243 |
+
params.rng_state[0] = std::get<0>(seeds);
|
| 1244 |
+
params.rng_state[1] = std::get<1>(seeds);
|
| 1245 |
+
}
|
| 1246 |
+
|
| 1247 |
+
set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
|
| 1248 |
+
|
| 1249 |
+
if (max_seqlen_q > 0) {
|
| 1250 |
+
launch(params, stream);
|
| 1251 |
+
} else {
|
| 1252 |
+
// If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
|
| 1253 |
+
dk_expanded.zero_();
|
| 1254 |
+
dv_expanded.zero_();
|
| 1255 |
+
softmax_d.zero_();
|
| 1256 |
+
}
|
| 1257 |
+
|
| 1258 |
+
// For MQA/GQA we need to sum dK and dV across the groups
|
| 1259 |
+
if (num_heads_k != num_heads) {
|
| 1260 |
+
at::sum_out(dk, at::reshape(dk_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
|
| 1261 |
+
at::sum_out(dv, at::reshape(dv_expanded, {total_k, num_heads_k, num_heads / num_heads_k, head_size}), {2});
|
| 1262 |
+
}
|
| 1263 |
+
if (head_size_og % 8 != 0) {
|
| 1264 |
+
dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
|
| 1265 |
+
dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
|
| 1266 |
+
dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
|
| 1267 |
+
}
|
| 1268 |
+
|
| 1269 |
+
return { dq, dk, dv, softmax_d };
|
| 1270 |
+
}
|
| 1271 |
+
|
| 1272 |
+
std::vector<at::Tensor>
|
| 1273 |
+
mha_fwd_kvcache(at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
|
| 1274 |
+
const at::Tensor &kcache, // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
| 1275 |
+
const at::Tensor &vcache, // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
| 1276 |
+
c10::optional<const at::Tensor> &k_, // batch_size x seqlen_knew x num_heads_k x head_size
|
| 1277 |
+
c10::optional<const at::Tensor> &v_, // batch_size x seqlen_knew x num_heads_k x head_size
|
| 1278 |
+
c10::optional<const at::Tensor> &seqlens_k_, // batch_size
|
| 1279 |
+
c10::optional<const at::Tensor> &rotary_cos_, // seqlen_ro x (rotary_dim / 2)
|
| 1280 |
+
c10::optional<const at::Tensor> &rotary_sin_, // seqlen_ro x (rotary_dim / 2)
|
| 1281 |
+
c10::optional<const at::Tensor> &cache_batch_idx_, // indices to index into the KV cache
|
| 1282 |
+
c10::optional<at::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
|
| 1283 |
+
c10::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
|
| 1284 |
+
c10::optional<at::Tensor> &out_, // batch_size x seqlen_q x num_heads x head_size
|
| 1285 |
+
const float softmax_scale,
|
| 1286 |
+
bool is_causal,
|
| 1287 |
+
int window_size_left,
|
| 1288 |
+
int window_size_right,
|
| 1289 |
+
const float softcap,
|
| 1290 |
+
bool is_rotary_interleaved, // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2
|
| 1291 |
+
int num_splits
|
| 1292 |
+
) {
|
| 1293 |
+
|
| 1294 |
+
auto dprops = at::cuda::getCurrentDeviceProperties();
|
| 1295 |
+
// bool is_sm75 = dprops->major == 7 && dprops->minor == 5;
|
| 1296 |
+
bool is_sm8x = dprops->major == 8 && dprops->minor >= 0;
|
| 1297 |
+
bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
|
| 1298 |
+
TORCH_CHECK(is_sm90 || is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
|
| 1299 |
+
// We will support Turing in the near future
|
| 1300 |
+
// TORCH_CHECK(is_sm90 || is_sm8x || is_sm75, "FlashAttention only supports Turing GPUs or newer.");
|
| 1301 |
+
|
| 1302 |
+
auto q_dtype = q.dtype();
|
| 1303 |
+
TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
|
| 1304 |
+
"FlashAttention only support fp16 and bf16 data type");
|
| 1305 |
+
if (q_dtype == torch::kBFloat16) {
|
| 1306 |
+
TORCH_CHECK(is_sm90 || is_sm8x, "bfloat16 is only supported on Ampere GPUs or newer");
|
| 1307 |
+
}
|
| 1308 |
+
TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype");
|
| 1309 |
+
TORCH_CHECK(vcache.dtype() == q_dtype, "query and value must have the same dtype");
|
| 1310 |
+
|
| 1311 |
+
CHECK_DEVICE(q); CHECK_DEVICE(kcache); CHECK_DEVICE(vcache);
|
| 1312 |
+
|
| 1313 |
+
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 1314 |
+
TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 1315 |
+
TORCH_CHECK(vcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
| 1316 |
+
|
| 1317 |
+
at::Tensor block_table;
|
| 1318 |
+
const bool paged_KV = block_table_.has_value();
|
| 1319 |
+
if (paged_KV) {
|
| 1320 |
+
TORCH_CHECK(!cache_batch_idx_.has_value(), "Paged KVcache does not support cache_batch_idx");
|
| 1321 |
+
block_table = block_table_.value();
|
| 1322 |
+
CHECK_DEVICE(block_table);
|
| 1323 |
+
TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
|
| 1324 |
+
TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension");
|
| 1325 |
+
}
|
| 1326 |
+
|
| 1327 |
+
const auto sizes = q.sizes();
|
| 1328 |
+
|
| 1329 |
+
const int batch_size = sizes[0];
|
| 1330 |
+
int seqlen_q = sizes[1];
|
| 1331 |
+
int num_heads = sizes[2];
|
| 1332 |
+
const int head_size_og = sizes[3];
|
| 1333 |
+
|
| 1334 |
+
const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1);
|
| 1335 |
+
const int num_blocks = !paged_KV ? 0 : kcache.size(0);
|
| 1336 |
+
const int page_block_size = !paged_KV ? 1 : kcache.size(1);
|
| 1337 |
+
TORCH_CHECK(!paged_KV || page_block_size % 256 == 0, "Paged KV cache block size must be divisible by 256");
|
| 1338 |
+
const int seqlen_k = !paged_KV ? kcache.size(1) : max_num_blocks_per_seq * page_block_size;
|
| 1339 |
+
const int num_heads_k = kcache.size(2);
|
| 1340 |
+
const int batch_size_c = !paged_KV ? kcache.size(0) : batch_size;
|
| 1341 |
+
TORCH_CHECK(batch_size > 0, "batch size must be postive");
|
| 1342 |
+
TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
|
| 1343 |
+
TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
|
| 1344 |
+
|
| 1345 |
+
// causal=true is the same as causal=false in this case
|
| 1346 |
+
if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
|
| 1347 |
+
if (is_causal) { window_size_right = 0; }
|
| 1348 |
+
|
| 1349 |
+
// Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
|
| 1350 |
+
// H/t Daniel Haziza
|
| 1351 |
+
const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
|
| 1352 |
+
if (seqlenq_ngroups_swapped) {
|
| 1353 |
+
const int ngroups = num_heads / num_heads_k;
|
| 1354 |
+
q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
|
| 1355 |
+
seqlen_q = ngroups;
|
| 1356 |
+
num_heads = num_heads_k;
|
| 1357 |
+
}
|
| 1358 |
+
|
| 1359 |
+
if (window_size_left >= seqlen_k) { window_size_left = -1; }
|
| 1360 |
+
if (window_size_right >= seqlen_k) { window_size_right = -1; }
|
| 1361 |
+
|
| 1362 |
+
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
|
| 1363 |
+
if (!paged_KV) {
|
| 1364 |
+
CHECK_SHAPE(kcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
|
| 1365 |
+
CHECK_SHAPE(vcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
|
| 1366 |
+
} else {
|
| 1367 |
+
CHECK_SHAPE(kcache, num_blocks, page_block_size, num_heads_k, head_size_og);
|
| 1368 |
+
CHECK_SHAPE(vcache, num_blocks, page_block_size, num_heads_k, head_size_og);
|
| 1369 |
+
CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
|
| 1370 |
+
}
|
| 1371 |
+
|
| 1372 |
+
at::Tensor q_padded, kcache_padded, vcache_padded;
|
| 1373 |
+
if (head_size_og % 8 != 0) {
|
| 1374 |
+
q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
| 1375 |
+
kcache_padded = torch::nn::functional::pad(kcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
| 1376 |
+
vcache_padded = torch::nn::functional::pad(vcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
| 1377 |
+
} else {
|
| 1378 |
+
q_padded = q;
|
| 1379 |
+
kcache_padded = kcache;
|
| 1380 |
+
vcache_padded = vcache;
|
| 1381 |
+
}
|
| 1382 |
+
|
| 1383 |
+
at::Tensor out;
|
| 1384 |
+
if (out_.has_value()) {
|
| 1385 |
+
out = out_.value();
|
| 1386 |
+
TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
|
| 1387 |
+
CHECK_DEVICE(out);
|
| 1388 |
+
TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
|
| 1389 |
+
CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og);
|
| 1390 |
+
if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
|
| 1391 |
+
} else {
|
| 1392 |
+
out = torch::empty_like(q_padded);
|
| 1393 |
+
}
|
| 1394 |
+
|
| 1395 |
+
auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
|
| 1396 |
+
const int head_size = round_multiple(head_size_og, 8);
|
| 1397 |
+
const int head_size_rounded = round_multiple(head_size, 32);
|
| 1398 |
+
const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
|
| 1399 |
+
const int seqlen_k_rounded = round_multiple(seqlen_k, 128);
|
| 1400 |
+
|
| 1401 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
| 1402 |
+
// Cast to char to avoid compiler warning about narrowing
|
| 1403 |
+
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
|
| 1404 |
+
|
| 1405 |
+
auto opts = q.options();
|
| 1406 |
+
|
| 1407 |
+
auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
|
| 1408 |
+
|
| 1409 |
+
Flash_fwd_params params;
|
| 1410 |
+
set_params_fprop(params,
|
| 1411 |
+
batch_size,
|
| 1412 |
+
seqlen_q, seqlen_k,
|
| 1413 |
+
seqlen_q_rounded, seqlen_k_rounded,
|
| 1414 |
+
num_heads, num_heads_k,
|
| 1415 |
+
head_size, head_size_rounded,
|
| 1416 |
+
q_padded, kcache_padded, vcache_padded, out,
|
| 1417 |
+
/*cu_seqlens_q_d=*/nullptr,
|
| 1418 |
+
/*cu_seqlens_k_d=*/nullptr,
|
| 1419 |
+
/*seqused_k=*/nullptr,
|
| 1420 |
+
/*p_ptr=*/nullptr,
|
| 1421 |
+
softmax_lse.data_ptr(),
|
| 1422 |
+
/*p_dropout=*/0.f,
|
| 1423 |
+
softmax_scale,
|
| 1424 |
+
window_size_left,
|
| 1425 |
+
window_size_right,
|
| 1426 |
+
softcap
|
| 1427 |
+
);
|
| 1428 |
+
|
| 1429 |
+
at::Tensor k, v, k_padded, v_padded;
|
| 1430 |
+
if (k_.has_value()) {
|
| 1431 |
+
TORCH_CHECK(v_.has_value(), "If key is supplied, value must also be passed in");
|
| 1432 |
+
TORCH_CHECK(seqlens_k_.has_value(), "If key is supplied, seqlens_k must also be passed in");
|
| 1433 |
+
TORCH_CHECK(seqlen_q <= seqlen_k, "If key is supplied, it must have seqlen <= the seqlen of the KV cache");
|
| 1434 |
+
k = k_.value();
|
| 1435 |
+
v = v_.value();
|
| 1436 |
+
TORCH_CHECK(k.dtype() == q_dtype, "Key must have the same dtype as query");
|
| 1437 |
+
TORCH_CHECK(v.dtype() == q_dtype, "Value must have the same dtype as query");
|
| 1438 |
+
CHECK_DEVICE(k); CHECK_DEVICE(v);
|
| 1439 |
+
TORCH_CHECK(k.stride(-1) == 1, "Key tensor must have contiguous last dimension");
|
| 1440 |
+
TORCH_CHECK(v.stride(-1) == 1, "Value tensor must have contiguous last dimension");
|
| 1441 |
+
int seqlen_knew = k.size(1);
|
| 1442 |
+
CHECK_SHAPE(k, batch_size, seqlen_knew, num_heads_k, head_size_og);
|
| 1443 |
+
CHECK_SHAPE(v, batch_size, seqlen_knew, num_heads_k, head_size_og);
|
| 1444 |
+
if (head_size_og % 8 != 0) {
|
| 1445 |
+
k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
| 1446 |
+
v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
|
| 1447 |
+
} else {
|
| 1448 |
+
k_padded = k;
|
| 1449 |
+
v_padded = v;
|
| 1450 |
+
}
|
| 1451 |
+
params.seqlen_knew = seqlen_knew;
|
| 1452 |
+
params.knew_ptr = k_padded.data_ptr();
|
| 1453 |
+
params.vnew_ptr = v_padded.data_ptr();
|
| 1454 |
+
// All stride are in elements, not bytes.
|
| 1455 |
+
params.knew_batch_stride = k_padded.stride(0);
|
| 1456 |
+
params.vnew_batch_stride = v_padded.stride(0);
|
| 1457 |
+
params.knew_row_stride = k_padded.stride(-3);
|
| 1458 |
+
params.vnew_row_stride = v_padded.stride(-3);
|
| 1459 |
+
params.knew_head_stride = k_padded.stride(-2);
|
| 1460 |
+
params.vnew_head_stride = v_padded.stride(-2);
|
| 1461 |
+
}
|
| 1462 |
+
|
| 1463 |
+
if (seqlens_k_.has_value()) {
|
| 1464 |
+
auto seqlens_k = seqlens_k_.value();
|
| 1465 |
+
TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32");
|
| 1466 |
+
CHECK_DEVICE(seqlens_k);
|
| 1467 |
+
CHECK_CONTIGUOUS(seqlens_k);
|
| 1468 |
+
CHECK_SHAPE(seqlens_k, batch_size);
|
| 1469 |
+
params.cu_seqlens_k = static_cast<int *>(seqlens_k.data_ptr());
|
| 1470 |
+
}
|
| 1471 |
+
params.is_seqlens_k_cumulative = !(seqlens_k_.has_value());
|
| 1472 |
+
|
| 1473 |
+
if (rotary_cos_.has_value()) {
|
| 1474 |
+
TORCH_CHECK(k_.has_value(), "If rotary cos/sin are provided, new key / value to be appended to KV cache must also be provided");
|
| 1475 |
+
auto rotary_cos = rotary_cos_.value();
|
| 1476 |
+
CHECK_DEVICE(rotary_cos);
|
| 1477 |
+
params.rotary_dim = rotary_cos.size(1) * 2;
|
| 1478 |
+
TORCH_CHECK(params.rotary_dim <= head_size, "rotary_dim must be <= headdim");
|
| 1479 |
+
TORCH_CHECK(params.rotary_dim % 16 == 0, "Only rotary dimensions divisible by 16 are currently supported");
|
| 1480 |
+
const int seqlen_ro = rotary_cos.size(0);
|
| 1481 |
+
TORCH_CHECK(seqlen_ro >= seqlen_k, "cos/sin seqlen must be at least the seqlen of KV cache");
|
| 1482 |
+
CHECK_SHAPE(rotary_cos, seqlen_ro, params.rotary_dim / 2);
|
| 1483 |
+
CHECK_CONTIGUOUS(rotary_cos);
|
| 1484 |
+
TORCH_CHECK(rotary_cos.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");
|
| 1485 |
+
|
| 1486 |
+
TORCH_CHECK(rotary_sin_.has_value(), "If rotary cos is provided, rotary sin must also be provided");
|
| 1487 |
+
auto rotary_sin = rotary_sin_.value();
|
| 1488 |
+
CHECK_DEVICE(rotary_sin);
|
| 1489 |
+
CHECK_SHAPE(rotary_sin, seqlen_ro, params.rotary_dim / 2);
|
| 1490 |
+
CHECK_CONTIGUOUS(rotary_sin);
|
| 1491 |
+
TORCH_CHECK(rotary_sin.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");
|
| 1492 |
+
params.rotary_cos_ptr = rotary_cos.data_ptr();
|
| 1493 |
+
params.rotary_sin_ptr = rotary_sin.data_ptr();
|
| 1494 |
+
params.is_rotary_interleaved = is_rotary_interleaved;
|
| 1495 |
+
} else {
|
| 1496 |
+
params.rotary_dim = 0;
|
| 1497 |
+
}
|
| 1498 |
+
|
| 1499 |
+
if (cache_batch_idx_.has_value()) {
|
| 1500 |
+
auto cache_batch_idx = cache_batch_idx_.value();
|
| 1501 |
+
CHECK_DEVICE(cache_batch_idx);
|
| 1502 |
+
CHECK_CONTIGUOUS(cache_batch_idx);
|
| 1503 |
+
TORCH_CHECK(cache_batch_idx.scalar_type() == torch::kInt32, "cache_batch_idx must have dtype int32");
|
| 1504 |
+
params.cache_batch_idx = reinterpret_cast<int *>(cache_batch_idx.data_ptr());
|
| 1505 |
+
}
|
| 1506 |
+
|
| 1507 |
+
set_params_splitkv(params, batch_size, num_heads,
|
| 1508 |
+
head_size, seqlen_k, seqlen_q,
|
| 1509 |
+
head_size_rounded, /*dropout*/0.f, num_splits, dprops, opts);
|
| 1510 |
+
|
| 1511 |
+
if (paged_KV) {
|
| 1512 |
+
params.block_table = block_table.data_ptr<int>();
|
| 1513 |
+
params.block_table_batch_stride = block_table.stride(0);
|
| 1514 |
+
}
|
| 1515 |
+
params.page_block_size = page_block_size;
|
| 1516 |
+
|
| 1517 |
+
|
| 1518 |
+
set_params_alibi(params, alibi_slopes_, batch_size, num_heads);
|
| 1519 |
+
|
| 1520 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
| 1521 |
+
// Only split kernel supports appending to KV cache, or indexing to the cache with cache_batch_idx,
|
| 1522 |
+
// or paged KV cache
|
| 1523 |
+
run_mha_fwd(params, stream, /*force_split_kernel=*/k_.has_value() || cache_batch_idx_.has_value() || paged_KV);
|
| 1524 |
+
|
| 1525 |
+
if (head_size_og % 8 != 0) {
|
| 1526 |
+
out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
|
| 1527 |
+
if (out_.has_value()) { out_.value().copy_(out); }
|
| 1528 |
+
if (k_.has_value()) {
|
| 1529 |
+
// It's expensive to copy the KV cache here for the case where head size not divisible by 8,
|
| 1530 |
+
// but we don't expect to get this case in practice. This is just so that the code works for that case.
|
| 1531 |
+
kcache.copy_(kcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
|
| 1532 |
+
vcache.copy_(vcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
|
| 1533 |
+
}
|
| 1534 |
+
}
|
| 1535 |
+
|
| 1536 |
+
if (seqlenq_ngroups_swapped) {
|
| 1537 |
+
out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
|
| 1538 |
+
softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
|
| 1539 |
+
}
|
| 1540 |
+
return {out, softmax_lse};
|
| 1541 |
+
}
|
| 1542 |
+
|
| 1543 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
| 1544 |
+
m.doc() = "FlashAttention";
|
| 1545 |
+
m.def("fwd", &mha_fwd, "Forward pass");
|
| 1546 |
+
m.def("varlen_fwd", &mha_varlen_fwd, "Forward pass (variable length)");
|
| 1547 |
+
m.def("bwd", &mha_bwd, "Backward pass");
|
| 1548 |
+
m.def("varlen_bwd", &mha_varlen_bwd, "Backward pass (variable length)");
|
| 1549 |
+
m.def("fwd_kvcache", &mha_fwd_kvcache, "Forward pass, with KV-cache");
|
| 1550 |
+
}
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim128_bf16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 128, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim128_bf16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 128, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim128_fp16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 128, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim128_fp16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 128, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim160_bf16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 160, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim160_bf16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 160, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim160_fp16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 160, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim160_fp16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 160, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim192_bf16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 192, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim192_bf16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 192, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim192_fp16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 192, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim192_fp16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 192, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim224_bf16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 224, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim224_bf16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 224, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim224_fp16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 224, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim224_fp16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 224, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim256_bf16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 256, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim256_bf16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 256, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim256_fp16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 256, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim256_fp16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 256, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim32_bf16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 32, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim32_bf16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 32, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim32_fp16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 32, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim32_fp16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 32, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim64_bf16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 64, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim64_bf16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 64, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim64_fp16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 64, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim64_fp16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 64, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim96_bf16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 96, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim96_bf16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::bfloat16_t, 96, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim96_fp16_causal_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 96, true>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/flash_fwd_split_hdim96_fp16_sm80.cu
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Copyright (c) 2023, Tri Dao.
|
| 2 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 3 |
+
// This file is auto-generated. See "generate_kernels.py"
|
| 4 |
+
|
| 5 |
+
#include "flash_fwd_launch_template.h"
|
| 6 |
+
|
| 7 |
+
template void run_mha_fwd_splitkv_dispatch<cutlass::half_t, 96, false>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
flash-attention/csrc/flash_attn/src/generate_kernels.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copied from Driss Guessous's PR in PyTorch: https://github.com/pytorch/pytorch/pull/105602
|
| 2 |
+
|
| 3 |
+
# This file is run to generate the kernel instantiations for the flash_attn kernels
|
| 4 |
+
# They are written to several files in order to speed up compilation
|
| 5 |
+
|
| 6 |
+
import argparse
|
| 7 |
+
import itertools
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from typing import List, Optional
|
| 11 |
+
|
| 12 |
+
DTYPE_MAP = {
|
| 13 |
+
"fp16": "cutlass::half_t",
|
| 14 |
+
"bf16": "cutlass::bfloat16_t",
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
SM = [80] # Sm80 kernels support up to
|
| 18 |
+
HEAD_DIMENSIONS = [32, 64, 96, 128, 160, 192, 224, 256]
|
| 19 |
+
IS_CAUSAL = ["false", "true"]
|
| 20 |
+
KERNEL_IMPL_TEMPLATE_FWD = """#include "flash_fwd_launch_template.h"
|
| 21 |
+
|
| 22 |
+
template<>
|
| 23 |
+
void run_mha_fwd_<{DTYPE}, {HEAD_DIM}, {IS_CAUSAL}>(Flash_fwd_params ¶ms, cudaStream_t stream) {{
|
| 24 |
+
run_mha_fwd_hdim{HEAD_DIM}<{DTYPE}, {IS_CAUSAL}>(params, stream);
|
| 25 |
+
}}
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
KERNEL_IMPL_TEMPLATE_FWD_SPLIT = """#include "flash_fwd_launch_template.h"
|
| 29 |
+
|
| 30 |
+
template void run_mha_fwd_splitkv_dispatch<{DTYPE}, {HEAD_DIM}, {IS_CAUSAL}>(Flash_fwd_params ¶ms, cudaStream_t stream);
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
KERNEL_IMPL_TEMPLATE_BWD = """#include "flash_bwd_launch_template.h"
|
| 34 |
+
|
| 35 |
+
template<>
|
| 36 |
+
void run_mha_bwd_<{DTYPE}, {HEAD_DIM}>(Flash_bwd_params ¶ms, cudaStream_t stream) {{
|
| 37 |
+
run_mha_bwd_hdim{HEAD_DIM}<{DTYPE}>(params, stream);
|
| 38 |
+
}}
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
@dataclass
|
| 43 |
+
class Kernel:
|
| 44 |
+
sm: int
|
| 45 |
+
dtype: str
|
| 46 |
+
head_dim: int
|
| 47 |
+
is_causal: bool
|
| 48 |
+
direction: str
|
| 49 |
+
|
| 50 |
+
@property
|
| 51 |
+
def template(self) -> str:
|
| 52 |
+
if self.direction == "fwd":
|
| 53 |
+
return KERNEL_IMPL_TEMPLATE_FWD.format(
|
| 54 |
+
DTYPE=DTYPE_MAP[self.dtype], HEAD_DIM=self.head_dim, IS_CAUSAL=self.is_causal
|
| 55 |
+
)
|
| 56 |
+
elif self.direction == "bwd":
|
| 57 |
+
return KERNEL_IMPL_TEMPLATE_BWD.format(
|
| 58 |
+
DTYPE=DTYPE_MAP[self.dtype], HEAD_DIM=self.head_dim
|
| 59 |
+
)
|
| 60 |
+
else:
|
| 61 |
+
return KERNEL_IMPL_TEMPLATE_FWD_SPLIT.format(
|
| 62 |
+
DTYPE=DTYPE_MAP[self.dtype], HEAD_DIM=self.head_dim, IS_CAUSAL=self.is_causal
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
@property
|
| 66 |
+
def filename(self) -> str:
|
| 67 |
+
return f"flash_{self.direction}_hdim{self.head_dim}_{self.dtype}_{'causal_' if self.is_causal == 'true' else ''}sm{self.sm}.cu"
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def get_all_kernels() -> List[Kernel]:
|
| 71 |
+
for direction in ["fwd", "fwd_split"]:
|
| 72 |
+
for dtype, head_dim, is_causal, sm in itertools.product(DTYPE_MAP.keys(), HEAD_DIMENSIONS, IS_CAUSAL, SM):
|
| 73 |
+
yield Kernel(sm=sm, dtype=dtype, head_dim=head_dim, is_causal=is_causal, direction=direction)
|
| 74 |
+
for direction in ["bwd"]:
|
| 75 |
+
for dtype, head_dim, sm in itertools.product(DTYPE_MAP.keys(), HEAD_DIMENSIONS, SM):
|
| 76 |
+
yield Kernel(sm=sm, dtype=dtype, head_dim=head_dim, is_causal="false", direction=direction)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def write_kernel(kernel: Kernel, autogen_dir: Path) -> None:
|
| 80 |
+
prelude = """// Copyright (c) 2023, Tri Dao.
|
| 81 |
+
// Splitting the different head dimensions to different files to speed up compilation.
|
| 82 |
+
// This file is auto-generated. See "generate_kernels.py"\n
|
| 83 |
+
"""
|
| 84 |
+
(autogen_dir / kernel.filename).write_text(prelude + kernel.template)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def main(output_dir: Optional[str]) -> None:
|
| 88 |
+
if output_dir is None:
|
| 89 |
+
output_dir = Path(__file__).parent
|
| 90 |
+
else:
|
| 91 |
+
output_dir = Path(output_dir)
|
| 92 |
+
|
| 93 |
+
for kernel in get_all_kernels():
|
| 94 |
+
write_kernel(kernel, output_dir)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
if __name__ == "__main__":
|
| 98 |
+
parser = argparse.ArgumentParser(
|
| 99 |
+
prog="generate_kernels",
|
| 100 |
+
description="Generate the flash_attention kernels template instantiations",
|
| 101 |
+
)
|
| 102 |
+
# Set an optional output directory
|
| 103 |
+
parser.add_argument(
|
| 104 |
+
"-o",
|
| 105 |
+
"--output_dir",
|
| 106 |
+
required=False,
|
| 107 |
+
help="Where to generate the kernels "
|
| 108 |
+
" will default to the current directory ",
|
| 109 |
+
)
|
| 110 |
+
args = parser.parse_args()
|
| 111 |
+
main(args.output_dir)
|
flash-attention/csrc/flash_attn/src/kernel_traits.h
ADDED
|
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/******************************************************************************
|
| 2 |
+
* Copyright (c) 2024, Tri Dao.
|
| 3 |
+
******************************************************************************/
|
| 4 |
+
|
| 5 |
+
#pragma once
|
| 6 |
+
|
| 7 |
+
#include "cute/tensor.hpp"
|
| 8 |
+
|
| 9 |
+
#include "cutlass/cutlass.h"
|
| 10 |
+
#include "cutlass/layout/layout.h"
|
| 11 |
+
#include <cutlass/numeric_types.h>
|
| 12 |
+
|
| 13 |
+
using namespace cute;
|
| 14 |
+
|
| 15 |
+
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, typename elem_type=cutlass::half_t>
|
| 16 |
+
struct Flash_kernel_traits {
|
| 17 |
+
|
| 18 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
| 19 |
+
using Element = elem_type;
|
| 20 |
+
static constexpr bool Has_cp_async = true;
|
| 21 |
+
#else
|
| 22 |
+
using Element = cutlass::half_t;
|
| 23 |
+
static constexpr bool Has_cp_async = false;
|
| 24 |
+
#endif
|
| 25 |
+
|
| 26 |
+
using ElementAccum = float;
|
| 27 |
+
using index_t = int64_t;
|
| 28 |
+
|
| 29 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
| 30 |
+
using MMA_Atom_Arch = std::conditional_t<
|
| 31 |
+
std::is_same_v<elem_type, cutlass::half_t>,
|
| 32 |
+
MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>,
|
| 33 |
+
MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>
|
| 34 |
+
>;
|
| 35 |
+
#else
|
| 36 |
+
using MMA_Atom_Arch = MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>;
|
| 37 |
+
#endif
|
| 38 |
+
|
| 39 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 750
|
| 40 |
+
using SmemCopyAtom = Copy_Atom<SM75_U32x4_LDSM_N, elem_type>;
|
| 41 |
+
using SmemCopyAtomTransposed = Copy_Atom<SM75_U16x8_LDSM_T, elem_type>;
|
| 42 |
+
#else
|
| 43 |
+
using SmemCopyAtom = Copy_Atom<DefaultCopy, elem_type>;
|
| 44 |
+
using SmemCopyAtomTransposed = Copy_Atom<DefaultCopy, elem_type>;
|
| 45 |
+
#endif
|
| 46 |
+
};
|
| 47 |
+
|
| 48 |
+
// If Share_Q_K_smem is true, that forces Is_Q_in_regs to be true
|
| 49 |
+
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, bool Is_Q_in_regs_=false, bool Share_Q_K_smem_=false, typename elem_type=cutlass::half_t,
|
| 50 |
+
typename Base=Flash_kernel_traits<kHeadDim_, kBlockM_, kBlockN_, kNWarps_, elem_type> >
|
| 51 |
+
struct Flash_fwd_kernel_traits : public Base {
|
| 52 |
+
using Element = typename Base::Element;
|
| 53 |
+
using ElementAccum = typename Base::ElementAccum;
|
| 54 |
+
using index_t = typename Base::index_t;
|
| 55 |
+
static constexpr bool Has_cp_async = Base::Has_cp_async;
|
| 56 |
+
using SmemCopyAtom = typename Base::SmemCopyAtom;
|
| 57 |
+
using SmemCopyAtomTransposed = typename Base::SmemCopyAtomTransposed;
|
| 58 |
+
|
| 59 |
+
static constexpr bool Share_Q_K_smem = Share_Q_K_smem_;
|
| 60 |
+
static constexpr bool Is_Q_in_regs = Is_Q_in_regs_ || Share_Q_K_smem;
|
| 61 |
+
|
| 62 |
+
// The number of threads.
|
| 63 |
+
static constexpr int kNWarps = kNWarps_;
|
| 64 |
+
static constexpr int kNThreads = kNWarps * 32;
|
| 65 |
+
|
| 66 |
+
static constexpr int kBlockM = kBlockM_;
|
| 67 |
+
static constexpr int kBlockN = kBlockN_;
|
| 68 |
+
static constexpr int kHeadDim = kHeadDim_;
|
| 69 |
+
static_assert(kHeadDim % 32 == 0);
|
| 70 |
+
static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : 32;
|
| 71 |
+
static constexpr int kBlockKGmem = kHeadDim % 128 == 0 ? 128 : (kHeadDim % 64 == 0 ? 64 : 32);
|
| 72 |
+
static constexpr int kSwizzle = kBlockKSmem == 32 ? 2 : 3;
|
| 73 |
+
|
| 74 |
+
using TiledMma = TiledMMA<
|
| 75 |
+
typename Base::MMA_Atom_Arch,
|
| 76 |
+
Layout<Shape<Int<kNWarps>,_1,_1>>, // 4x1x1 or 8x1x1 thread group
|
| 77 |
+
Tile<Int<16 * kNWarps>, _16, _16>>;
|
| 78 |
+
|
| 79 |
+
using SmemLayoutAtomQ = decltype(
|
| 80 |
+
composition(Swizzle<kSwizzle, 3, 3>{},
|
| 81 |
+
// This has to be kBlockKSmem, using kHeadDim gives wrong results for d=128
|
| 82 |
+
Layout<Shape<_8, Int<kBlockKSmem>>,
|
| 83 |
+
Stride<Int<kBlockKSmem>, _1>>{}));
|
| 84 |
+
using SmemLayoutQ = decltype(tile_to_shape(
|
| 85 |
+
SmemLayoutAtomQ{},
|
| 86 |
+
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
|
| 87 |
+
|
| 88 |
+
using SmemLayoutKV = decltype(tile_to_shape(
|
| 89 |
+
SmemLayoutAtomQ{},
|
| 90 |
+
Shape<Int<kBlockN>, Int<kHeadDim>>{}));
|
| 91 |
+
|
| 92 |
+
// https://github.com/ColfaxResearch/cutlass-kernels/blob/a222587e6d59b93ba704853d3946fb686d8b8892/src/fmha/fmha_forward.cu#L434
|
| 93 |
+
using SmemLayoutVtransposed = decltype(
|
| 94 |
+
composition(SmemLayoutKV{}, make_layout(Shape<Int<kHeadDim>, Int<kBlockN>>{}, GenRowMajor{})));
|
| 95 |
+
using SmemLayoutVtransposedNoSwizzle = decltype(get_nonswizzle_portion(SmemLayoutVtransposed{}));
|
| 96 |
+
|
| 97 |
+
using SmemLayoutAtomO = decltype(
|
| 98 |
+
composition(Swizzle<kSwizzle, 3, 3>{},
|
| 99 |
+
Layout<Shape<Int<8>, Int<kBlockKSmem>>,
|
| 100 |
+
Stride<Int<kBlockKSmem>, _1>>{}));
|
| 101 |
+
using SmemLayoutO = decltype(tile_to_shape(
|
| 102 |
+
SmemLayoutAtomO{},
|
| 103 |
+
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
|
| 104 |
+
using SmemCopyAtomO = Copy_Atom<DefaultCopy, Element>;
|
| 105 |
+
using SmemCopyAtomOaccum = Copy_Atom<DefaultCopy, ElementAccum>;
|
| 106 |
+
|
| 107 |
+
static constexpr int kSmemQSize = size(SmemLayoutQ{}) * sizeof(Element);
|
| 108 |
+
static constexpr int kSmemKVSize = size(SmemLayoutKV{}) * 2 * sizeof(Element);
|
| 109 |
+
static constexpr int kSmemSize = Share_Q_K_smem ? std::max(kSmemQSize, kSmemKVSize) : kSmemQSize + kSmemKVSize;
|
| 110 |
+
|
| 111 |
+
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
|
| 112 |
+
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad");
|
| 113 |
+
// Using kBlockKSmem here is 6-10% faster than kBlockKGmem for d=128 because of bank conflicts.
|
| 114 |
+
// For example, for d=128, smem is split into 2 "pages", each page takes care of columns
|
| 115 |
+
// 0-63 and 64-127. If we have 16 threads per row for gmem read, when we write to smem,
|
| 116 |
+
// thread 0 - 7 will write to the first page and thread 8 - 15 will write to the second page,
|
| 117 |
+
// to the same banks.
|
| 118 |
+
static constexpr int kGmemThreadsPerRow = kBlockKSmem / kGmemElemsPerLoad;
|
| 119 |
+
static_assert(kNThreads % kGmemThreadsPerRow == 0, "kNThreads must be a multiple of kGmemThreadsPerRow");
|
| 120 |
+
using GmemLayoutAtom = Layout<Shape <Int<kNThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
|
| 121 |
+
Stride<Int<kGmemThreadsPerRow>, _1>>;
|
| 122 |
+
|
| 123 |
+
// We use CACHEGLOBAL instead of CACHEALWAYS for both Q and K/V, since we won't be reading
|
| 124 |
+
// from the same address by the same threadblock. This is slightly faster.
|
| 125 |
+
using Gmem_copy_struct = std::conditional_t<
|
| 126 |
+
Has_cp_async,
|
| 127 |
+
SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>,
|
| 128 |
+
DefaultCopy
|
| 129 |
+
>;
|
| 130 |
+
using GmemTiledCopyQKV = decltype(
|
| 131 |
+
make_tiled_copy(Copy_Atom<Gmem_copy_struct, Element>{},
|
| 132 |
+
GmemLayoutAtom{},
|
| 133 |
+
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per read
|
| 134 |
+
using GmemTiledCopyO = decltype(
|
| 135 |
+
make_tiled_copy(Copy_Atom<DefaultCopy, Element>{},
|
| 136 |
+
GmemLayoutAtom{},
|
| 137 |
+
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per store
|
| 138 |
+
|
| 139 |
+
using GmemLayoutAtomOaccum = std::conditional_t<
|
| 140 |
+
kBlockKSmem == 32,
|
| 141 |
+
Layout<Shape <_16, _8>, // Thread layout, 8 threads per row
|
| 142 |
+
Stride< _8, _1>>,
|
| 143 |
+
Layout<Shape <_8, _16>, // Thread layout, 16 threads per row
|
| 144 |
+
Stride< _16, _1>>
|
| 145 |
+
>;
|
| 146 |
+
using GmemTiledCopyOaccum = decltype(
|
| 147 |
+
make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
|
| 148 |
+
GmemLayoutAtomOaccum{},
|
| 149 |
+
Layout<Shape < _1, _4>>{})); // Val layout, 4 vals per store
|
| 150 |
+
using GmemLayoutAtomRotcossin = GmemLayoutAtom;
|
| 151 |
+
using GmemTiledCopyRotcossin = decltype(
|
| 152 |
+
make_tiled_copy(Copy_Atom<UniversalCopy<uint64_t>, Element>{},
|
| 153 |
+
GmemLayoutAtomRotcossin{},
|
| 154 |
+
Layout<Shape < _1, _4>>{})); // Val layout, 4 vals per load
|
| 155 |
+
using GmemTiledCopyRotcossinCont = decltype(
|
| 156 |
+
make_tiled_copy(Copy_Atom<DefaultCopy, Element>{},
|
| 157 |
+
GmemLayoutAtomRotcossin{},
|
| 158 |
+
Layout<Shape < _1, _8>>{})); // Val layout, 8 vals per load
|
| 159 |
+
};
|
| 160 |
+
|
| 161 |
+
// Is_V_in_regs is an option to reduce smem usage, but will increase register pressue.
|
| 162 |
+
// No_double_buffer is another option to reduce smem usage, but will slow things down.
|
| 163 |
+
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_,
|
| 164 |
+
int AtomLayoutMSdP_=1, int AtomLayoutNdKV=2, int AtomLayoutMdQ=2,
|
| 165 |
+
bool Is_V_in_regs_=false, bool No_double_buffer_=false, typename elem_type=cutlass::half_t,
|
| 166 |
+
typename Base=Flash_kernel_traits<kHeadDim_, kBlockM_, kBlockN_, kNWarps_, elem_type> >
|
| 167 |
+
struct Flash_bwd_kernel_traits : public Base {
|
| 168 |
+
using Element = typename Base::Element;
|
| 169 |
+
using ElementAccum = typename Base::ElementAccum;
|
| 170 |
+
using index_t = typename Base::index_t;
|
| 171 |
+
static constexpr bool Has_cp_async = Base::Has_cp_async;
|
| 172 |
+
using SmemCopyAtom = typename Base::SmemCopyAtom;
|
| 173 |
+
using SmemCopyAtomTransposed = typename Base::SmemCopyAtomTransposed;
|
| 174 |
+
|
| 175 |
+
static constexpr bool Is_V_in_regs = Is_V_in_regs_;
|
| 176 |
+
static constexpr bool No_double_buffer = No_double_buffer_;
|
| 177 |
+
|
| 178 |
+
// The number of threads.
|
| 179 |
+
static constexpr int kNWarps = kNWarps_;
|
| 180 |
+
static constexpr int kNThreads = kNWarps * 32;
|
| 181 |
+
|
| 182 |
+
static constexpr int kBlockM = kBlockM_;
|
| 183 |
+
static constexpr int kBlockN = kBlockN_;
|
| 184 |
+
static constexpr int kHeadDim = kHeadDim_;
|
| 185 |
+
static_assert(kHeadDim % 32 == 0);
|
| 186 |
+
static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : 32;
|
| 187 |
+
static constexpr int kBlockKGmem = kHeadDim % 128 == 0 ? 128 : (kHeadDim % 64 == 0 ? 64 : 32);
|
| 188 |
+
static constexpr int kSwizzle = kBlockKSmem == 32 ? 2 : 3;
|
| 189 |
+
|
| 190 |
+
static constexpr int AtomLayoutMSdP = AtomLayoutMSdP_;
|
| 191 |
+
static_assert(kNWarps % AtomLayoutMSdP == 0);
|
| 192 |
+
static_assert(kNWarps % AtomLayoutNdKV == 0);
|
| 193 |
+
static_assert(kNWarps % AtomLayoutMdQ == 0);
|
| 194 |
+
|
| 195 |
+
using TiledMmaSdP = TiledMMA<
|
| 196 |
+
typename Base::MMA_Atom_Arch,
|
| 197 |
+
Layout<Shape<Int<AtomLayoutMSdP>, Int<kNWarps / AtomLayoutMSdP>, _1>>,
|
| 198 |
+
Tile<Int<16 * AtomLayoutMSdP>, Int<16 * kNWarps / AtomLayoutMSdP>, _16>>;
|
| 199 |
+
|
| 200 |
+
using TiledMmadKV = TiledMMA<
|
| 201 |
+
typename Base::MMA_Atom_Arch,
|
| 202 |
+
Layout<Shape<Int<AtomLayoutNdKV>, Int<kNWarps / AtomLayoutNdKV>, _1>>,
|
| 203 |
+
Tile<Int<16 * AtomLayoutNdKV>, Int<16 * kNWarps / AtomLayoutNdKV>, _16>>;
|
| 204 |
+
|
| 205 |
+
using TiledMmadQ = TiledMMA<
|
| 206 |
+
typename Base::MMA_Atom_Arch,
|
| 207 |
+
Layout<Shape<Int<AtomLayoutMdQ>, Int<kNWarps / AtomLayoutMdQ>, _1>>, // 2x4x1 or 4x2x1 thread group
|
| 208 |
+
Tile<Int<16 * AtomLayoutMdQ>, Int<16 * kNWarps / AtomLayoutMdQ>, _16>>;
|
| 209 |
+
|
| 210 |
+
using SmemLayoutAtomQdO = decltype(
|
| 211 |
+
composition(Swizzle<kSwizzle, 3, 3>{},
|
| 212 |
+
Layout<Shape<_8, Int<kBlockKSmem>>,
|
| 213 |
+
Stride<Int<kBlockKSmem>, _1>>{}));
|
| 214 |
+
using SmemLayoutQdO = decltype(tile_to_shape(
|
| 215 |
+
SmemLayoutAtomQdO{},
|
| 216 |
+
make_shape(Int<kBlockM>{}, Int<kHeadDim>{})));
|
| 217 |
+
|
| 218 |
+
using SmemLayoutAtomKV = decltype(
|
| 219 |
+
composition(Swizzle<kSwizzle, 3, 3>{},
|
| 220 |
+
Layout<Shape<Int<kBlockM / kNWarps>, Int<kBlockKSmem>>,
|
| 221 |
+
Stride<Int<kBlockKSmem>, _1>>{}));
|
| 222 |
+
using SmemLayoutKV = decltype(tile_to_shape(
|
| 223 |
+
// SmemLayoutAtomQdO{},
|
| 224 |
+
SmemLayoutAtomKV{},
|
| 225 |
+
make_shape(Int<kBlockN>{}, Int<kHeadDim>{})));
|
| 226 |
+
|
| 227 |
+
using SmemLayoutKtransposed = decltype(
|
| 228 |
+
composition(SmemLayoutKV{}, make_layout(Shape<Int<kHeadDim>, Int<kBlockN>>{}, GenRowMajor{})));
|
| 229 |
+
using SmemLayoutKtransposedNoSwizzle = decltype(get_nonswizzle_portion(SmemLayoutKtransposed{}));
|
| 230 |
+
|
| 231 |
+
// TODO: generalize to other values of kBlockN
|
| 232 |
+
// TODO: what should be the Swizzle here? 3 is faster than 1, and 1 is faster than 2
|
| 233 |
+
// static constexpr int kPBlockN = kBlockN;
|
| 234 |
+
// Temporarily disabling this for hdim 256 on sm86 and sm89
|
| 235 |
+
// static_assert(kBlockN >= 64);
|
| 236 |
+
static_assert(kBlockN >= 32);
|
| 237 |
+
// TD [2023-03-19]: Idk why kPBlockN = 16 and kSwizzlePdS=3 is the fastest.
|
| 238 |
+
static constexpr int kPBlockN = kBlockN >= 64 ? 64 : 32;
|
| 239 |
+
static_assert(kPBlockN == 16 || kPBlockN == 32 || kPBlockN == 64);
|
| 240 |
+
// static constexpr int kSwizzlePdS = kPBlockN == 16 ? 1 : (kPBlockN == 32 ? 2 : 3);
|
| 241 |
+
static constexpr int kSwizzlePdS = 3;
|
| 242 |
+
using SmemLayoutAtomPdS = decltype(
|
| 243 |
+
composition(Swizzle<kSwizzlePdS, 3, 3>{},
|
| 244 |
+
Layout<Shape<Int<kBlockM>, Int<kPBlockN>>,
|
| 245 |
+
Stride<Int<kPBlockN>, _1>>{}));
|
| 246 |
+
using SmemLayoutPdS = decltype(tile_to_shape(
|
| 247 |
+
SmemLayoutAtomPdS{},
|
| 248 |
+
make_shape(Int<kBlockM>{}, Int<kBlockN>{})));
|
| 249 |
+
using SmemLayoutPdStransposed = decltype(
|
| 250 |
+
composition(SmemLayoutPdS{}, make_layout(Shape<Int<kBlockN>, Int<kBlockM>>{}, GenRowMajor{})));
|
| 251 |
+
using SmemLayoutPdStransposedNoSwizzle = decltype(get_nonswizzle_portion(SmemLayoutPdStransposed{}));
|
| 252 |
+
|
| 253 |
+
using SmemCopyAtomPdS = Copy_Atom<DefaultCopy, elem_type>;
|
| 254 |
+
|
| 255 |
+
using SmemLayoutQdOtransposed = decltype(
|
| 256 |
+
composition(SmemLayoutQdO{}, make_layout(Shape<Int<kHeadDim>, Int<kBlockM>>{}, GenRowMajor{})));
|
| 257 |
+
using SmemLayoutQdOtransposedNoSwizzle = decltype(get_nonswizzle_portion(SmemLayoutQdOtransposed{}));
|
| 258 |
+
|
| 259 |
+
using SmemLayoutAtomdKV = decltype(
|
| 260 |
+
composition(Swizzle<kSwizzle, 3, 3>{},
|
| 261 |
+
Layout<Shape<_8, Int<kBlockKSmem>>,
|
| 262 |
+
Stride<Int<kBlockKSmem>, _1>>{}));
|
| 263 |
+
using SmemLayoutdKV = decltype(tile_to_shape(
|
| 264 |
+
SmemLayoutAtomdKV{},
|
| 265 |
+
make_shape(Int<kBlockN>{}, Int<kHeadDim>{})));
|
| 266 |
+
using SmemCopyAtomdKV = Copy_Atom<DefaultCopy, elem_type>;
|
| 267 |
+
|
| 268 |
+
using SmemLayoutAtomdQ = decltype(
|
| 269 |
+
composition(Swizzle<kSwizzle, 3, 3>{},
|
| 270 |
+
Layout<Shape<_8, Int<kBlockKSmem>>,
|
| 271 |
+
Stride<Int<kBlockKSmem>, _1>>{}));
|
| 272 |
+
using SmemLayoutdQ = decltype(tile_to_shape(
|
| 273 |
+
SmemLayoutAtomdQ{},
|
| 274 |
+
make_shape(Int<kBlockM>{}, Int<kHeadDim>{})));
|
| 275 |
+
using SmemCopyAtomdQ = Copy_Atom<DefaultCopy, elem_type>;
|
| 276 |
+
|
| 277 |
+
// Double buffer for sQ
|
| 278 |
+
static constexpr int kSmemQdOSize = size(SmemLayoutQdO{}) * (No_double_buffer ? 2 : 3) * sizeof(Element);
|
| 279 |
+
static constexpr int kSmemKVSize = size(SmemLayoutKV{}) * 2 * sizeof(Element);
|
| 280 |
+
static constexpr int kSmemdSSize = size(SmemLayoutPdS{}) * sizeof(Element);
|
| 281 |
+
static constexpr int kSmemPSize = size(SmemLayoutPdS{}) * sizeof(Element);
|
| 282 |
+
static constexpr int kSmemdQSize = size(SmemLayoutdQ{}) * sizeof(Element);
|
| 283 |
+
static constexpr int kSmemSize = kSmemQdOSize
|
| 284 |
+
+ (!Is_V_in_regs
|
| 285 |
+
? kSmemKVSize + kSmemdSSize + std::max(kSmemPSize, kSmemdQSize)
|
| 286 |
+
: std::max(kSmemKVSize, kSmemKVSize / 2 + kSmemdSSize + std::max(kSmemPSize, kSmemdQSize)));
|
| 287 |
+
static constexpr int kSmemSize1colblock = kSmemQdOSize
|
| 288 |
+
+ (!Is_V_in_regs
|
| 289 |
+
? kSmemKVSize + kSmemdSSize + kSmemPSize
|
| 290 |
+
: std::max(kSmemKVSize, kSmemKVSize / 2 + kSmemdSSize + kSmemPSize));
|
| 291 |
+
|
| 292 |
+
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
|
| 293 |
+
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad");
|
| 294 |
+
// Using kBlockKSmem instead of kHeadDim here to avoid bank conflicts, but doesn't seem
|
| 295 |
+
// to affect speed in practice.
|
| 296 |
+
static constexpr int kGmemThreadsPerRow = kBlockKSmem / kGmemElemsPerLoad;
|
| 297 |
+
static_assert(kNThreads % kGmemThreadsPerRow == 0, "kNThreads must be a multiple of kGmemThreadsPerRow");
|
| 298 |
+
using GmemLayoutAtom = Layout<Shape <Int<kNThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
|
| 299 |
+
Stride<Int<kGmemThreadsPerRow>, _1>>;
|
| 300 |
+
|
| 301 |
+
// We use CACHEGLOBAL instead of CACHEALWAYS for both Q and K/V, since we won't be reading
|
| 302 |
+
// from the same address by the same threadblock. This is slightly faster.
|
| 303 |
+
using Gmem_copy_struct = std::conditional_t<
|
| 304 |
+
Has_cp_async,
|
| 305 |
+
SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>,
|
| 306 |
+
DefaultCopy
|
| 307 |
+
>;
|
| 308 |
+
using GmemTiledCopyQKV = decltype(
|
| 309 |
+
make_tiled_copy(Copy_Atom<Gmem_copy_struct, elem_type>{},
|
| 310 |
+
GmemLayoutAtom{},
|
| 311 |
+
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per read
|
| 312 |
+
using GmemTiledCopydO = decltype(
|
| 313 |
+
make_tiled_copy(Copy_Atom<DefaultCopy, elem_type>{},
|
| 314 |
+
GmemLayoutAtom{},
|
| 315 |
+
Layout<Shape < _1, _8>>{})); // Val layout, 8 vals per store
|
| 316 |
+
using GmemTiledCopydKV = decltype(
|
| 317 |
+
make_tiled_copy(Copy_Atom<DefaultCopy, elem_type>{},
|
| 318 |
+
GmemLayoutAtom{},
|
| 319 |
+
Layout<Shape < _1, _8>>{})); // Val layout, 8 vals per store
|
| 320 |
+
using GmemTiledCopydQ = decltype(
|
| 321 |
+
make_tiled_copy(Copy_Atom<DefaultCopy, elem_type>{},
|
| 322 |
+
GmemLayoutAtom{},
|
| 323 |
+
Layout<Shape < _1, _8>>{})); // Val layout, 8 vals per store
|
| 324 |
+
using GmemLayoutAtomdQaccum = std::conditional_t<
|
| 325 |
+
kBlockKSmem == 32,
|
| 326 |
+
Layout<Shape <_32, _8>, // Thread layout, 8 threads per row
|
| 327 |
+
Stride< _8, _1>>,
|
| 328 |
+
Layout<Shape <_16, _16>, // Thread layout, 16 threads per row
|
| 329 |
+
Stride< _16, _1>>
|
| 330 |
+
>;
|
| 331 |
+
using GmemTiledCopydQaccum = decltype(
|
| 332 |
+
make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
|
| 333 |
+
GmemLayoutAtomdQaccum{},
|
| 334 |
+
Layout<Shape < _1, _4>>{})); // Val layout, 4 vals per store
|
| 335 |
+
|
| 336 |
+
using GmemTiledCopydQaccumAtomicAdd = decltype(
|
| 337 |
+
make_tiled_copy(Copy_Atom<DefaultCopy, ElementAccum>{},
|
| 338 |
+
Layout<Shape <_8, _32>, // Thread layout, 8 threads per row
|
| 339 |
+
Stride<_32, _1>>{},
|
| 340 |
+
Layout<Shape < _1, _1>>{})); // Val layout, 1 val per store
|
| 341 |
+
|
| 342 |
+
};
|
| 343 |
+
|
| 344 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
flash-attention/csrc/flash_attn/src/mask.h
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/******************************************************************************
|
| 2 |
+
* Copyright (c) 2024, Tri Dao.
|
| 3 |
+
******************************************************************************/
|
| 4 |
+
|
| 5 |
+
#pragma once
|
| 6 |
+
|
| 7 |
+
#include <cute/tensor.hpp>
|
| 8 |
+
|
| 9 |
+
namespace flash {
|
| 10 |
+
|
| 11 |
+
using namespace cute;
|
| 12 |
+
|
| 13 |
+
template <typename Engine, typename Layout>
|
| 14 |
+
__forceinline__ __device__ void apply_mask(Tensor<Engine, Layout> &tensor, const int max_seqlen_k,
|
| 15 |
+
const int col_idx_offset_ = 0) {
|
| 16 |
+
// tensor has shape (nrow=(2, MMA_M), ncol=(2, MMA_N))
|
| 17 |
+
static_assert(Layout::rank == 2, "Only support 2D Tensor");
|
| 18 |
+
const int lane_id = threadIdx.x % 32;
|
| 19 |
+
const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
|
| 20 |
+
#pragma unroll
|
| 21 |
+
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
|
| 22 |
+
const int col_idx_base = col_idx_offset + nj * 8;
|
| 23 |
+
#pragma unroll
|
| 24 |
+
for (int j = 0; j < size<1, 0>(tensor); ++j) {
|
| 25 |
+
const int col_idx = col_idx_base + j;
|
| 26 |
+
if (col_idx >= max_seqlen_k) {
|
| 27 |
+
// Without the "make_coord" we get wrong results
|
| 28 |
+
#pragma unroll
|
| 29 |
+
for (int mi = 0; mi < size<0>(tensor); ++mi) {
|
| 30 |
+
tensor(mi, make_coord(j, nj)) = -INFINITY;
|
| 31 |
+
}
|
| 32 |
+
}
|
| 33 |
+
}
|
| 34 |
+
}
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
template <bool HasWSLeft=true, typename Engine, typename Layout>
|
| 38 |
+
__forceinline__ __device__ void apply_mask_local(Tensor<Engine, Layout> &tensor, const int col_idx_offset_,
|
| 39 |
+
const int max_seqlen_k, const int row_idx_offset,
|
| 40 |
+
const int max_seqlen_q, const int warp_row_stride,
|
| 41 |
+
const int window_size_left, const int window_size_right) {
|
| 42 |
+
// tensor has shape (nrow=(2, MMA_M), ncol=(2, MMA_N))
|
| 43 |
+
static_assert(Layout::rank == 2, "Only support 2D Tensor");
|
| 44 |
+
const int lane_id = threadIdx.x % 32;
|
| 45 |
+
const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
|
| 46 |
+
#pragma unroll
|
| 47 |
+
for (int mi = 0; mi < size<0, 1>(tensor); ++mi) {
|
| 48 |
+
const int row_idx_base = row_idx_offset + mi * warp_row_stride;
|
| 49 |
+
#pragma unroll
|
| 50 |
+
for (int i = 0; i < size<0, 0>(tensor); ++i) {
|
| 51 |
+
const int row_idx = row_idx_base + i * 8;
|
| 52 |
+
const int col_idx_limit_left = std::max(0, row_idx + max_seqlen_k - max_seqlen_q - window_size_left);
|
| 53 |
+
const int col_idx_limit_right = std::min(max_seqlen_k, row_idx + 1 + max_seqlen_k - max_seqlen_q + window_size_right);
|
| 54 |
+
#pragma unroll
|
| 55 |
+
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
|
| 56 |
+
const int col_idx_base = col_idx_offset + nj * 8;
|
| 57 |
+
#pragma unroll
|
| 58 |
+
for (int j = 0; j < size<1, 0>(tensor); ++j) {
|
| 59 |
+
const int col_idx = col_idx_base + j;
|
| 60 |
+
if (col_idx >= col_idx_limit_right || (HasWSLeft && col_idx < col_idx_limit_left)) {
|
| 61 |
+
tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY;
|
| 62 |
+
}
|
| 63 |
+
}
|
| 64 |
+
}
|
| 65 |
+
// if (cute::thread0()) {
|
| 66 |
+
// printf("mi = %d, i = %d, row_idx = %d, max_seqlen_k = %d\n", mi, i, row_idx, max_seqlen_k);
|
| 67 |
+
// print(tensor(make_coord(i, mi), _));
|
| 68 |
+
// // print(tensor(_, j + nj * size<1, 0>(tensor)));
|
| 69 |
+
// }
|
| 70 |
+
}
|
| 71 |
+
}
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
template <typename Engine, typename Layout>
|
| 75 |
+
__forceinline__ __device__ void apply_mask_causal(Tensor<Engine, Layout> &tensor, const int col_idx_offset_,
|
| 76 |
+
const int max_seqlen_k, const int row_idx_offset,
|
| 77 |
+
const int max_seqlen_q, const int warp_row_stride) {
|
| 78 |
+
// Causal masking is equivalent to local masking with window_size_left = infinity and window_size_right = 0
|
| 79 |
+
apply_mask_local</*HasWSLeft=*/false>(tensor, col_idx_offset_, max_seqlen_k, row_idx_offset,
|
| 80 |
+
max_seqlen_q, warp_row_stride, -1, 0);
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
template <typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
| 84 |
+
__forceinline__ __device__ void apply_mask_causal_w_idx(
|
| 85 |
+
Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &idx_rowcol,
|
| 86 |
+
const int col_idx_offset_, const int max_seqlen_k, const int row_idx_offset)
|
| 87 |
+
{
|
| 88 |
+
// tensor has shape (nrow=(2, MMA_M), ncol=(2, MMA_N))
|
| 89 |
+
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
|
| 90 |
+
static_assert(Layout1::rank == 2, "Only support 2D Tensor");
|
| 91 |
+
CUTE_STATIC_ASSERT_V(size<0>(tensor) == size<0>(idx_rowcol));
|
| 92 |
+
CUTE_STATIC_ASSERT_V(size<1>(tensor) == size<1>(idx_rowcol));
|
| 93 |
+
#pragma unroll
|
| 94 |
+
for (int mi = 0; mi < size<0>(tensor); ++mi) {
|
| 95 |
+
const int col_idx_limit = std::min(max_seqlen_k, 1 + row_idx_offset + get<0>(idx_rowcol(mi, 0)));
|
| 96 |
+
#pragma unroll
|
| 97 |
+
for (int ni = 0; ni < size<1, 1>(tensor); ++ni) {
|
| 98 |
+
if (col_idx_offset_ + get<1>(idx_rowcol(0, ni)) >= col_idx_limit) {
|
| 99 |
+
tensor(mi, ni) = -INFINITY;
|
| 100 |
+
}
|
| 101 |
+
}
|
| 102 |
+
// if (cute::thread0()) {
|
| 103 |
+
// printf("ni = %d, j = %d, col_idx = %d, max_seqlen_k = %d\n", ni, j, col_idx, max_seqlen_k);
|
| 104 |
+
// print(tensor(_, make_coord(j, ni)));
|
| 105 |
+
// // print(tensor(_, j + ni * size<1, 0>(tensor)));
|
| 106 |
+
// }
|
| 107 |
+
}
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
template <bool Is_causal, bool Is_local, bool Has_alibi>
|
| 111 |
+
struct Mask {
|
| 112 |
+
|
| 113 |
+
const int max_seqlen_k, max_seqlen_q;
|
| 114 |
+
const int window_size_left, window_size_right;
|
| 115 |
+
const float alibi_slope;
|
| 116 |
+
|
| 117 |
+
__forceinline__ __device__ Mask(const int max_seqlen_k, const int max_seqlen_q,
|
| 118 |
+
const int window_size_left, const int window_size_right,
|
| 119 |
+
const float alibi_slope=0.f)
|
| 120 |
+
: max_seqlen_k(max_seqlen_k)
|
| 121 |
+
, max_seqlen_q(max_seqlen_q)
|
| 122 |
+
, window_size_left(window_size_left)
|
| 123 |
+
, window_size_right(window_size_right)
|
| 124 |
+
, alibi_slope(!Has_alibi ? 0.0 : alibi_slope) {
|
| 125 |
+
};
|
| 126 |
+
|
| 127 |
+
// Causal_mask: whether this particular iteration needs causal masking
|
| 128 |
+
template <bool Causal_mask=false, bool Is_even_MN=true, typename Engine, typename Layout>
|
| 129 |
+
__forceinline__ __device__ void apply_mask(Tensor<Engine, Layout> &tensor_,
|
| 130 |
+
const int col_idx_offset_,
|
| 131 |
+
const int row_idx_offset,
|
| 132 |
+
const int warp_row_stride) {
|
| 133 |
+
static_assert(!(Causal_mask && Is_local), "Cannot be both causal and local");
|
| 134 |
+
static_assert(Layout::rank == 3, "Only support 3D Tensor");
|
| 135 |
+
static_assert(decltype(size<0>(tensor_))::value == 4, "First dimension must be 4");
|
| 136 |
+
static constexpr bool Need_masking = Has_alibi || Causal_mask || Is_local || !Is_even_MN;
|
| 137 |
+
// if (cute::thread0()) { printf("Has_alibi = %d, Causal_mask=%d, Is_local=%d, Is_even_MN = %d, Need_masking = %d\n", Has_alibi, Causal_mask, Is_local, Is_even_MN, Need_masking); }
|
| 138 |
+
if constexpr (Need_masking) {
|
| 139 |
+
// Reshape tensor_ from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
|
| 140 |
+
Tensor tensor = make_tensor(tensor_.data(), flash::convert_layout_acc_rowcol(tensor_.layout()));
|
| 141 |
+
// Do we need both row and column indices, or just column incides?
|
| 142 |
+
static constexpr bool Col_idx_only = !(Has_alibi && !Is_causal) && !Is_local && !Causal_mask;
|
| 143 |
+
const int lane_id = threadIdx.x % 32;
|
| 144 |
+
const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
|
| 145 |
+
if constexpr (Col_idx_only) {
|
| 146 |
+
#pragma unroll
|
| 147 |
+
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
|
| 148 |
+
const int col_idx_base = col_idx_offset + nj * 8;
|
| 149 |
+
#pragma unroll
|
| 150 |
+
for (int j = 0; j < size<1, 0>(tensor); ++j) {
|
| 151 |
+
const int col_idx = col_idx_base + j;
|
| 152 |
+
#pragma unroll
|
| 153 |
+
for (int mi = 0; mi < size<0>(tensor); ++mi) {
|
| 154 |
+
// No causal, no local
|
| 155 |
+
if constexpr (Has_alibi) {
|
| 156 |
+
tensor(mi, make_coord(j, nj)) += alibi_slope * col_idx;
|
| 157 |
+
}
|
| 158 |
+
if constexpr (!Is_even_MN) {
|
| 159 |
+
if (col_idx >= max_seqlen_k) { tensor(mi, make_coord(j, nj)) = -INFINITY; }
|
| 160 |
+
}
|
| 161 |
+
}
|
| 162 |
+
}
|
| 163 |
+
}
|
| 164 |
+
} else {
|
| 165 |
+
#pragma unroll
|
| 166 |
+
for (int mi = 0; mi < size<0, 1>(tensor); ++mi) {
|
| 167 |
+
const int row_idx_base = row_idx_offset + mi * warp_row_stride;
|
| 168 |
+
#pragma unroll
|
| 169 |
+
for (int i = 0; i < size<0, 0>(tensor); ++i) {
|
| 170 |
+
const int row_idx = row_idx_base + i * 8;
|
| 171 |
+
const int col_idx_limit_left = std::max(0, row_idx + max_seqlen_k - max_seqlen_q - window_size_left);
|
| 172 |
+
const int col_idx_limit_right = std::min(max_seqlen_k, row_idx + 1 + max_seqlen_k - max_seqlen_q + window_size_right);
|
| 173 |
+
#pragma unroll
|
| 174 |
+
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
|
| 175 |
+
const int col_idx_base = col_idx_offset + nj * 8;
|
| 176 |
+
#pragma unroll
|
| 177 |
+
for (int j = 0; j < size<1, 0>(tensor); ++j) {
|
| 178 |
+
const int col_idx = col_idx_base + j;
|
| 179 |
+
if constexpr (Has_alibi) {
|
| 180 |
+
if constexpr (Is_causal) {
|
| 181 |
+
tensor(make_coord(i, mi), make_coord(j, nj)) += alibi_slope * col_idx;
|
| 182 |
+
} else {
|
| 183 |
+
tensor(make_coord(i, mi), make_coord(j, nj)) -= alibi_slope * abs(row_idx + max_seqlen_k - max_seqlen_q - col_idx);
|
| 184 |
+
|
| 185 |
+
}
|
| 186 |
+
}
|
| 187 |
+
if constexpr (Causal_mask) {
|
| 188 |
+
if (col_idx >= col_idx_limit_right) {
|
| 189 |
+
tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY;
|
| 190 |
+
}
|
| 191 |
+
}
|
| 192 |
+
if constexpr (Is_local) {
|
| 193 |
+
if (col_idx >= col_idx_limit_right || col_idx < col_idx_limit_left) {
|
| 194 |
+
tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY;
|
| 195 |
+
}
|
| 196 |
+
}
|
| 197 |
+
if constexpr (!Causal_mask && !Is_local && !Is_even_MN) {
|
| 198 |
+
// Causal and Local already handles MN masking
|
| 199 |
+
if (col_idx >= max_seqlen_k) {
|
| 200 |
+
tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY;
|
| 201 |
+
}
|
| 202 |
+
}
|
| 203 |
+
}
|
| 204 |
+
}
|
| 205 |
+
}
|
| 206 |
+
}
|
| 207 |
+
}
|
| 208 |
+
}
|
| 209 |
+
};
|
| 210 |
+
|
| 211 |
+
};
|
| 212 |
+
|
| 213 |
+
} // namespace flash
|
flash-attention/csrc/flash_attn/src/philox.cuh
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Pytorch also has an implementation of Philox RNG: https://github.com/pytorch/pytorch/blob/8ca3c881db3e3510fcb7725389f6a0633c9b992c/torch/csrc/jit/tensorexpr/cuda_random.h
|
| 2 |
+
#pragma once
|
| 3 |
+
// Philox CUDA.
|
| 4 |
+
|
| 5 |
+
namespace flash {
|
| 6 |
+
|
| 7 |
+
struct ull2 {
|
| 8 |
+
unsigned long long x;
|
| 9 |
+
unsigned long long y;
|
| 10 |
+
};
|
| 11 |
+
|
| 12 |
+
__forceinline__ __device__ uint2 mulhilo32(const unsigned int a, const unsigned int b) {
|
| 13 |
+
uint2 *res;
|
| 14 |
+
unsigned long long tmp;
|
| 15 |
+
asm ("mul.wide.u32 %0, %1, %2;\n\t"
|
| 16 |
+
: "=l"(tmp)
|
| 17 |
+
: "r"(a), "r"(b));
|
| 18 |
+
res = (uint2*)(&tmp);
|
| 19 |
+
return *res;
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
__forceinline__ __device__ uint4 philox_single_round(const uint4 ctr, const uint2 key) {
|
| 23 |
+
constexpr unsigned long kPhiloxSA = 0xD2511F53;
|
| 24 |
+
constexpr unsigned long kPhiloxSB = 0xCD9E8D57;
|
| 25 |
+
uint2 res0 = mulhilo32(kPhiloxSA, ctr.x);
|
| 26 |
+
uint2 res1 = mulhilo32(kPhiloxSB, ctr.z);
|
| 27 |
+
uint4 ret = {res1.y ^ ctr.y ^ key.x, res1.x, res0.y ^ ctr.w ^ key.y, res0.x};
|
| 28 |
+
return ret;
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
__forceinline__ __device__ uint4 philox(unsigned long long seed,
|
| 32 |
+
unsigned long long subsequence,
|
| 33 |
+
unsigned long long offset) {
|
| 34 |
+
constexpr unsigned long kPhilox10A = 0x9E3779B9;
|
| 35 |
+
constexpr unsigned long kPhilox10B = 0xBB67AE85;
|
| 36 |
+
uint2 key = reinterpret_cast<uint2&>(seed);
|
| 37 |
+
uint4 counter;
|
| 38 |
+
ull2 *tmp = reinterpret_cast<ull2*>(&counter);
|
| 39 |
+
tmp->x = offset;
|
| 40 |
+
tmp->y = subsequence;
|
| 41 |
+
#pragma unroll
|
| 42 |
+
for (int i = 0; i < 6; i++) {
|
| 43 |
+
counter = philox_single_round(counter, key);
|
| 44 |
+
key.x += (kPhilox10A);
|
| 45 |
+
key.y += (kPhilox10B);
|
| 46 |
+
}
|
| 47 |
+
uint4 output = philox_single_round(counter, key);
|
| 48 |
+
return output;
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
} // namespace flash
|
flash-attention/csrc/flash_attn/src/rotary.h
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/******************************************************************************
|
| 2 |
+
* Copyright (c) 2024, Tri Dao.
|
| 3 |
+
******************************************************************************/
|
| 4 |
+
|
| 5 |
+
#pragma once
|
| 6 |
+
|
| 7 |
+
#include <cute/tensor.hpp>
|
| 8 |
+
|
| 9 |
+
#include "utils.h"
|
| 10 |
+
|
| 11 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 12 |
+
|
| 13 |
+
namespace flash {
|
| 14 |
+
|
| 15 |
+
using namespace cute;
|
| 16 |
+
|
| 17 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 18 |
+
|
| 19 |
+
template <bool Is_even_K=true, bool Clear_OOB_K=true,
|
| 20 |
+
typename Engine0, typename Layout0, typename Engine1, typename Layout1,
|
| 21 |
+
typename Engine2, typename Layout2, typename Engine3, typename Layout3>
|
| 22 |
+
__forceinline__ __device__ void copy_rotary_interleaved(Tensor<Engine0, Layout0> const &S,
|
| 23 |
+
Tensor<Engine1, Layout1> &D,
|
| 24 |
+
Tensor<Engine2, Layout2> const &Cos,
|
| 25 |
+
Tensor<Engine2, Layout2> const &Sin,
|
| 26 |
+
Tensor<Engine3, Layout3> const &identity_MN,
|
| 27 |
+
const int max_MN, const int min_MN,
|
| 28 |
+
const int dim, const int rotary_dim) {
|
| 29 |
+
CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
|
| 30 |
+
CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
|
| 31 |
+
CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D)); // MMA
|
| 32 |
+
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D)); // MMA_M
|
| 33 |
+
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D)); // MMA_K
|
| 34 |
+
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(Cos)); // MMA_M
|
| 35 |
+
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(Cos)); // MMA_K
|
| 36 |
+
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(Sin)); // MMA_M
|
| 37 |
+
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(Sin)); // MMA_K
|
| 38 |
+
CUTE_STATIC_ASSERT_V(size<0>(Cos) == size<0>(Sin)); // MMA_K
|
| 39 |
+
static_assert(decltype(size<0>(S))::value == decltype(size<0>(Cos))::value * 2);
|
| 40 |
+
static_assert(decltype(size<0>(Cos))::value % 2 == 0); // Since we do fast conversion from fp16/bf16 to fp32
|
| 41 |
+
Tensor rCos = make_fragment_like(Cos);
|
| 42 |
+
Tensor rSin = make_fragment_like(Sin);
|
| 43 |
+
Tensor rS = make_fragment_like(S);
|
| 44 |
+
#pragma unroll
|
| 45 |
+
for (int m = 0; m < size<1>(S); ++m) {
|
| 46 |
+
if (get<0>(identity_MN(0, m, 0)) >= min_MN && get<0>(identity_MN(0, m, 0)) < max_MN) {
|
| 47 |
+
#pragma unroll
|
| 48 |
+
for (int k = 0; k < size<2>(S); ++k) {
|
| 49 |
+
if (Is_even_K || get<1>(identity_MN(0, 0, k)) < dim) {
|
| 50 |
+
cute::copy(S(_, m, k), rS(_, m, k));
|
| 51 |
+
if (get<1>(identity_MN(0, 0, k)) < rotary_dim) {
|
| 52 |
+
cute::copy(Cos(_, m, k), rCos(_, m, k));
|
| 53 |
+
cute::copy(Sin(_, m, k), rSin(_, m, k));
|
| 54 |
+
Tensor S_fp32 = convert_type<float>(rS(_, m, k));
|
| 55 |
+
Tensor cos_fp32 = convert_type<float>(rCos(_, m, k));
|
| 56 |
+
Tensor sin_fp32 = convert_type<float>(rSin(_, m, k));
|
| 57 |
+
#pragma unroll
|
| 58 |
+
for (int i = 0; i < size<0>(rS) / 2; ++i) {
|
| 59 |
+
float real = S_fp32(2 * i) * cos_fp32(i) - S_fp32(2 * i + 1) * sin_fp32(i);
|
| 60 |
+
float imag = S_fp32(2 * i) * sin_fp32(i) + S_fp32(2 * i + 1) * cos_fp32(i);
|
| 61 |
+
S_fp32(2 * i) = real;
|
| 62 |
+
S_fp32(2 * i + 1) = imag;
|
| 63 |
+
}
|
| 64 |
+
// Idk but I need to copy for the convert_type to work
|
| 65 |
+
Tensor S_fp32_copy = make_fragment_like(S_fp32);
|
| 66 |
+
cute::copy(S_fp32, S_fp32_copy);
|
| 67 |
+
using T = typename Engine0::value_type;
|
| 68 |
+
Tensor S_og_type = convert_type<T>(S_fp32_copy);
|
| 69 |
+
cute::copy(S_og_type, rS(_, m, k));
|
| 70 |
+
}
|
| 71 |
+
cute::copy(rS(_, m, k), D(_, m, k));
|
| 72 |
+
} else if (Clear_OOB_K) {
|
| 73 |
+
cute::clear(D(_, m, k));
|
| 74 |
+
}
|
| 75 |
+
}
|
| 76 |
+
}
|
| 77 |
+
}
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 81 |
+
|
| 82 |
+
template <bool Is_even_K=true, bool Clear_OOB_K=true,
|
| 83 |
+
typename Engine0, typename Layout0, typename Engine1, typename Layout1,
|
| 84 |
+
typename Engine2, typename Layout2, typename Engine3, typename Layout3>
|
| 85 |
+
__forceinline__ __device__ void copy_rotary_contiguous(Tensor<Engine0, Layout0> const &S,
|
| 86 |
+
Tensor<Engine1, Layout1> &D,
|
| 87 |
+
Tensor<Engine2, Layout2> const &Cos,
|
| 88 |
+
Tensor<Engine2, Layout2> const &Sin,
|
| 89 |
+
Tensor<Engine3, Layout3> const &identity_MN,
|
| 90 |
+
const int max_MN, const int min_MN,
|
| 91 |
+
const int dim, const int rotary_dim) {
|
| 92 |
+
CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
|
| 93 |
+
CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
|
| 94 |
+
CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D)); // MMA
|
| 95 |
+
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D)); // MMA_M
|
| 96 |
+
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D)); // MMA_K
|
| 97 |
+
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(Cos)); // MMA_M
|
| 98 |
+
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(Cos)); // MMA_K
|
| 99 |
+
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(Sin)); // MMA_M
|
| 100 |
+
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(Sin)); // MMA_K
|
| 101 |
+
CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(Cos)); // MMA
|
| 102 |
+
CUTE_STATIC_ASSERT_V(size<0>(Cos) == size<0>(Sin));
|
| 103 |
+
static_assert(decltype(size<0>(Cos))::value % 2 == 0); // Since we do fast conversion from fp16/bf16 to fp32
|
| 104 |
+
Tensor rCos = make_fragment_like(Cos);
|
| 105 |
+
Tensor rSin = make_fragment_like(Sin);
|
| 106 |
+
Tensor rS = make_fragment_like(S);
|
| 107 |
+
Tensor rS_other = make_fragment_like(rS(_, 0, 0));
|
| 108 |
+
#pragma unroll
|
| 109 |
+
for (int m = 0; m < size<1>(S); ++m) {
|
| 110 |
+
if (get<0>(identity_MN(0, m, 0)) >= min_MN && get<0>(identity_MN(0, m, 0)) < max_MN) {
|
| 111 |
+
#pragma unroll
|
| 112 |
+
for (int k = 0; k < size<2>(S); ++k) {
|
| 113 |
+
if (Is_even_K || get<1>(identity_MN(0, 0, k)) < dim) {
|
| 114 |
+
cute::copy(S(_, m, k), rS(_, m, k));
|
| 115 |
+
if (get<1>(identity_MN(0, 0, k)) < rotary_dim) {
|
| 116 |
+
const bool is_left = get<1>(identity_MN(0, 0, k)) < rotary_dim / 2;
|
| 117 |
+
Tensor gS_other = make_tensor(S(_, m, k).data() + (is_left ? rotary_dim / 2 : -rotary_dim / 2), S(_, m, k).layout());
|
| 118 |
+
cute::copy(gS_other, rS_other);
|
| 119 |
+
// if (cute::thread0()) { print_tensor(rS(_, m, k)); print_tensor(rS_other); }
|
| 120 |
+
Tensor gCos = make_tensor(Cos(_, m, k).data() + (is_left ? 0 : -rotary_dim / 2), Cos(_, m, k).layout());
|
| 121 |
+
Tensor gSin = make_tensor(Sin(_, m, k).data() + (is_left ? 0 : -rotary_dim / 2), Sin(_, m, k).layout());
|
| 122 |
+
cute::copy(gCos, rCos(_, m, k));
|
| 123 |
+
cute::copy(gSin, rSin(_, m, k));
|
| 124 |
+
// if (cute::thread0()) { print_tensor(rCos(_, m, k)); print_tensor(rSin(_, m, k)); }
|
| 125 |
+
Tensor S_fp32 = convert_type<float>(rS(_, m, k));
|
| 126 |
+
Tensor S_other_fp32 = convert_type<float>(rS_other);
|
| 127 |
+
Tensor cos_fp32 = convert_type<float>(rCos(_, m, k));
|
| 128 |
+
Tensor sin_fp32 = convert_type<float>(rSin(_, m, k));
|
| 129 |
+
#pragma unroll
|
| 130 |
+
for (int i = 0; i < size<0>(rS); ++i) {
|
| 131 |
+
S_fp32(i) = S_fp32(i) * cos_fp32(i) + S_other_fp32(i) * (is_left ? -sin_fp32(i) : sin_fp32(i));
|
| 132 |
+
}
|
| 133 |
+
// Idk but I need to copy for the convert_type to work
|
| 134 |
+
Tensor S_fp32_copy = make_fragment_like(S_fp32);
|
| 135 |
+
cute::copy(S_fp32, S_fp32_copy);
|
| 136 |
+
using T = typename Engine0::value_type;
|
| 137 |
+
Tensor S_og_type = convert_type<T>(S_fp32_copy);
|
| 138 |
+
cute::copy(S_og_type, rS(_, m, k));
|
| 139 |
+
// if (cute::thread0()) { print_tensor(rS(_, m, k)); }
|
| 140 |
+
}
|
| 141 |
+
cute::copy(rS(_, m, k), D(_, m, k));
|
| 142 |
+
} else if (Clear_OOB_K) {
|
| 143 |
+
cute::clear(D(_, m, k));
|
| 144 |
+
}
|
| 145 |
+
}
|
| 146 |
+
}
|
| 147 |
+
}
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 151 |
+
|
| 152 |
+
} // namespace flash
|
flash-attention/csrc/flash_attn/src/softmax.h
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/******************************************************************************
|
| 2 |
+
* Copyright (c) 2024, Tri Dao.
|
| 3 |
+
******************************************************************************/
|
| 4 |
+
|
| 5 |
+
#pragma once
|
| 6 |
+
|
| 7 |
+
#include <cmath>
|
| 8 |
+
|
| 9 |
+
#include <cute/tensor.hpp>
|
| 10 |
+
|
| 11 |
+
#include <cutlass/numeric_types.h>
|
| 12 |
+
|
| 13 |
+
#include "philox.cuh"
|
| 14 |
+
#include "utils.h"
|
| 15 |
+
|
| 16 |
+
namespace flash {
|
| 17 |
+
|
| 18 |
+
using namespace cute;
|
| 19 |
+
|
| 20 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 21 |
+
|
| 22 |
+
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
|
| 23 |
+
__device__ __forceinline__ void thread_reduce_(Tensor<Engine0, Layout0> const &tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
|
| 24 |
+
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
|
| 25 |
+
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
|
| 26 |
+
CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor));
|
| 27 |
+
#pragma unroll
|
| 28 |
+
for (int mi = 0; mi < size<0>(tensor); mi++) {
|
| 29 |
+
summary(mi) = zero_init ? tensor(mi, 0) : op(summary(mi), tensor(mi, 0));
|
| 30 |
+
#pragma unroll
|
| 31 |
+
for (int ni = 1; ni < size<1>(tensor); ni++) {
|
| 32 |
+
summary(mi) = op(summary(mi), tensor(mi, ni));
|
| 33 |
+
}
|
| 34 |
+
}
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
|
| 38 |
+
__device__ __forceinline__ void quad_allreduce_(Tensor<Engine0, Layout0> &dst, Tensor<Engine1, Layout1> &src, Operator &op) {
|
| 39 |
+
CUTE_STATIC_ASSERT_V(size(dst) == size(src));
|
| 40 |
+
#pragma unroll
|
| 41 |
+
for (int i = 0; i < size(dst); i++){
|
| 42 |
+
dst(i) = Allreduce<4>::run(src(i), op);
|
| 43 |
+
}
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
|
| 47 |
+
__device__ __forceinline__ void reduce_(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
|
| 48 |
+
thread_reduce_<zero_init>(tensor, summary, op);
|
| 49 |
+
quad_allreduce_(summary, summary, op);
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
| 53 |
+
__device__ __forceinline__ void reduce_max(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &max){
|
| 54 |
+
MaxOp<float> max_op;
|
| 55 |
+
reduce_<zero_init>(tensor, max, max_op);
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
| 59 |
+
__device__ __forceinline__ void reduce_sum(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &sum){
|
| 60 |
+
SumOp<float> sum_op;
|
| 61 |
+
thread_reduce_<zero_init>(tensor, sum, sum_op);
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
// Apply the exp to all the elements.
|
| 65 |
+
template <bool Scale_max=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
| 66 |
+
__forceinline__ __device__ void scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &max, const float scale) {
|
| 67 |
+
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
|
| 68 |
+
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
|
| 69 |
+
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
|
| 70 |
+
#pragma unroll
|
| 71 |
+
for (int mi = 0; mi < size<0>(tensor); ++mi) {
|
| 72 |
+
// If max is -inf, then all elements must have been -inf (possibly due to masking).
|
| 73 |
+
// We don't want (-inf - (-inf)) since that would give NaN.
|
| 74 |
+
// If we don't have float around M_LOG2E the multiplication is done in fp64.
|
| 75 |
+
const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * (Scale_max ? scale : float(M_LOG2E));
|
| 76 |
+
#pragma unroll
|
| 77 |
+
for (int ni = 0; ni < size<1>(tensor); ++ni) {
|
| 78 |
+
// Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
|
| 79 |
+
// max * log_2(e)) This allows the compiler to use the ffma
|
| 80 |
+
// instruction instead of fadd and fmul separately.
|
| 81 |
+
// The following macro will disable the use of fma.
|
| 82 |
+
// See: https://github.com/pytorch/pytorch/issues/121558 for more details
|
| 83 |
+
// This macro is set in PyTorch and not FlashAttention
|
| 84 |
+
#ifdef UNFUSE_FMA
|
| 85 |
+
tensor(mi, ni) = exp2f(__fmul_rn(tensor(mi, ni), scale) - max_scaled);
|
| 86 |
+
#else
|
| 87 |
+
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
|
| 88 |
+
#endif
|
| 89 |
+
}
|
| 90 |
+
}
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
// Apply the exp to all the elements.
|
| 94 |
+
template <bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
| 95 |
+
__forceinline__ __device__ void max_scale_exp2_sum(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> &max, Tensor<Engine1, Layout1> &sum, const float scale) {
|
| 96 |
+
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
|
| 97 |
+
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
|
| 98 |
+
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
|
| 99 |
+
#pragma unroll
|
| 100 |
+
for (int mi = 0; mi < size<0>(tensor); ++mi) {
|
| 101 |
+
MaxOp<float> max_op;
|
| 102 |
+
max(mi) = zero_init ? tensor(mi, 0) : max_op(max(mi), tensor(mi, 0));
|
| 103 |
+
#pragma unroll
|
| 104 |
+
for (int ni = 1; ni < size<1>(tensor); ni++) {
|
| 105 |
+
max(mi) = max_op(max(mi), tensor(mi, ni));
|
| 106 |
+
}
|
| 107 |
+
max(mi) = Allreduce<4>::run(max(mi), max_op);
|
| 108 |
+
// If max is -inf, then all elements must have been -inf (possibly due to masking).
|
| 109 |
+
// We don't want (-inf - (-inf)) since that would give NaN.
|
| 110 |
+
const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * scale;
|
| 111 |
+
sum(mi) = 0;
|
| 112 |
+
#pragma unroll
|
| 113 |
+
for (int ni = 0; ni < size<1>(tensor); ++ni) {
|
| 114 |
+
// Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
|
| 115 |
+
// max * log_2(e)) This allows the compiler to use the ffma
|
| 116 |
+
// instruction instead of fadd and fmul separately.
|
| 117 |
+
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
|
| 118 |
+
sum(mi) += tensor(mi, ni);
|
| 119 |
+
}
|
| 120 |
+
SumOp<float> sum_op;
|
| 121 |
+
sum(mi) = Allreduce<4>::run(sum(mi), sum_op);
|
| 122 |
+
}
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 126 |
+
|
| 127 |
+
template <int kNRows>
|
| 128 |
+
struct Softmax {
|
| 129 |
+
|
| 130 |
+
using TensorT = decltype(make_tensor<float>(Shape<Int<kNRows>>{}));
|
| 131 |
+
TensorT row_max, row_sum;
|
| 132 |
+
|
| 133 |
+
__forceinline__ __device__ Softmax() {};
|
| 134 |
+
|
| 135 |
+
template<bool Is_first, bool Check_inf=false, typename Tensor0, typename Tensor1>
|
| 136 |
+
__forceinline__ __device__ void softmax_rescale_o(Tensor0 &acc_s, Tensor1 &acc_o, float softmax_scale_log2) {
|
| 137 |
+
// Reshape acc_s from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
|
| 138 |
+
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
|
| 139 |
+
static_assert(decltype(size<0>(scores))::value == kNRows);
|
| 140 |
+
if (Is_first) {
|
| 141 |
+
flash::template reduce_max</*zero_init=*/true>(scores, row_max);
|
| 142 |
+
flash::scale_apply_exp2(scores, row_max, softmax_scale_log2);
|
| 143 |
+
flash::reduce_sum</*zero_init=*/true>(scores, row_sum);
|
| 144 |
+
} else {
|
| 145 |
+
Tensor scores_max_prev = make_fragment_like(row_max);
|
| 146 |
+
cute::copy(row_max, scores_max_prev);
|
| 147 |
+
flash::template reduce_max</*zero_init=*/false>(scores, row_max);
|
| 148 |
+
// Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
|
| 149 |
+
Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
|
| 150 |
+
static_assert(decltype(size<0>(acc_o_rowcol))::value == kNRows);
|
| 151 |
+
#pragma unroll
|
| 152 |
+
for (int mi = 0; mi < size(row_max); ++mi) {
|
| 153 |
+
float scores_max_cur = !Check_inf
|
| 154 |
+
? row_max(mi)
|
| 155 |
+
: (row_max(mi) == -INFINITY ? 0.0f : row_max(mi));
|
| 156 |
+
float scores_scale = exp2f((scores_max_prev(mi) - scores_max_cur) * softmax_scale_log2);
|
| 157 |
+
row_sum(mi) *= scores_scale;
|
| 158 |
+
#pragma unroll
|
| 159 |
+
for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scores_scale; }
|
| 160 |
+
}
|
| 161 |
+
flash::scale_apply_exp2(scores, row_max, softmax_scale_log2);
|
| 162 |
+
// We don't do the reduce across threads here since we don't need to use the row_sum.
|
| 163 |
+
// We do that reduce at the end when we need to normalize the softmax.
|
| 164 |
+
flash::reduce_sum</*zero_init=*/false>(scores, row_sum);
|
| 165 |
+
}
|
| 166 |
+
};
|
| 167 |
+
|
| 168 |
+
template<bool Is_dropout=false, bool Split=false, typename Tensor0>
|
| 169 |
+
__forceinline__ __device__ TensorT normalize_softmax_lse(Tensor0 &acc_o, float softmax_scale, float rp_dropout=1.0) {
|
| 170 |
+
SumOp<float> sum_op;
|
| 171 |
+
quad_allreduce_(row_sum, row_sum, sum_op);
|
| 172 |
+
TensorT lse = make_fragment_like(row_sum);
|
| 173 |
+
Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
|
| 174 |
+
static_assert(decltype(size<0>(acc_o_rowcol))::value == kNRows);
|
| 175 |
+
#pragma unroll
|
| 176 |
+
for (int mi = 0; mi < size<0>(acc_o_rowcol); ++mi) {
|
| 177 |
+
float sum = row_sum(mi);
|
| 178 |
+
float inv_sum = (sum == 0.f || sum != sum) ? 1.f : 1.f / sum;
|
| 179 |
+
lse(mi) = (sum == 0.f || sum != sum) ? (Split ? -INFINITY : INFINITY) : row_max(mi) * softmax_scale + __logf(sum);
|
| 180 |
+
float scale = !Is_dropout ? inv_sum : inv_sum * rp_dropout;
|
| 181 |
+
#pragma unroll
|
| 182 |
+
for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scale; }
|
| 183 |
+
}
|
| 184 |
+
return lse;
|
| 185 |
+
};
|
| 186 |
+
};
|
| 187 |
+
|
| 188 |
+
} // namespace flash
|
flash-attention/csrc/flash_attn/src/static_switch.h
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Inspired by
|
| 2 |
+
// https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
|
| 3 |
+
// and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
|
| 4 |
+
|
| 5 |
+
#pragma once
|
| 6 |
+
|
| 7 |
+
/// @param COND - a boolean expression to switch by
|
| 8 |
+
/// @param CONST_NAME - a name given for the constexpr bool variable.
|
| 9 |
+
/// @param ... - code to execute for true and false
|
| 10 |
+
///
|
| 11 |
+
/// Usage:
|
| 12 |
+
/// ```
|
| 13 |
+
/// BOOL_SWITCH(flag, BoolConst, [&] {
|
| 14 |
+
/// some_function<BoolConst>(...);
|
| 15 |
+
/// });
|
| 16 |
+
/// ```
|
| 17 |
+
|
| 18 |
+
#define BOOL_SWITCH(COND, CONST_NAME, ...) \
|
| 19 |
+
[&] { \
|
| 20 |
+
if (COND) { \
|
| 21 |
+
constexpr static bool CONST_NAME = true; \
|
| 22 |
+
return __VA_ARGS__(); \
|
| 23 |
+
} else { \
|
| 24 |
+
constexpr static bool CONST_NAME = false; \
|
| 25 |
+
return __VA_ARGS__(); \
|
| 26 |
+
} \
|
| 27 |
+
}()
|
| 28 |
+
|
| 29 |
+
#ifdef FLASHATTENTION_DISABLE_DROPOUT
|
| 30 |
+
#define DROPOUT_SWITCH(COND, CONST_NAME, ...) \
|
| 31 |
+
[&] { \
|
| 32 |
+
constexpr static bool CONST_NAME = false; \
|
| 33 |
+
return __VA_ARGS__(); \
|
| 34 |
+
}()
|
| 35 |
+
#else
|
| 36 |
+
#define DROPOUT_SWITCH BOOL_SWITCH
|
| 37 |
+
#endif
|
| 38 |
+
|
| 39 |
+
#ifdef FLASHATTENTION_DISABLE_ALIBI
|
| 40 |
+
#define ALIBI_SWITCH(COND, CONST_NAME, ...) \
|
| 41 |
+
[&] { \
|
| 42 |
+
constexpr static bool CONST_NAME = false; \
|
| 43 |
+
return __VA_ARGS__(); \
|
| 44 |
+
}()
|
| 45 |
+
#else
|
| 46 |
+
#define ALIBI_SWITCH BOOL_SWITCH
|
| 47 |
+
#endif
|
| 48 |
+
|
| 49 |
+
#ifdef FLASHATTENTION_DISABLE_UNEVEN_K
|
| 50 |
+
#define EVENK_SWITCH(COND, CONST_NAME, ...) \
|
| 51 |
+
[&] { \
|
| 52 |
+
constexpr static bool CONST_NAME = true; \
|
| 53 |
+
return __VA_ARGS__(); \
|
| 54 |
+
}()
|
| 55 |
+
#else
|
| 56 |
+
#define EVENK_SWITCH BOOL_SWITCH
|
| 57 |
+
#endif
|
| 58 |
+
|
| 59 |
+
#ifdef FLASHATTENTION_DISABLE_SOFTCAP
|
| 60 |
+
#define SOFTCAP_SWITCH(COND, CONST_NAME, ...) \
|
| 61 |
+
[&] { \
|
| 62 |
+
constexpr static bool CONST_NAME = false; \
|
| 63 |
+
return __VA_ARGS__(); \
|
| 64 |
+
}()
|
| 65 |
+
#else
|
| 66 |
+
#define SOFTCAP_SWITCH BOOL_SWITCH
|
| 67 |
+
#endif
|
| 68 |
+
|
| 69 |
+
#ifdef FLASHATTENTION_DISABLE_LOCAL
|
| 70 |
+
#define LOCAL_SWITCH(COND, CONST_NAME, ...) \
|
| 71 |
+
[&] { \
|
| 72 |
+
constexpr static bool CONST_NAME = false; \
|
| 73 |
+
return __VA_ARGS__(); \
|
| 74 |
+
}()
|
| 75 |
+
#else
|
| 76 |
+
#define LOCAL_SWITCH BOOL_SWITCH
|
| 77 |
+
#endif
|
| 78 |
+
|
| 79 |
+
#define FP16_SWITCH(COND, ...) \
|
| 80 |
+
[&] { \
|
| 81 |
+
if (COND) { \
|
| 82 |
+
using elem_type = cutlass::half_t; \
|
| 83 |
+
return __VA_ARGS__(); \
|
| 84 |
+
} else { \
|
| 85 |
+
using elem_type = cutlass::bfloat16_t; \
|
| 86 |
+
return __VA_ARGS__(); \
|
| 87 |
+
} \
|
| 88 |
+
}()
|
| 89 |
+
|
| 90 |
+
#define HEADDIM_SWITCH(HEADDIM, ...) \
|
| 91 |
+
[&] { \
|
| 92 |
+
if (HEADDIM <= 32) { \
|
| 93 |
+
constexpr static int kHeadDim = 32; \
|
| 94 |
+
return __VA_ARGS__(); \
|
| 95 |
+
} else if (HEADDIM <= 64) { \
|
| 96 |
+
constexpr static int kHeadDim = 64; \
|
| 97 |
+
return __VA_ARGS__(); \
|
| 98 |
+
} else if (HEADDIM <= 96) { \
|
| 99 |
+
constexpr static int kHeadDim = 96; \
|
| 100 |
+
return __VA_ARGS__(); \
|
| 101 |
+
} else if (HEADDIM <= 128) { \
|
| 102 |
+
constexpr static int kHeadDim = 128; \
|
| 103 |
+
return __VA_ARGS__(); \
|
| 104 |
+
} else if (HEADDIM <= 160) { \
|
| 105 |
+
constexpr static int kHeadDim = 160; \
|
| 106 |
+
return __VA_ARGS__(); \
|
| 107 |
+
} else if (HEADDIM <= 192) { \
|
| 108 |
+
constexpr static int kHeadDim = 192; \
|
| 109 |
+
return __VA_ARGS__(); \
|
| 110 |
+
} else if (HEADDIM <= 224) { \
|
| 111 |
+
constexpr static int kHeadDim = 224; \
|
| 112 |
+
return __VA_ARGS__(); \
|
| 113 |
+
} else if (HEADDIM <= 256) { \
|
| 114 |
+
constexpr static int kHeadDim = 256; \
|
| 115 |
+
return __VA_ARGS__(); \
|
| 116 |
+
} \
|
| 117 |
+
}()
|
flash-attention/csrc/flash_attn/src/utils.h
ADDED
|
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
/******************************************************************************
|
| 2 |
+
* Copyright (c) 2023, Tri Dao.
|
| 3 |
+
******************************************************************************/
|
| 4 |
+
|
| 5 |
+
#pragma once
|
| 6 |
+
|
| 7 |
+
#include <assert.h>
|
| 8 |
+
#include <stdint.h>
|
| 9 |
+
#include <stdlib.h>
|
| 10 |
+
|
| 11 |
+
#include <cuda_fp16.h>
|
| 12 |
+
|
| 13 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
| 14 |
+
#include <cuda_bf16.h>
|
| 15 |
+
#endif
|
| 16 |
+
|
| 17 |
+
#include <cute/tensor.hpp>
|
| 18 |
+
|
| 19 |
+
#include <cutlass/array.h>
|
| 20 |
+
#include <cutlass/cutlass.h>
|
| 21 |
+
#include <cutlass/numeric_conversion.h>
|
| 22 |
+
#include <cutlass/numeric_types.h>
|
| 23 |
+
|
| 24 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 25 |
+
|
| 26 |
+
namespace flash {
|
| 27 |
+
|
| 28 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 29 |
+
|
| 30 |
+
template<typename T>
|
| 31 |
+
__forceinline__ __device__ uint32_t relu2(const uint32_t x);
|
| 32 |
+
|
| 33 |
+
template<>
|
| 34 |
+
__forceinline__ __device__ uint32_t relu2<cutlass::half_t>(const uint32_t x) {
|
| 35 |
+
uint32_t res;
|
| 36 |
+
const uint32_t zero = 0u;
|
| 37 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
| 38 |
+
asm volatile("max.f16x2 %0, %1, %2;\n" : "=r"(res) : "r"(x), "r"(zero));
|
| 39 |
+
#else
|
| 40 |
+
asm volatile( \
|
| 41 |
+
"{\n" \
|
| 42 |
+
"\t .reg .f16x2 sela;\n" \
|
| 43 |
+
"\t set.gtu.u32.f16x2 sela, %1, %2;\n" \
|
| 44 |
+
"\t and.b32 %0, sela, %1;\n"
|
| 45 |
+
"}\n" : "=r"(res) : "r"(x), "r"(zero));
|
| 46 |
+
#endif
|
| 47 |
+
return res;
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
| 51 |
+
template<>
|
| 52 |
+
__forceinline__ __device__ uint32_t relu2<cutlass::bfloat16_t>(const uint32_t x) {
|
| 53 |
+
uint32_t res;
|
| 54 |
+
const uint32_t zero = 0u;
|
| 55 |
+
asm volatile("max.bf16x2 %0, %1, %2;\n" : "=r"(res) : "r"(x), "r"(zero));
|
| 56 |
+
return res;
|
| 57 |
+
}
|
| 58 |
+
#endif
|
| 59 |
+
|
| 60 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 61 |
+
|
| 62 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
| 63 |
+
|
| 64 |
+
template<typename T>
|
| 65 |
+
__forceinline__ __device__ uint32_t convert_relu2(const float2 x);
|
| 66 |
+
|
| 67 |
+
template<>
|
| 68 |
+
__forceinline__ __device__ uint32_t convert_relu2<cutlass::half_t>(const float2 x) {
|
| 69 |
+
uint32_t res;
|
| 70 |
+
const uint32_t a = reinterpret_cast<const uint32_t&>(x.x);
|
| 71 |
+
const uint32_t b = reinterpret_cast<const uint32_t&>(x.y);
|
| 72 |
+
asm volatile("cvt.rn.relu.f16x2.f32 %0, %1, %2;\n" : "=r"(res) : "r"(b), "r"(a));
|
| 73 |
+
return res;
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
template<>
|
| 77 |
+
__forceinline__ __device__ uint32_t convert_relu2<cutlass::bfloat16_t>(const float2 x) {
|
| 78 |
+
uint32_t res;
|
| 79 |
+
const uint32_t a = reinterpret_cast<const uint32_t&>(x.x);
|
| 80 |
+
const uint32_t b = reinterpret_cast<const uint32_t&>(x.y);
|
| 81 |
+
asm volatile("cvt.rn.relu.bf16x2.f32 %0, %1, %2;\n" : "=r"(res) : "r"(b), "r"(a));
|
| 82 |
+
return res;
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
#endif
|
| 86 |
+
|
| 87 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 88 |
+
|
| 89 |
+
template<typename T>
|
| 90 |
+
struct MaxOp {
|
| 91 |
+
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x > y ? x : y; }
|
| 92 |
+
};
|
| 93 |
+
|
| 94 |
+
template <>
|
| 95 |
+
struct MaxOp<float> {
|
| 96 |
+
// This is slightly faster
|
| 97 |
+
__device__ __forceinline__ float operator()(float const &x, float const &y) { return max(x, y); }
|
| 98 |
+
};
|
| 99 |
+
|
| 100 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 101 |
+
|
| 102 |
+
template<typename T>
|
| 103 |
+
struct SumOp {
|
| 104 |
+
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x + y; }
|
| 105 |
+
};
|
| 106 |
+
|
| 107 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 108 |
+
|
| 109 |
+
template<int THREADS>
|
| 110 |
+
struct Allreduce {
|
| 111 |
+
static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
|
| 112 |
+
template<typename T, typename Operator>
|
| 113 |
+
static __device__ __forceinline__ T run(T x, Operator &op) {
|
| 114 |
+
constexpr int OFFSET = THREADS / 2;
|
| 115 |
+
x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
|
| 116 |
+
return Allreduce<OFFSET>::run(x, op);
|
| 117 |
+
}
|
| 118 |
+
};
|
| 119 |
+
|
| 120 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 121 |
+
|
| 122 |
+
template<>
|
| 123 |
+
struct Allreduce<2> {
|
| 124 |
+
template<typename T, typename Operator>
|
| 125 |
+
static __device__ __forceinline__ T run(T x, Operator &op) {
|
| 126 |
+
x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
|
| 127 |
+
return x;
|
| 128 |
+
}
|
| 129 |
+
};
|
| 130 |
+
|
| 131 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 132 |
+
|
| 133 |
+
template<bool A_in_regs=false, bool B_in_regs=false, typename Tensor0, typename Tensor1,
|
| 134 |
+
typename Tensor2, typename Tensor3, typename Tensor4,
|
| 135 |
+
typename TiledMma, typename TiledCopyA, typename TiledCopyB,
|
| 136 |
+
typename ThrCopyA, typename ThrCopyB>
|
| 137 |
+
__forceinline__ __device__ void gemm(Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCrB, Tensor3 const& tCsA,
|
| 138 |
+
Tensor4 const& tCsB, TiledMma tiled_mma,
|
| 139 |
+
TiledCopyA smem_tiled_copy_A, TiledCopyB smem_tiled_copy_B,
|
| 140 |
+
ThrCopyA smem_thr_copy_A, ThrCopyB smem_thr_copy_B) {
|
| 141 |
+
CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc)); // MMA_M
|
| 142 |
+
CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc)); // MMA_N
|
| 143 |
+
CUTE_STATIC_ASSERT_V(size<2>(tCrA) == size<2>(tCrB)); // MMA_K
|
| 144 |
+
Tensor tCrA_copy_view = smem_thr_copy_A.retile_D(tCrA);
|
| 145 |
+
CUTE_STATIC_ASSERT_V(size<1>(tCsA) == size<1>(tCrA_copy_view)); // M
|
| 146 |
+
Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
|
| 147 |
+
CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<1>(tCrB_copy_view)); // N
|
| 148 |
+
if (!A_in_regs) { cute::copy(smem_tiled_copy_A, tCsA(_, _, _0{}), tCrA_copy_view(_, _, _0{})); }
|
| 149 |
+
if (!B_in_regs) { cute::copy(smem_tiled_copy_B, tCsB(_, _, _0{}), tCrB_copy_view(_, _, _0{})); }
|
| 150 |
+
#pragma unroll
|
| 151 |
+
for (int i = 0; i < size<2>(tCrA); ++i) {
|
| 152 |
+
if (i < size<2>(tCrA) - 1) {
|
| 153 |
+
if (!A_in_regs) { cute::copy(smem_tiled_copy_A, tCsA(_, _, i + 1), tCrA_copy_view(_, _, i + 1)); }
|
| 154 |
+
if (!B_in_regs) { cute::copy(smem_tiled_copy_B, tCsB(_, _, i + 1), tCrB_copy_view(_, _, i + 1)); }
|
| 155 |
+
}
|
| 156 |
+
cute::gemm(tiled_mma, tCrA(_, _, i), tCrB(_, _, i), acc);
|
| 157 |
+
}
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 161 |
+
|
| 162 |
+
template<typename Tensor0, typename Tensor1, typename Tensor2, typename Tensor3,
|
| 163 |
+
typename TiledMma, typename TiledCopy, typename ThrCopy>
|
| 164 |
+
__forceinline__ __device__ void gemm_rs(Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCrB, Tensor3 const& tCsB,
|
| 165 |
+
TiledMma tiled_mma, TiledCopy smem_tiled_copy_B,
|
| 166 |
+
ThrCopy smem_thr_copy_B) {
|
| 167 |
+
CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc)); // MMA_M
|
| 168 |
+
CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc)); // MMA_N
|
| 169 |
+
CUTE_STATIC_ASSERT_V(size<2>(tCrA) == size<2>(tCrB)); // MMA_K
|
| 170 |
+
Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
|
| 171 |
+
CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<1>(tCrB_copy_view)); // N
|
| 172 |
+
cute::copy(smem_tiled_copy_B, tCsB(_, _, _0{}), tCrB_copy_view(_, _, _0{}));
|
| 173 |
+
#pragma unroll
|
| 174 |
+
for (int i = 0; i < size<2>(tCrA); ++i) {
|
| 175 |
+
if (i < size<2>(tCrA) - 1) {
|
| 176 |
+
cute::copy(smem_tiled_copy_B, tCsB(_, _, i + 1), tCrB_copy_view(_, _, i + 1));
|
| 177 |
+
}
|
| 178 |
+
cute::gemm(tiled_mma, tCrA(_, _, i), tCrB(_, _, i), acc);
|
| 179 |
+
}
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 183 |
+
|
| 184 |
+
// Convert acc_layout from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
|
| 185 |
+
template<typename Layout>
|
| 186 |
+
__forceinline__ __device__ auto convert_layout_acc_rowcol(Layout acc_layout) {
|
| 187 |
+
static_assert(decltype(size<0>(acc_layout))::value == 4);
|
| 188 |
+
static_assert(decltype(rank(acc_layout))::value == 3);
|
| 189 |
+
auto l = logical_divide(acc_layout, Shape<_2>{}); // ((2, 2), MMA_M, MMA_N)
|
| 190 |
+
return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<2>(l)));
|
| 191 |
+
};
|
| 192 |
+
|
| 193 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 194 |
+
|
| 195 |
+
// Convert acc_layout from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
|
| 196 |
+
// if using m16n8k16, or to (4, MMA_M, MMA_N) if using m16n8k8.
|
| 197 |
+
template<typename MMA_traits, typename Layout>
|
| 198 |
+
__forceinline__ __device__ auto convert_layout_acc_Aregs(Layout acc_layout) {
|
| 199 |
+
using X = Underscore;
|
| 200 |
+
static_assert(decltype(size<0>(acc_layout))::value == 4);
|
| 201 |
+
static_assert(decltype(rank(acc_layout))::value == 3);
|
| 202 |
+
constexpr int mma_shape_K = get<2>(typename MMA_traits::Shape_MNK{});
|
| 203 |
+
static_assert(mma_shape_K == 8 || mma_shape_K == 16);
|
| 204 |
+
if constexpr (mma_shape_K == 8) {
|
| 205 |
+
return acc_layout;
|
| 206 |
+
} else {
|
| 207 |
+
auto l = logical_divide(acc_layout, Shape<X, X, _2>{}); // (4, MMA_M, (2, MMA_N / 2)))
|
| 208 |
+
return make_layout(make_layout(get<0>(l), get<2, 0>(l)), get<1>(l), get<2, 1>(l));
|
| 209 |
+
}
|
| 210 |
+
};
|
| 211 |
+
|
| 212 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 213 |
+
|
| 214 |
+
// Convert acc_layout from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
|
| 215 |
+
template<typename Layout>
|
| 216 |
+
__forceinline__ __device__ auto convert_layout_acc_dropout(Layout acc_layout) {
|
| 217 |
+
using X = Underscore;
|
| 218 |
+
static_assert(decltype(size<0>(acc_layout))::value == 4);
|
| 219 |
+
static_assert(decltype(rank(acc_layout))::value == 3);
|
| 220 |
+
auto l = logical_divide(acc_layout, Shape<X, X, _2>{}); // (4, MMA_M, (2, MMA_N / 2)))
|
| 221 |
+
return make_layout(make_layout(get<0>(l), get<2, 0>(l)), get<1>(l), get<2, 1>(l));
|
| 222 |
+
};
|
| 223 |
+
|
| 224 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 225 |
+
|
| 226 |
+
template <typename To_type, typename Engine, typename Layout>
|
| 227 |
+
__forceinline__ __device__ auto convert_type(Tensor<Engine, Layout> const &tensor) {
|
| 228 |
+
using From_type = typename Engine::value_type;
|
| 229 |
+
constexpr int numel = decltype(size(tensor))::value;
|
| 230 |
+
cutlass::NumericArrayConverter<To_type, From_type, numel> convert_op;
|
| 231 |
+
// HACK: this requires tensor to be "contiguous"
|
| 232 |
+
auto frag = convert_op(*reinterpret_cast<const cutlass::Array<From_type, numel> *>(tensor.data()));
|
| 233 |
+
return make_tensor(make_rmem_ptr<To_type>(&frag), tensor.layout());
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 237 |
+
|
| 238 |
+
template <typename Engine, typename Layout>
|
| 239 |
+
__forceinline__ __device__ void relu_(Tensor<Engine, Layout> &tensor) {
|
| 240 |
+
constexpr int numel = decltype(size(tensor))::value;
|
| 241 |
+
static_assert(numel % 2 == 0);
|
| 242 |
+
using value_t = typename Engine::value_type;
|
| 243 |
+
// HACK: this requires tensor to be "contiguous"
|
| 244 |
+
Tensor tensor_uint32 = recast<uint32_t>(tensor);
|
| 245 |
+
#pragma unroll
|
| 246 |
+
for (int i = 0; i < size(tensor_uint32); ++i) {
|
| 247 |
+
tensor_uint32(i) = relu2<value_t>(tensor_uint32(i));
|
| 248 |
+
}
|
| 249 |
+
}
|
| 250 |
+
|
| 251 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 252 |
+
|
| 253 |
+
// On SM80 and above, we can fuse fp32 -> fp16/bf16 conversion and relu into 1 instruction
|
| 254 |
+
template <typename To_type, typename Engine, typename Layout>
|
| 255 |
+
__forceinline__ __device__ auto convert_type_relu(Tensor<Engine, Layout> const &tensor) {
|
| 256 |
+
using From_type = typename Engine::value_type;
|
| 257 |
+
static_assert(std::is_same_v<To_type, cutlass::half_t> || std::is_same_v<To_type, cutlass::bfloat16_t>);
|
| 258 |
+
static_assert(std::is_same_v<float, From_type>);
|
| 259 |
+
constexpr int numel = decltype(size(tensor))::value;
|
| 260 |
+
static_assert(numel % 2 == 0);
|
| 261 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
| 262 |
+
// HACK: this requires tensor to be "contiguous"
|
| 263 |
+
Tensor tensor_float2 = recast<float2>(tensor);
|
| 264 |
+
Tensor out_uint32 = make_tensor<uint32_t>(tensor_float2.layout());
|
| 265 |
+
#pragma unroll
|
| 266 |
+
for (int i = 0; i < size(out_uint32); ++i) {
|
| 267 |
+
out_uint32(i) = convert_relu2<To_type>(tensor_float2(i));
|
| 268 |
+
}
|
| 269 |
+
Tensor out = make_tensor(make_rmem_ptr<To_type>(out_uint32.data()), tensor.layout());
|
| 270 |
+
#else
|
| 271 |
+
Tensor out = flash::convert_type<To_type>(tensor);
|
| 272 |
+
flash::relu_(out);
|
| 273 |
+
#endif
|
| 274 |
+
return out;
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 278 |
+
|
| 279 |
+
// Blocks until all but N previous cp.async.commit_group operations have committed.
|
| 280 |
+
// This differs from cute::cp_async_wait in that when N = 0 we don't call cp.async.wait_all
|
| 281 |
+
// (which is equivalent to commit_group then wait_group 0).
|
| 282 |
+
// Instead we just call cp.async.wait_group 0, which is slightly faster.
|
| 283 |
+
// https://github.com/NVIDIA/cutlass/blob/master/include/cute/arch/copy_sm80.hpp#L113
|
| 284 |
+
template <int N>
|
| 285 |
+
CUTE_HOST_DEVICE
|
| 286 |
+
void cp_async_wait() {
|
| 287 |
+
#if defined(CUTE_ARCH_CP_ASYNC_SM80_ENABLED)
|
| 288 |
+
asm volatile("cp.async.wait_group %0;\n" :: "n"(N));
|
| 289 |
+
#endif
|
| 290 |
+
}
|
| 291 |
+
|
| 292 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 293 |
+
|
| 294 |
+
template <bool Is_even_MN=true, bool Is_even_K=true, bool Clear_OOB_MN=false, bool Clear_OOB_K=true,
|
| 295 |
+
typename TiledCopy, typename Engine0, typename Layout0, typename Engine1, typename Layout1,
|
| 296 |
+
typename Engine2, typename Layout2, typename Engine3, typename Layout3>
|
| 297 |
+
__forceinline__ __device__ void copy(TiledCopy tiled_copy, Tensor<Engine0, Layout0> const &S,
|
| 298 |
+
Tensor<Engine1, Layout1> &D, Tensor<Engine2, Layout2> const &identity_MN,
|
| 299 |
+
Tensor<Engine3, Layout3> const &predicate_K, const int max_MN=0) {
|
| 300 |
+
CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
|
| 301 |
+
CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
|
| 302 |
+
CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D)); // MMA
|
| 303 |
+
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D)); // MMA_M
|
| 304 |
+
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D)); // MMA_K
|
| 305 |
+
// There's no case where !Clear_OOB_K && Clear_OOB_MN
|
| 306 |
+
static_assert(!(Clear_OOB_MN && !Clear_OOB_K));
|
| 307 |
+
#pragma unroll
|
| 308 |
+
for (int m = 0; m < size<1>(S); ++m) {
|
| 309 |
+
if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
|
| 310 |
+
#pragma unroll
|
| 311 |
+
for (int k = 0; k < size<2>(S); ++k) {
|
| 312 |
+
if (Is_even_K || predicate_K(k)) {
|
| 313 |
+
cute::copy(tiled_copy, S(_, m, k), D(_, m, k));
|
| 314 |
+
} else if (Clear_OOB_K) {
|
| 315 |
+
cute::clear(D(_, m, k));
|
| 316 |
+
}
|
| 317 |
+
}
|
| 318 |
+
} else if (Clear_OOB_MN) {
|
| 319 |
+
cute::clear(D(_, m, _));
|
| 320 |
+
}
|
| 321 |
+
}
|
| 322 |
+
// TD [2023-04-13]: Strange that the code below can cause race condition.
|
| 323 |
+
// I think it's because the copies are under an if statement.
|
| 324 |
+
// if (Is_even_K) {
|
| 325 |
+
// #pragma unroll
|
| 326 |
+
// for (int m = 0; m < size<1>(S); ++m) {
|
| 327 |
+
// if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
|
| 328 |
+
// copy(tiled_copy, S(_, m, _), D(_, m, _));
|
| 329 |
+
// } else if (Clear_OOB_MN) {
|
| 330 |
+
// clear(D(_, m, _));
|
| 331 |
+
// }
|
| 332 |
+
// }
|
| 333 |
+
// } else { // It's slightly faster in this case if iterate over K first
|
| 334 |
+
// #pragma unroll
|
| 335 |
+
// for (int k = 0; k < size<2>(S); ++k) {
|
| 336 |
+
// if (predicate_K(k)) {
|
| 337 |
+
// #pragma unroll
|
| 338 |
+
// for (int m = 0; m < size<1>(S); ++m) {
|
| 339 |
+
// if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
|
| 340 |
+
// copy(tiled_copy, S(_, m, k), D(_, m, k));
|
| 341 |
+
// } else if (Clear_OOB_MN) {
|
| 342 |
+
// clear(D(_, m, k));
|
| 343 |
+
// }
|
| 344 |
+
// }
|
| 345 |
+
// } else if (Clear_OOB_K) { // There's no case where !Clear_OOB_K && Clear_OOB_MN
|
| 346 |
+
// if (Clear_OOB_MN || Is_even_MN) {
|
| 347 |
+
// clear(D(_, _, k));
|
| 348 |
+
// } else {
|
| 349 |
+
// #pragma unroll
|
| 350 |
+
// for (int m = 0; m < size<1>(S); ++m) {
|
| 351 |
+
// if (!(Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN)) {
|
| 352 |
+
// clear(D(_, m, k));
|
| 353 |
+
// }
|
| 354 |
+
// }
|
| 355 |
+
// }
|
| 356 |
+
// }
|
| 357 |
+
// }
|
| 358 |
+
// }
|
| 359 |
+
}
|
| 360 |
+
|
| 361 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 362 |
+
|
| 363 |
+
template <bool Is_even_K=true,
|
| 364 |
+
typename Engine0, typename Layout0, typename Engine1, typename Layout1,
|
| 365 |
+
typename Engine2, typename Layout2, typename Engine3, typename Layout3>
|
| 366 |
+
__forceinline__ __device__ void copy_w_min_idx(Tensor<Engine0, Layout0> const &S,
|
| 367 |
+
Tensor<Engine1, Layout1> &D, Tensor<Engine2, Layout2> const &identity_MN,
|
| 368 |
+
Tensor<Engine3, Layout3> const &predicate_K,
|
| 369 |
+
const int max_MN=0, const int min_MN=0) {
|
| 370 |
+
CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
|
| 371 |
+
CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
|
| 372 |
+
CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D)); // MMA
|
| 373 |
+
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D)); // MMA_M
|
| 374 |
+
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D)); // MMA_K
|
| 375 |
+
// if (threadIdx.x == 0 && blockIdx.z == 0) { printf("blockIdx.y = %d, max_MN = %d, min_MN = %d\n", blockIdx.y, max_MN, min_MN); }
|
| 376 |
+
#pragma unroll
|
| 377 |
+
for (int m = 0; m < size<1>(S); ++m) {
|
| 378 |
+
// if (threadIdx.x == 0 && blockIdx.z == 0) { printf("blockIdx.y = %d, m = %d\n", blockIdx.y, get<0>(identity_MN(0, m, 0))); }
|
| 379 |
+
if (get<0>(identity_MN(0, m, 0)) >= min_MN && get<0>(identity_MN(0, m, 0)) < max_MN) {
|
| 380 |
+
// if (threadIdx.x == 0 && blockIdx.z == 0) { printf("Inner loop, blockIdx.y = %d, m = %d\n", blockIdx.y, get<0>(identity_MN(0, m, 0))); }
|
| 381 |
+
#pragma unroll
|
| 382 |
+
for (int k = 0; k < size<2>(S); ++k) {
|
| 383 |
+
if (Is_even_K || predicate_K(k)) {
|
| 384 |
+
cute::copy(S(_, m, k), D(_, m, k));
|
| 385 |
+
}
|
| 386 |
+
}
|
| 387 |
+
}
|
| 388 |
+
}
|
| 389 |
+
}
|
| 390 |
+
|
| 391 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 392 |
+
|
| 393 |
+
} // namespace flash
|
flash-attention/csrc/ft_attention/README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Attention kernel from FasterTransformer
|
| 2 |
+
|
| 3 |
+
This CUDA extension wraps the single-query attention [kernel](https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp) from
|
| 4 |
+
FasterTransformer v5.2.1 for benchmarking purpose.
|
| 5 |
+
|
| 6 |
+
```sh
|
| 7 |
+
cd csrc/ft_attention && pip install .
|
| 8 |
+
```
|
| 9 |
+
|
| 10 |
+
As of 2023-09-17, this extension is no longer used in the FlashAttention repo.
|
| 11 |
+
FlashAttention now has implemented
|
| 12 |
+
[`flash_attn_with_kvcache`](https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/flash_attention_interface.py)
|
| 13 |
+
with all the features of this `ft_attention` kernel (and more).
|
| 14 |
+
|
flash-attention/csrc/ft_attention/cuda_bf16_fallbacks.cuh
ADDED
|
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Downloaded from from FasterTransformer v5.2.1
|
| 2 |
+
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/utils/cuda_bf16_fallbacks.cuh
|
| 3 |
+
/*
|
| 4 |
+
* Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved.
|
| 5 |
+
*
|
| 6 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
* you may not use this file except in compliance with the License.
|
| 8 |
+
* You may obtain a copy of the License at
|
| 9 |
+
*
|
| 10 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
*
|
| 12 |
+
* Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
* See the License for the specific language governing permissions and
|
| 16 |
+
* limitations under the License.
|
| 17 |
+
*/
|
| 18 |
+
|
| 19 |
+
#pragma once
|
| 20 |
+
|
| 21 |
+
#include "cuda_bf16_wrapper.h"
|
| 22 |
+
#include <cuda_fp16.h>
|
| 23 |
+
|
| 24 |
+
namespace fastertransformer {
|
| 25 |
+
|
| 26 |
+
#ifdef ENABLE_BF16
|
| 27 |
+
inline __device__ float2 bf1622float2(const __nv_bfloat162 val) {
|
| 28 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 29 |
+
float2 f_val;
|
| 30 |
+
f_val.x = __low2float(val);
|
| 31 |
+
f_val.y = __high2float(val);
|
| 32 |
+
return f_val;
|
| 33 |
+
#else
|
| 34 |
+
return __bfloat1622float2(val);
|
| 35 |
+
#endif
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
inline __device__ int16_t bf1622int16(__nv_bfloat162 val) {
|
| 39 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 40 |
+
float2 f_val;
|
| 41 |
+
f_val.x = max(min(__low2float(val), 127.f), -128.f);
|
| 42 |
+
f_val.y = max(min(__high2float(val), 127.f), -128.f);
|
| 43 |
+
union { int8_t int8[2]; int16_t int16; };
|
| 44 |
+
int8[0] = static_cast<int8_t>(static_cast<short>(f_val.x));
|
| 45 |
+
int8[1] = static_cast<int8_t>(static_cast<short>(f_val.y));
|
| 46 |
+
return int16;
|
| 47 |
+
#else
|
| 48 |
+
val = __hmin2(val, make_bfloat162(127., 127.));
|
| 49 |
+
val = __hmax2(val, make_bfloat162(-128., -128.));
|
| 50 |
+
union { int8_t int8[2]; int16_t int16; };
|
| 51 |
+
int8[0] = static_cast<int8_t>(static_cast<short>(val.x));
|
| 52 |
+
int8[1] = static_cast<int8_t>(static_cast<short>(val.y));
|
| 53 |
+
return int16;
|
| 54 |
+
#endif
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
inline __device__ __nv_bfloat162 float22bf162(const float2 val) {
|
| 58 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 59 |
+
return __floats2bfloat162_rn(val.x, val.y);
|
| 60 |
+
#else
|
| 61 |
+
return __float22bfloat162_rn(val);
|
| 62 |
+
#endif
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
inline __device__ __nv_bfloat162 bf162bf162(const __nv_bfloat16 val) {
|
| 66 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 67 |
+
__nv_bfloat162 val2;
|
| 68 |
+
val2.x = val;
|
| 69 |
+
val2.y = val;
|
| 70 |
+
return val2;
|
| 71 |
+
#else
|
| 72 |
+
return __bfloat162bfloat162(val);
|
| 73 |
+
#endif
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
inline __device__ __nv_bfloat162 bf16hadd2(const __nv_bfloat162 x, const __nv_bfloat162 y) {
|
| 77 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 78 |
+
float fxl, fxh, fyl, fyh;
|
| 79 |
+
fxl = __low2float(x);
|
| 80 |
+
fxh = __high2float(x);
|
| 81 |
+
fyl = __low2float(y);
|
| 82 |
+
fyh = __high2float(y);
|
| 83 |
+
return __floats2bfloat162_rn(fxl + fyl, fxh + fyh);
|
| 84 |
+
#else
|
| 85 |
+
return __hadd2(x, y);
|
| 86 |
+
#endif
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
inline __device__ __nv_bfloat16 bf16hadd(const __nv_bfloat16 x, const __nv_bfloat16 y) {
|
| 90 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 91 |
+
return __float2bfloat16( __bfloat162float(x) + __bfloat162float(y) );
|
| 92 |
+
#else
|
| 93 |
+
return __hadd(x, y);
|
| 94 |
+
#endif
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
inline __device__ __nv_bfloat162 bf16hsub2(const __nv_bfloat162 x, const __nv_bfloat162 y) {
|
| 98 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 99 |
+
float fxl, fxh, fyl, fyh;
|
| 100 |
+
fxl = __low2float(x);
|
| 101 |
+
fxh = __high2float(x);
|
| 102 |
+
fyl = __low2float(y);
|
| 103 |
+
fyh = __high2float(y);
|
| 104 |
+
return __floats2bfloat162_rn(fxl - fyl, fxh - fyh);
|
| 105 |
+
#else
|
| 106 |
+
return __hsub2(x, y);
|
| 107 |
+
#endif
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
inline __device__ __nv_bfloat16 bf16hsub(const __nv_bfloat16 x, const __nv_bfloat16 y) {
|
| 111 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 112 |
+
return __float2bfloat16( __bfloat162float(x) - __bfloat162float(y) );
|
| 113 |
+
#else
|
| 114 |
+
return __hsub(x, y);
|
| 115 |
+
#endif
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
inline __device__ __nv_bfloat162 bf16hmul2(const __nv_bfloat162 x, const __nv_bfloat162 y) {
|
| 119 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 120 |
+
float fxl, fxh, fyl, fyh;
|
| 121 |
+
fxl = __low2float(x);
|
| 122 |
+
fxh = __high2float(x);
|
| 123 |
+
fyl = __low2float(y);
|
| 124 |
+
fyh = __high2float(y);
|
| 125 |
+
return __floats2bfloat162_rn(fxl * fyl, fxh * fyh);
|
| 126 |
+
#else
|
| 127 |
+
return __hmul2(x, y);
|
| 128 |
+
#endif
|
| 129 |
+
}
|
| 130 |
+
|
| 131 |
+
inline __device__ __nv_bfloat16 bf16hmul(const __nv_bfloat16 x, const __nv_bfloat16 y) {
|
| 132 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 133 |
+
return __float2bfloat16( __bfloat162float(x) * __bfloat162float(y) );
|
| 134 |
+
#else
|
| 135 |
+
return __hmul(x, y);
|
| 136 |
+
#endif
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
inline __device__ __nv_bfloat162 bf16hfma2(const __nv_bfloat162 x, const __nv_bfloat162 y, const __nv_bfloat162 z) {
|
| 140 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 141 |
+
float fxl, fxh, fyl, fyh, fzl, fzh;
|
| 142 |
+
fxl = __low2float(x);
|
| 143 |
+
fxh = __high2float(x);
|
| 144 |
+
fyl = __low2float(y);
|
| 145 |
+
fyh = __high2float(y);
|
| 146 |
+
fzl = __low2float(z);
|
| 147 |
+
fzh = __high2float(z);
|
| 148 |
+
return __floats2bfloat162_rn(fxl * fyl + fzl, fxh * fyh + fzh);
|
| 149 |
+
#else
|
| 150 |
+
return __hfma2(x, y, z);
|
| 151 |
+
#endif
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
inline __device__ __nv_bfloat16 bf16hfma(const __nv_bfloat16 x, const __nv_bfloat16 y, const __nv_bfloat16 z) {
|
| 155 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 156 |
+
return __float2bfloat16( __bfloat162float(x) * __bfloat162float(y) + __bfloat162float(z));
|
| 157 |
+
#else
|
| 158 |
+
return __hfma(x, y, z);
|
| 159 |
+
#endif
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
inline __device__ __nv_bfloat162 bf16exp2(const __nv_bfloat162 x) {
|
| 163 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 164 |
+
float fxl, fxh;
|
| 165 |
+
fxl = __low2float(x);
|
| 166 |
+
fxh = __high2float(x);;
|
| 167 |
+
return __floats2bfloat162_rn(expf(fxl), expf(fxh));
|
| 168 |
+
#else
|
| 169 |
+
return h2exp(x);
|
| 170 |
+
#endif
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800)
|
| 174 |
+
inline __device__ __nv_bfloat162 operator*(const __nv_bfloat162 x, const __nv_bfloat162 y) { return bf16hmul2(x, y); };
|
| 175 |
+
inline __device__ __nv_bfloat162 operator+(const __nv_bfloat162 x, const __nv_bfloat162 y) { return bf16hadd2(x, y); };
|
| 176 |
+
|
| 177 |
+
inline __device__ __nv_bfloat162 make_bfloat162(const __nv_bfloat16 x, const __nv_bfloat16 y)
|
| 178 |
+
{
|
| 179 |
+
__nv_bfloat162 t; t.x = x; t.y = y; return t;
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
#endif
|
| 183 |
+
|
| 184 |
+
inline __device__ __nv_bfloat16 bf16hadd(__nv_bfloat16 a, __nv_bfloat16 b, __nv_bfloat16 c) {
|
| 185 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 186 |
+
return __float2bfloat16(__bfloat162float(a) + __bfloat162float(b) + __bfloat162float(c));
|
| 187 |
+
#else
|
| 188 |
+
return a + b + c;
|
| 189 |
+
#endif
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
inline __device__ __nv_bfloat16 bf16hadd(__nv_bfloat16 a, __nv_bfloat16 b, __nv_bfloat16 c, __nv_bfloat16 d) {
|
| 193 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 194 |
+
return __float2bfloat16(__bfloat162float(a) + __bfloat162float(b) + __bfloat162float(c) + __bfloat162float(d));
|
| 195 |
+
#else
|
| 196 |
+
return (__nv_bfloat16)((float)a + (float)b + (float)c + (float)d);
|
| 197 |
+
#endif
|
| 198 |
+
}
|
| 199 |
+
|
| 200 |
+
inline __device__ __nv_bfloat162 bf16hadd2(__nv_bfloat162 a, __nv_bfloat162 b, __nv_bfloat162 c) {
|
| 201 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 202 |
+
float fal, fah, fbl, fbh, fcl, fch;
|
| 203 |
+
fal = __low2float(a);
|
| 204 |
+
fah = __high2float(a);
|
| 205 |
+
fbl = __low2float(b);
|
| 206 |
+
fbh = __high2float(b);
|
| 207 |
+
fcl = __low2float(c);
|
| 208 |
+
fch = __high2float(c);
|
| 209 |
+
return __floats2bfloat162_rn(fal + fbl + fcl, fah + fbh + fch);
|
| 210 |
+
#else
|
| 211 |
+
return a + b + c;
|
| 212 |
+
#endif
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
inline __device__ __nv_bfloat16 bf16hmul(__nv_bfloat16 a, __nv_bfloat16 b, __nv_bfloat16 c) {
|
| 216 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 217 |
+
return __float2bfloat16(__bfloat162float(a) * __bfloat162float(b) * __bfloat162float(c));
|
| 218 |
+
#else
|
| 219 |
+
return a * b * c;
|
| 220 |
+
#endif
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
inline __device__ __nv_bfloat162 bf16hmul2(__nv_bfloat162 a, __nv_bfloat162 b, __nv_bfloat162 c) {
|
| 224 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 225 |
+
float fal, fah, fbl, fbh, fcl, fch;
|
| 226 |
+
fal = __low2float(a);
|
| 227 |
+
fah = __high2float(a);
|
| 228 |
+
fbl = __low2float(b);
|
| 229 |
+
fbh = __high2float(b);
|
| 230 |
+
fcl = __low2float(c);
|
| 231 |
+
fch = __high2float(c);
|
| 232 |
+
return __floats2bfloat162_rn(fal * fbl * fcl, fah * fbh * fch);
|
| 233 |
+
#else
|
| 234 |
+
return a * b * c;
|
| 235 |
+
#endif
|
| 236 |
+
}
|
| 237 |
+
|
| 238 |
+
inline __device__ __nv_bfloat162 bf16hfma2(__nv_bfloat162 a, __nv_bfloat162 b, __nv_bfloat162 c, __nv_bfloat162 d) {
|
| 239 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
|
| 240 |
+
float fal, fah, fbl, fbh, fcl, fch, fdl, fdh;
|
| 241 |
+
fal = __low2float(a);
|
| 242 |
+
fah = __high2float(a);
|
| 243 |
+
fbl = __low2float(b);
|
| 244 |
+
fbh = __high2float(b);
|
| 245 |
+
fcl = __low2float(c);
|
| 246 |
+
fch = __high2float(c);
|
| 247 |
+
fdl = __low2float(d);
|
| 248 |
+
fdh = __high2float(d);
|
| 249 |
+
return __floats2bfloat162_rn(fal * fbl * fcl + fdl, fah * fbh * fch + fdh);
|
| 250 |
+
#else
|
| 251 |
+
return a * b * c + d;
|
| 252 |
+
#endif
|
| 253 |
+
}
|
| 254 |
+
|
| 255 |
+
#endif // ENABLE_BF16
|
| 256 |
+
|
| 257 |
+
} // namespace fastertransformer
|
flash-attention/csrc/ft_attention/cuda_bf16_wrapper.h
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Downloaded from from FasterTransformer v5.2.1
|
| 2 |
+
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/utils/cuda_bf16_wrapper.h
|
| 3 |
+
/*
|
| 4 |
+
* Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved.
|
| 5 |
+
*
|
| 6 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
* you may not use this file except in compliance with the License.
|
| 8 |
+
* You may obtain a copy of the License at
|
| 9 |
+
*
|
| 10 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
*
|
| 12 |
+
* Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
* See the License for the specific language governing permissions and
|
| 16 |
+
* limitations under the License.
|
| 17 |
+
*/
|
| 18 |
+
|
| 19 |
+
#pragma once
|
| 20 |
+
|
| 21 |
+
#ifdef ENABLE_BF16
|
| 22 |
+
#include <cuda_bf16.h>
|
| 23 |
+
#endif
|
flash-attention/csrc/ft_attention/decoder_masked_multihead_attention.cu
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Adapted from from FasterTransformer v5.2.1
|
| 2 |
+
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_128.cu
|
| 3 |
+
/*
|
| 4 |
+
* Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
|
| 5 |
+
*
|
| 6 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
* you may not use this file except in compliance with the License.
|
| 8 |
+
* You may obtain a copy of the License at
|
| 9 |
+
*
|
| 10 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
*
|
| 12 |
+
* Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
* See the License for the specific language governing permissions and
|
| 16 |
+
* limitations under the License.
|
| 17 |
+
*/
|
| 18 |
+
|
| 19 |
+
#include "decoder_masked_multihead_attention.h"
|
| 20 |
+
#include "decoder_masked_multihead_attention_utils.h"
|
| 21 |
+
#include "cuda_bf16_wrapper.h"
|
| 22 |
+
#include <assert.h>
|
| 23 |
+
#include <float.h>
|
| 24 |
+
#include <type_traits>
|
| 25 |
+
|
| 26 |
+
#include "decoder_masked_multihead_attention_template.hpp"
|
| 27 |
+
|
| 28 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 29 |
+
|
| 30 |
+
#define MMHA_LAUNCH_KERNEL(T, Dh, Dh_MAX, THDS_PER_KEY, THDS_PER_VALUE, THDS_PER_BLOCK, DO_CROSS_ATTENTION, stream) \
|
| 31 |
+
size_t smem_sz = mmha::smem_size_in_bytes<T, DO_CROSS_ATTENTION>(params, THDS_PER_VALUE, THDS_PER_BLOCK); \
|
| 32 |
+
auto kernel = mmha::masked_multihead_attention_kernel<T, Dh, Dh_MAX, THDS_PER_KEY, THDS_PER_VALUE, \
|
| 33 |
+
THDS_PER_BLOCK, DO_CROSS_ATTENTION>; \
|
| 34 |
+
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_sz); \
|
| 35 |
+
dim3 grid(params.nnz_head_idx == nullptr ? params.num_heads : params.nnz_heads, params.batch_size); \
|
| 36 |
+
kernel<<<grid, THDS_PER_BLOCK, smem_sz, stream>>>(params)
|
| 37 |
+
|
| 38 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 39 |
+
|
| 40 |
+
// !!! Specialize the launcher for Cross attention
|
| 41 |
+
template<typename T, int Dh, int Dh_MAX, typename KERNEL_PARAMS_TYPE>
|
| 42 |
+
void mmha_launch_kernel(const KERNEL_PARAMS_TYPE& params, const cudaStream_t& stream)
|
| 43 |
+
{
|
| 44 |
+
constexpr int THREADS_PER_VALUE = Dh_MAX * sizeof(T) / 16;
|
| 45 |
+
constexpr bool DO_CROSS_ATTENTION = std::is_same<KERNEL_PARAMS_TYPE, Cross_multihead_attention_params<T>>::value;
|
| 46 |
+
int tlength = (DO_CROSS_ATTENTION) ? params.memory_max_len : params.timestep;
|
| 47 |
+
// printf("tlength, CROSS_ATTENTION = %d, %d\n", tlength, DO_CROSS_ATTENTION);
|
| 48 |
+
if (tlength < 32) {
|
| 49 |
+
MMHA_LAUNCH_KERNEL(T, Dh, Dh_MAX, 4, THREADS_PER_VALUE, 64, DO_CROSS_ATTENTION, stream);
|
| 50 |
+
}
|
| 51 |
+
else if (tlength < 2048) {
|
| 52 |
+
MMHA_LAUNCH_KERNEL(T, Dh, Dh_MAX, 2, THREADS_PER_VALUE, 128, DO_CROSS_ATTENTION, stream);
|
| 53 |
+
}
|
| 54 |
+
else {
|
| 55 |
+
MMHA_LAUNCH_KERNEL(T, Dh, Dh_MAX, 1, THREADS_PER_VALUE, 256, DO_CROSS_ATTENTION, stream);
|
| 56 |
+
}
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 60 |
+
|
| 61 |
+
#undef MMHA_LAUNCH_KERNEL
|
| 62 |
+
|
| 63 |
+
template<typename T, typename KERNEL_PARAMS_TYPE>
|
| 64 |
+
void multihead_attention_(const KERNEL_PARAMS_TYPE& params, const cudaStream_t& stream)
|
| 65 |
+
{
|
| 66 |
+
switch (params.hidden_size_per_head) {
|
| 67 |
+
case 32:
|
| 68 |
+
mmha_launch_kernel<T, 32, 32, KERNEL_PARAMS_TYPE>(params, stream);
|
| 69 |
+
break;
|
| 70 |
+
case 48:
|
| 71 |
+
mmha_launch_kernel<T, 48, 64, KERNEL_PARAMS_TYPE>(params, stream);
|
| 72 |
+
break;
|
| 73 |
+
case 64:
|
| 74 |
+
mmha_launch_kernel<T, 64, 64, KERNEL_PARAMS_TYPE>(params, stream);
|
| 75 |
+
break;
|
| 76 |
+
case 80:
|
| 77 |
+
mmha_launch_kernel<T, 80, 128, KERNEL_PARAMS_TYPE>(params, stream);
|
| 78 |
+
break;
|
| 79 |
+
case 96:
|
| 80 |
+
mmha_launch_kernel<T, 96, 128, KERNEL_PARAMS_TYPE>(params, stream);
|
| 81 |
+
break;
|
| 82 |
+
case 128:
|
| 83 |
+
mmha_launch_kernel<T, 128, 128, KERNEL_PARAMS_TYPE>(params, stream);
|
| 84 |
+
break;
|
| 85 |
+
case 160:
|
| 86 |
+
mmha_launch_kernel<T, 160, 256, KERNEL_PARAMS_TYPE>(params, stream);
|
| 87 |
+
break;
|
| 88 |
+
case 192:
|
| 89 |
+
mmha_launch_kernel<T, 192, 256, KERNEL_PARAMS_TYPE>(params, stream);
|
| 90 |
+
break;
|
| 91 |
+
case 224:
|
| 92 |
+
mmha_launch_kernel<T, 224, 256, KERNEL_PARAMS_TYPE>(params, stream);
|
| 93 |
+
break;
|
| 94 |
+
case 256:
|
| 95 |
+
mmha_launch_kernel<T, 256, 256, KERNEL_PARAMS_TYPE>(params, stream);
|
| 96 |
+
break;
|
| 97 |
+
default:
|
| 98 |
+
assert(false);
|
| 99 |
+
}
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 103 |
+
|
| 104 |
+
void masked_multihead_attention(const Masked_multihead_attention_params<float>& params, const cudaStream_t& stream)
|
| 105 |
+
{
|
| 106 |
+
multihead_attention_<float, Masked_multihead_attention_params<float>>(params, stream);
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 110 |
+
|
| 111 |
+
void masked_multihead_attention(const Masked_multihead_attention_params<uint16_t>& params, const cudaStream_t& stream)
|
| 112 |
+
{
|
| 113 |
+
multihead_attention_<uint16_t, Masked_multihead_attention_params<uint16_t>>(params, stream);
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 117 |
+
|
| 118 |
+
#ifdef ENABLE_BF16
|
| 119 |
+
void masked_multihead_attention(const Masked_multihead_attention_params<__nv_bfloat16>& params,
|
| 120 |
+
const cudaStream_t& stream)
|
| 121 |
+
{
|
| 122 |
+
multihead_attention_<__nv_bfloat16, Masked_multihead_attention_params<__nv_bfloat16>>(params, stream);
|
| 123 |
+
}
|
| 124 |
+
#endif
|
| 125 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 126 |
+
|
| 127 |
+
void cross_multihead_attention(const Cross_multihead_attention_params<float>& params, const cudaStream_t& stream)
|
| 128 |
+
{
|
| 129 |
+
multihead_attention_<float, Cross_multihead_attention_params<float>>(params, stream);
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 133 |
+
|
| 134 |
+
void cross_multihead_attention(const Cross_multihead_attention_params<uint16_t>& params, const cudaStream_t& stream)
|
| 135 |
+
{
|
| 136 |
+
multihead_attention_<uint16_t, Cross_multihead_attention_params<uint16_t>>(params, stream);
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 140 |
+
|
| 141 |
+
#ifdef ENABLE_BF16
|
| 142 |
+
void cross_multihead_attention(const Cross_multihead_attention_params<__nv_bfloat16>& params,
|
| 143 |
+
const cudaStream_t& stream)
|
| 144 |
+
{
|
| 145 |
+
multihead_attention_<__nv_bfloat16, Cross_multihead_attention_params<__nv_bfloat16>>(params, stream);
|
| 146 |
+
}
|
| 147 |
+
#endif
|
| 148 |
+
|
| 149 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
flash-attention/csrc/ft_attention/decoder_masked_multihead_attention.h
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Downloaded from from FasterTransformer v5.2.1
|
| 2 |
+
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention.h
|
| 3 |
+
/*
|
| 4 |
+
* Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
|
| 5 |
+
*
|
| 6 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
* you may not use this file except in compliance with the License.
|
| 8 |
+
* You may obtain a copy of the License at
|
| 9 |
+
*
|
| 10 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
*
|
| 12 |
+
* Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
* See the License for the specific language governing permissions and
|
| 16 |
+
* limitations under the License.
|
| 17 |
+
*/
|
| 18 |
+
|
| 19 |
+
#pragma once
|
| 20 |
+
|
| 21 |
+
#include "cuda_bf16_wrapper.h"
|
| 22 |
+
#include <cuda_fp16.h>
|
| 23 |
+
#include <cuda_runtime_api.h>
|
| 24 |
+
#include <stdint.h>
|
| 25 |
+
#include <stdio.h>
|
| 26 |
+
#include <stdlib.h>
|
| 27 |
+
|
| 28 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 29 |
+
|
| 30 |
+
#define CHECK_CUDA(call) \
|
| 31 |
+
do { \
|
| 32 |
+
cudaError_t status_ = call; \
|
| 33 |
+
if (status_ != cudaSuccess) { \
|
| 34 |
+
fprintf(stderr, "CUDA error (%s:%d): %s\n", __FILE__, __LINE__, cudaGetErrorString(status_)); \
|
| 35 |
+
exit(1); \
|
| 36 |
+
} \
|
| 37 |
+
} while (0)
|
| 38 |
+
|
| 39 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 40 |
+
|
| 41 |
+
// The structure of parameters for the masked multihead attention kernel.
|
| 42 |
+
//
|
| 43 |
+
// We use the following terminology to describe the different dimensions.
|
| 44 |
+
//
|
| 45 |
+
// B: Batch size (number of sequences),
|
| 46 |
+
// L: Sequence length,
|
| 47 |
+
// D: Hidden dimension,
|
| 48 |
+
// H: Number of heads,
|
| 49 |
+
// Dh: Hidden dimension per head - Dh = D / H.
|
| 50 |
+
|
| 51 |
+
template<typename T>
|
| 52 |
+
struct Multihead_attention_params_base {
|
| 53 |
+
|
| 54 |
+
// The output buffer. Dimensions B x D.
|
| 55 |
+
T* out = nullptr;
|
| 56 |
+
|
| 57 |
+
// The input Qs and the associated bias. Dimensions B x D and D, resp.
|
| 58 |
+
const T *q = nullptr, *q_bias = nullptr;
|
| 59 |
+
// The input Ks and the associated bias. Dimensions B x D and D, resp.
|
| 60 |
+
const T *k = nullptr, *k_bias = nullptr;
|
| 61 |
+
// The input Vs and the associated bias. Dimensions B x D and D, resp.
|
| 62 |
+
const T *v = nullptr, *v_bias = nullptr;
|
| 63 |
+
|
| 64 |
+
// The cache for the Ks. The size must be at least B x L x D.
|
| 65 |
+
T* k_cache = nullptr;
|
| 66 |
+
// The cache for the Vs. The size must be at least B x L x D.
|
| 67 |
+
T* v_cache = nullptr;
|
| 68 |
+
// The indirections to use for cache when beam sampling.
|
| 69 |
+
const int* cache_indir = nullptr;
|
| 70 |
+
|
| 71 |
+
// Stride to handle the case when KQV is a single buffer
|
| 72 |
+
int stride_q = 0;
|
| 73 |
+
int stride_k = 0;
|
| 74 |
+
int stride_v = 0;
|
| 75 |
+
|
| 76 |
+
// The batch size.
|
| 77 |
+
int batch_size = 0;
|
| 78 |
+
// The beam width
|
| 79 |
+
int beam_width = 0;
|
| 80 |
+
// The sequence length.
|
| 81 |
+
int memory_max_len = 0;
|
| 82 |
+
// The number of heads (H).
|
| 83 |
+
int num_heads = 0;
|
| 84 |
+
int num_heads_kv = 0;
|
| 85 |
+
int num_heads_q_kv_ratio = 0;
|
| 86 |
+
// The hidden dimension per head (Dh).
|
| 87 |
+
int hidden_size_per_head = 0;
|
| 88 |
+
// The per-head latent space reserved for rotary embeddings.
|
| 89 |
+
int rotary_embedding_dim = 0;
|
| 90 |
+
bool neox_rotary_style = false;
|
| 91 |
+
float rotary_base = 0.0f;
|
| 92 |
+
// The maximum length of input sentences.
|
| 93 |
+
int max_input_length = 0;
|
| 94 |
+
// The current timestep. TODO(bhsueh) Check that do we only this param in cross attention?
|
| 95 |
+
int timestep = 0;
|
| 96 |
+
// The current timestep of each sentences (support different timestep for different sentences)
|
| 97 |
+
|
| 98 |
+
// The 1.f / sqrt(Dh). Computed on the host.
|
| 99 |
+
float inv_sqrt_dh = 0.0f;
|
| 100 |
+
|
| 101 |
+
// Used when we have some input context like gpt
|
| 102 |
+
const int* total_padding_tokens = nullptr;
|
| 103 |
+
|
| 104 |
+
const bool* masked_tokens = nullptr;
|
| 105 |
+
const int* prefix_prompt_lengths = nullptr;
|
| 106 |
+
int max_prefix_prompt_length = 0;
|
| 107 |
+
|
| 108 |
+
const T* relative_attention_bias = nullptr;
|
| 109 |
+
int relative_attention_bias_stride = 0;
|
| 110 |
+
// The slope per head of linear position bias to attention score (H).
|
| 111 |
+
const T* linear_bias_slopes = nullptr;
|
| 112 |
+
|
| 113 |
+
const T* ia3_key_weights = nullptr;
|
| 114 |
+
const T* ia3_value_weights = nullptr;
|
| 115 |
+
const int* ia3_tasks = nullptr;
|
| 116 |
+
|
| 117 |
+
const float* qkv_scale_out = nullptr;
|
| 118 |
+
const float* attention_out_scale = nullptr;
|
| 119 |
+
int int8_mode = 0;
|
| 120 |
+
|
| 121 |
+
const T *rotary_cos = nullptr;
|
| 122 |
+
const T *rotary_sin = nullptr;
|
| 123 |
+
|
| 124 |
+
const int *nnz_head_idx = nullptr;
|
| 125 |
+
int nnz_heads = 0;
|
| 126 |
+
};
|
| 127 |
+
|
| 128 |
+
template<typename T, bool CROSS_ATTENTION>
|
| 129 |
+
struct Multihead_attention_params: public Multihead_attention_params_base<T> {
|
| 130 |
+
// output cross attentions
|
| 131 |
+
float* cross_attention_out = nullptr;
|
| 132 |
+
int max_decoder_seq_len = 0;
|
| 133 |
+
bool is_return_cross_attentions = false;
|
| 134 |
+
|
| 135 |
+
// allows to exist attention eary
|
| 136 |
+
bool* finished = nullptr;
|
| 137 |
+
|
| 138 |
+
// required in case of cross attention
|
| 139 |
+
// will need it here till if constexpr in c++17
|
| 140 |
+
int* memory_length_per_sample = nullptr;
|
| 141 |
+
|
| 142 |
+
// required in case of masked attention with different length
|
| 143 |
+
const int* length_per_sample = nullptr;
|
| 144 |
+
};
|
| 145 |
+
|
| 146 |
+
template<typename T>
|
| 147 |
+
struct Multihead_attention_params<T, true>: public Multihead_attention_params_base<T> {
|
| 148 |
+
// output cross attentions
|
| 149 |
+
float* cross_attention_out = nullptr;
|
| 150 |
+
int max_decoder_seq_len = 0;
|
| 151 |
+
bool is_return_cross_attentions = false;
|
| 152 |
+
|
| 153 |
+
// allows to exist attention eary
|
| 154 |
+
bool* finished = nullptr;
|
| 155 |
+
|
| 156 |
+
// required in case of cross attention
|
| 157 |
+
int* memory_length_per_sample = nullptr;
|
| 158 |
+
|
| 159 |
+
// required in case of masked attention with different length
|
| 160 |
+
const int* length_per_sample = nullptr;
|
| 161 |
+
};
|
| 162 |
+
|
| 163 |
+
template<class T>
|
| 164 |
+
using Masked_multihead_attention_params = Multihead_attention_params<T, false>;
|
| 165 |
+
|
| 166 |
+
template<class T>
|
| 167 |
+
using Cross_multihead_attention_params = Multihead_attention_params<T, true>;
|
| 168 |
+
|
| 169 |
+
template<typename T>
|
| 170 |
+
struct outputCrossAttentionParam {
|
| 171 |
+
// max decoder output length
|
| 172 |
+
int max_decoder_seq_len = 0;
|
| 173 |
+
T* cross_attention_out = nullptr;
|
| 174 |
+
bool is_return_cross_attentions = false;
|
| 175 |
+
};
|
| 176 |
+
|
| 177 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 178 |
+
|
| 179 |
+
void masked_multihead_attention(const Masked_multihead_attention_params<float>& params, const cudaStream_t& stream);
|
| 180 |
+
void masked_multihead_attention(const Masked_multihead_attention_params<uint16_t>& params, const cudaStream_t& stream);
|
| 181 |
+
#ifdef ENABLE_BF16
|
| 182 |
+
void masked_multihead_attention(const Masked_multihead_attention_params<__nv_bfloat16>& params,
|
| 183 |
+
const cudaStream_t& stream);
|
| 184 |
+
#endif
|
| 185 |
+
void cross_multihead_attention(const Cross_multihead_attention_params<float>& params, const cudaStream_t& stream);
|
| 186 |
+
void cross_multihead_attention(const Cross_multihead_attention_params<uint16_t>& params, const cudaStream_t& stream);
|
| 187 |
+
#ifdef ENABLE_BF16
|
| 188 |
+
void cross_multihead_attention(const Cross_multihead_attention_params<__nv_bfloat16>& params,
|
| 189 |
+
const cudaStream_t& stream);
|
| 190 |
+
#endif
|
| 191 |
+
|
| 192 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
flash-attention/csrc/ft_attention/decoder_masked_multihead_attention_template.hpp
ADDED
|
@@ -0,0 +1,1619 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Downloaded from from FasterTransformer v5.2.1
|
| 2 |
+
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
|
| 3 |
+
/*
|
| 4 |
+
* Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
|
| 5 |
+
*
|
| 6 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
* you may not use this file except in compliance with the License.
|
| 8 |
+
* You may obtain a copy of the License at
|
| 9 |
+
*
|
| 10 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
*
|
| 12 |
+
* Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
* See the License for the specific language governing permissions and
|
| 16 |
+
* limitations under the License.
|
| 17 |
+
*/
|
| 18 |
+
#pragma once
|
| 19 |
+
|
| 20 |
+
#include "decoder_masked_multihead_attention.h"
|
| 21 |
+
#include "decoder_masked_multihead_attention_utils.h"
|
| 22 |
+
#include "cuda_bf16_wrapper.h"
|
| 23 |
+
#include "cuda_bf16_fallbacks.cuh"
|
| 24 |
+
#include <assert.h>
|
| 25 |
+
#include <float.h>
|
| 26 |
+
#include <type_traits>
|
| 27 |
+
|
| 28 |
+
// #define MMHA_USE_HMMA_FOR_REDUCTION
|
| 29 |
+
|
| 30 |
+
// Below are knobs to extend FP32 accumulation for higher FP16 accuracy
|
| 31 |
+
|
| 32 |
+
// Does not seem to affect the accuracy that much
|
| 33 |
+
#define MMHA_USE_FP32_ACUM_FOR_FMA
|
| 34 |
+
|
| 35 |
+
// Seems to slightly improve the accuracy
|
| 36 |
+
#define MMHA_USE_FP32_ACUM_FOR_OUT
|
| 37 |
+
|
| 38 |
+
#if 0 && defined(MMHA_USE_FP32_ACUM_FOR_OUT)
|
| 39 |
+
// Does not seem to improve the accuracy
|
| 40 |
+
//#define MMHA_USE_FP32_ACUM_FOR_LOGITS
|
| 41 |
+
#endif
|
| 42 |
+
|
| 43 |
+
namespace mmha {
|
| 44 |
+
|
| 45 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 46 |
+
|
| 47 |
+
//
|
| 48 |
+
// We use the following terminology to describe the different dimensions.
|
| 49 |
+
//
|
| 50 |
+
// B: Batch size (number of sequences),
|
| 51 |
+
// L: Sequence length,
|
| 52 |
+
// D: Hidden dimension,
|
| 53 |
+
// H: Number of heads,
|
| 54 |
+
// Dh: Hidden dimension per head - Dh = D / H.
|
| 55 |
+
//
|
| 56 |
+
// The different kernels assign a threadblock for B x H pair. The grid has size (1, B, H). We use
|
| 57 |
+
// 64, 128 and 256 threads per block.
|
| 58 |
+
//
|
| 59 |
+
// Each threadblock loads Dh values from Q and its associated bias. The kernels run a loop to
|
| 60 |
+
// compute Q * K^T where K is loaded from a cache buffer -- except for the current timestep. The
|
| 61 |
+
// cache buffer helps with memory accesses and contains keys with bias.
|
| 62 |
+
//
|
| 63 |
+
// The layout of the cache buffer for the keys is [B, H, Dh/x, L, x] where x == 8 for FP16 and
|
| 64 |
+
// x == 4 for FP32 where the fastest moving dimension (contiguous data) is the rightmost one. The
|
| 65 |
+
// values for x are chosen to create chunks of 16 bytes.
|
| 66 |
+
//
|
| 67 |
+
// The different kernels use 1, 2 or 4 threads per key (THREADS_PER_KEY). The size of the LDGs
|
| 68 |
+
// depends on the number of threads per key. Each thread sums Dh / THREADS_PER_KEY elements. At
|
| 69 |
+
// the end of each iteration of the Q * K^T loop, we perform a reduction between lanes using an
|
| 70 |
+
// HMMA instruction (Tensor Core). Each Q * K^T valuey is stored in shared memory in FP32.
|
| 71 |
+
//
|
| 72 |
+
// After that loop, a parallel softmax is computed across the different Q * K^T values stored in
|
| 73 |
+
// shared memory.
|
| 74 |
+
//
|
| 75 |
+
// The kernel ends with a loop over the values in V. We use THREADS_PER_VALUE to control how many
|
| 76 |
+
// timesteps are computed by loop iteration. As with the keys, the values are read from a cache
|
| 77 |
+
// except for the current timestep. The layout of the cache buffer for the values is much simpler
|
| 78 |
+
// as it is [B, H, L, Dh].
|
| 79 |
+
//
|
| 80 |
+
|
| 81 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 82 |
+
|
| 83 |
+
template<typename T, int Dh>
|
| 84 |
+
struct Qk_vec_ {
|
| 85 |
+
};
|
| 86 |
+
|
| 87 |
+
template<>
|
| 88 |
+
struct Qk_vec_<float, 32> {
|
| 89 |
+
using Type = float;
|
| 90 |
+
};
|
| 91 |
+
template<>
|
| 92 |
+
struct Qk_vec_<float, 64> {
|
| 93 |
+
using Type = float2;
|
| 94 |
+
};
|
| 95 |
+
template<>
|
| 96 |
+
struct Qk_vec_<float, 128> {
|
| 97 |
+
using Type = float4;
|
| 98 |
+
};
|
| 99 |
+
template<>
|
| 100 |
+
struct Qk_vec_<float, 256> {
|
| 101 |
+
using Type = float4;
|
| 102 |
+
};
|
| 103 |
+
template<>
|
| 104 |
+
struct Qk_vec_<uint16_t, 32> {
|
| 105 |
+
using Type = uint32_t;
|
| 106 |
+
};
|
| 107 |
+
template<>
|
| 108 |
+
struct Qk_vec_<uint16_t, 64> {
|
| 109 |
+
using Type = uint32_t;
|
| 110 |
+
};
|
| 111 |
+
template<>
|
| 112 |
+
struct Qk_vec_<uint16_t, 128> {
|
| 113 |
+
using Type = uint2;
|
| 114 |
+
};
|
| 115 |
+
template<>
|
| 116 |
+
struct Qk_vec_<uint16_t, 256> {
|
| 117 |
+
using Type = uint4;
|
| 118 |
+
};
|
| 119 |
+
#ifdef ENABLE_BF16
|
| 120 |
+
template<>
|
| 121 |
+
struct Qk_vec_<__nv_bfloat16, 32> {
|
| 122 |
+
using Type = __nv_bfloat162;
|
| 123 |
+
};
|
| 124 |
+
template<>
|
| 125 |
+
struct Qk_vec_<__nv_bfloat16, 64> {
|
| 126 |
+
using Type = __nv_bfloat162;
|
| 127 |
+
};
|
| 128 |
+
template<>
|
| 129 |
+
struct Qk_vec_<__nv_bfloat16, 128> {
|
| 130 |
+
using Type = bf16_4_t;
|
| 131 |
+
};
|
| 132 |
+
template<>
|
| 133 |
+
struct Qk_vec_<__nv_bfloat16, 256> {
|
| 134 |
+
using Type = bf16_8_t;
|
| 135 |
+
};
|
| 136 |
+
#endif // ENABLE_BF16
|
| 137 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 138 |
+
|
| 139 |
+
template<typename T, int THREADS_PER_KEY>
|
| 140 |
+
struct K_vec_ {
|
| 141 |
+
};
|
| 142 |
+
|
| 143 |
+
template<>
|
| 144 |
+
struct K_vec_<float, 4> {
|
| 145 |
+
using Type = float;
|
| 146 |
+
};
|
| 147 |
+
template<>
|
| 148 |
+
struct K_vec_<float, 2> {
|
| 149 |
+
using Type = float2;
|
| 150 |
+
};
|
| 151 |
+
template<>
|
| 152 |
+
struct K_vec_<float, 1> {
|
| 153 |
+
using Type = float4;
|
| 154 |
+
};
|
| 155 |
+
template<>
|
| 156 |
+
struct K_vec_<uint16_t, 4> {
|
| 157 |
+
using Type = uint32_t;
|
| 158 |
+
};
|
| 159 |
+
template<>
|
| 160 |
+
struct K_vec_<uint16_t, 2> {
|
| 161 |
+
using Type = uint2;
|
| 162 |
+
};
|
| 163 |
+
template<>
|
| 164 |
+
struct K_vec_<uint16_t, 1> {
|
| 165 |
+
using Type = uint4;
|
| 166 |
+
};
|
| 167 |
+
#ifdef ENABLE_BF16
|
| 168 |
+
template<>
|
| 169 |
+
struct K_vec_<__nv_bfloat16, 4> {
|
| 170 |
+
using Type = __nv_bfloat162;
|
| 171 |
+
};
|
| 172 |
+
template<>
|
| 173 |
+
struct K_vec_<__nv_bfloat16, 2> {
|
| 174 |
+
using Type = bf16_4_t;
|
| 175 |
+
};
|
| 176 |
+
template<>
|
| 177 |
+
struct K_vec_<__nv_bfloat16, 1> {
|
| 178 |
+
using Type = bf16_8_t;
|
| 179 |
+
};
|
| 180 |
+
#endif // ENABLE_BF16
|
| 181 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 182 |
+
|
| 183 |
+
template<typename T, int V_VEC_SIZE>
|
| 184 |
+
struct V_vec_ {
|
| 185 |
+
};
|
| 186 |
+
|
| 187 |
+
template<>
|
| 188 |
+
struct V_vec_<float, 1> {
|
| 189 |
+
using Type = float;
|
| 190 |
+
};
|
| 191 |
+
template<>
|
| 192 |
+
struct V_vec_<float, 2> {
|
| 193 |
+
using Type = float2;
|
| 194 |
+
};
|
| 195 |
+
template<>
|
| 196 |
+
struct V_vec_<float, 4> {
|
| 197 |
+
using Type = float4;
|
| 198 |
+
};
|
| 199 |
+
template<>
|
| 200 |
+
struct V_vec_<uint16_t, 2> {
|
| 201 |
+
using Type = uint32_t;
|
| 202 |
+
};
|
| 203 |
+
template<>
|
| 204 |
+
struct V_vec_<uint16_t, 4> {
|
| 205 |
+
using Type = uint2;
|
| 206 |
+
};
|
| 207 |
+
template<>
|
| 208 |
+
struct V_vec_<uint16_t, 8> {
|
| 209 |
+
using Type = uint4;
|
| 210 |
+
};
|
| 211 |
+
#ifdef ENABLE_BF16
|
| 212 |
+
template<>
|
| 213 |
+
struct V_vec_<__nv_bfloat16, 2> {
|
| 214 |
+
using Type = __nv_bfloat162;
|
| 215 |
+
};
|
| 216 |
+
template<>
|
| 217 |
+
struct V_vec_<__nv_bfloat16, 4> {
|
| 218 |
+
using Type = bf16_4_t;
|
| 219 |
+
};
|
| 220 |
+
template<>
|
| 221 |
+
struct V_vec_<__nv_bfloat16, 8> {
|
| 222 |
+
using Type = bf16_8_t;
|
| 223 |
+
};
|
| 224 |
+
#endif // ENABLE_BF16
|
| 225 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 226 |
+
|
| 227 |
+
#ifdef MMHA_USE_FP32_ACUM_FOR_FMA
|
| 228 |
+
template<typename T>
|
| 229 |
+
struct Qk_vec_acum_fp32_ {
|
| 230 |
+
};
|
| 231 |
+
|
| 232 |
+
template<>
|
| 233 |
+
struct Qk_vec_acum_fp32_<float> {
|
| 234 |
+
using Type = float;
|
| 235 |
+
};
|
| 236 |
+
template<>
|
| 237 |
+
struct Qk_vec_acum_fp32_<float2> {
|
| 238 |
+
using Type = float2;
|
| 239 |
+
};
|
| 240 |
+
template<>
|
| 241 |
+
struct Qk_vec_acum_fp32_<float4> {
|
| 242 |
+
using Type = float4;
|
| 243 |
+
};
|
| 244 |
+
// template<> struct Qk_vec_acum_fp32_<uint16_t> { using Type = float; };
|
| 245 |
+
template<>
|
| 246 |
+
struct Qk_vec_acum_fp32_<uint32_t> {
|
| 247 |
+
using Type = float2;
|
| 248 |
+
};
|
| 249 |
+
template<>
|
| 250 |
+
struct Qk_vec_acum_fp32_<uint2> {
|
| 251 |
+
using Type = Float4_;
|
| 252 |
+
};
|
| 253 |
+
template<>
|
| 254 |
+
struct Qk_vec_acum_fp32_<uint4> {
|
| 255 |
+
using Type = Float8_;
|
| 256 |
+
};
|
| 257 |
+
template<>
|
| 258 |
+
struct Qk_vec_acum_fp32_<__nv_bfloat16> {
|
| 259 |
+
using Type = float;
|
| 260 |
+
};
|
| 261 |
+
template<>
|
| 262 |
+
struct Qk_vec_acum_fp32_<__nv_bfloat162> {
|
| 263 |
+
using Type = float2;
|
| 264 |
+
};
|
| 265 |
+
template<>
|
| 266 |
+
struct Qk_vec_acum_fp32_<bf16_4_t> {
|
| 267 |
+
using Type = Float4_;
|
| 268 |
+
};
|
| 269 |
+
template<>
|
| 270 |
+
struct Qk_vec_acum_fp32_<bf16_8_t> {
|
| 271 |
+
using Type = Float8_;
|
| 272 |
+
};
|
| 273 |
+
|
| 274 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 275 |
+
|
| 276 |
+
template<typename T>
|
| 277 |
+
struct K_vec_acum_fp32_ {
|
| 278 |
+
};
|
| 279 |
+
|
| 280 |
+
template<>
|
| 281 |
+
struct K_vec_acum_fp32_<float> {
|
| 282 |
+
using Type = float;
|
| 283 |
+
};
|
| 284 |
+
template<>
|
| 285 |
+
struct K_vec_acum_fp32_<float2> {
|
| 286 |
+
using Type = float2;
|
| 287 |
+
};
|
| 288 |
+
template<>
|
| 289 |
+
struct K_vec_acum_fp32_<float4> {
|
| 290 |
+
using Type = float4;
|
| 291 |
+
};
|
| 292 |
+
template<>
|
| 293 |
+
struct K_vec_acum_fp32_<uint32_t> {
|
| 294 |
+
using Type = float2;
|
| 295 |
+
};
|
| 296 |
+
template<>
|
| 297 |
+
struct K_vec_acum_fp32_<uint2> {
|
| 298 |
+
using Type = Float4_;
|
| 299 |
+
};
|
| 300 |
+
template<>
|
| 301 |
+
struct K_vec_acum_fp32_<uint4> {
|
| 302 |
+
using Type = Float8_;
|
| 303 |
+
};
|
| 304 |
+
template<>
|
| 305 |
+
struct K_vec_acum_fp32_<__nv_bfloat16> {
|
| 306 |
+
using Type = float;
|
| 307 |
+
};
|
| 308 |
+
template<>
|
| 309 |
+
struct K_vec_acum_fp32_<__nv_bfloat162> {
|
| 310 |
+
using Type = float2;
|
| 311 |
+
};
|
| 312 |
+
template<>
|
| 313 |
+
struct K_vec_acum_fp32_<bf16_4_t> {
|
| 314 |
+
using Type = Float4_;
|
| 315 |
+
};
|
| 316 |
+
template<>
|
| 317 |
+
struct K_vec_acum_fp32_<bf16_8_t> {
|
| 318 |
+
using Type = Float8_;
|
| 319 |
+
};
|
| 320 |
+
#endif
|
| 321 |
+
|
| 322 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 323 |
+
|
| 324 |
+
#ifdef MMHA_USE_FP32_ACUM_FOR_OUT
|
| 325 |
+
template<typename T>
|
| 326 |
+
struct V_vec_acum_fp32_ {
|
| 327 |
+
};
|
| 328 |
+
|
| 329 |
+
template<>
|
| 330 |
+
struct V_vec_acum_fp32_<float> {
|
| 331 |
+
using Type = float;
|
| 332 |
+
};
|
| 333 |
+
template<>
|
| 334 |
+
struct V_vec_acum_fp32_<float2> {
|
| 335 |
+
using Type = float2;
|
| 336 |
+
};
|
| 337 |
+
template<>
|
| 338 |
+
struct V_vec_acum_fp32_<float4> {
|
| 339 |
+
using Type = float4;
|
| 340 |
+
};
|
| 341 |
+
template<>
|
| 342 |
+
struct V_vec_acum_fp32_<uint32_t> {
|
| 343 |
+
using Type = float2;
|
| 344 |
+
};
|
| 345 |
+
template<>
|
| 346 |
+
struct V_vec_acum_fp32_<uint2> {
|
| 347 |
+
using Type = Float4_;
|
| 348 |
+
};
|
| 349 |
+
template<>
|
| 350 |
+
struct V_vec_acum_fp32_<uint4> {
|
| 351 |
+
using Type = Float8_;
|
| 352 |
+
};
|
| 353 |
+
#ifdef ENABLE_BF16
|
| 354 |
+
template<>
|
| 355 |
+
struct V_vec_acum_fp32_<__nv_bfloat162> {
|
| 356 |
+
using Type = float2;
|
| 357 |
+
};
|
| 358 |
+
template<>
|
| 359 |
+
struct V_vec_acum_fp32_<bf16_4_t> {
|
| 360 |
+
using Type = Float4_;
|
| 361 |
+
};
|
| 362 |
+
template<>
|
| 363 |
+
struct V_vec_acum_fp32_<bf16_8_t> {
|
| 364 |
+
using Type = Float8_;
|
| 365 |
+
};
|
| 366 |
+
#endif // ENABLE_BF16
|
| 367 |
+
#endif
|
| 368 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 369 |
+
|
| 370 |
+
template<int THREADS_PER_KEY, typename K_vec, int N>
|
| 371 |
+
inline __device__ float qk_dot_(const K_vec (&q)[N], const K_vec (&k)[N])
|
| 372 |
+
{
|
| 373 |
+
#ifdef MMHA_USE_FP32_ACUM_FOR_FMA
|
| 374 |
+
using K_vec_acum = typename K_vec_acum_fp32_<K_vec>::Type;
|
| 375 |
+
#else
|
| 376 |
+
using K_vec_acum = K_vec;
|
| 377 |
+
#endif
|
| 378 |
+
// Compute the parallel products for Q*K^T (treat vector lanes separately).
|
| 379 |
+
K_vec_acum qk_vec = mul<K_vec_acum, K_vec, K_vec>(q[0], k[0]);
|
| 380 |
+
#pragma unroll
|
| 381 |
+
for (int ii = 1; ii < N; ++ii) {
|
| 382 |
+
qk_vec = fma(q[ii], k[ii], qk_vec);
|
| 383 |
+
}
|
| 384 |
+
|
| 385 |
+
// Finalize the reduction across lanes.
|
| 386 |
+
float qk = sum(qk_vec);
|
| 387 |
+
#pragma unroll
|
| 388 |
+
for (int mask = THREADS_PER_KEY / 2; mask >= 1; mask /= 2) {
|
| 389 |
+
qk += __shfl_xor_sync(uint32_t(-1), qk, mask);
|
| 390 |
+
}
|
| 391 |
+
return qk;
|
| 392 |
+
}
|
| 393 |
+
|
| 394 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 395 |
+
|
| 396 |
+
template<typename T, int THREADS_PER_KEY>
|
| 397 |
+
struct Qk_dot {
|
| 398 |
+
template<typename K_vec, int N>
|
| 399 |
+
static inline __device__ float dot(const K_vec (&q)[N], const K_vec (&k)[N])
|
| 400 |
+
{
|
| 401 |
+
return qk_dot_<THREADS_PER_KEY>(q, k);
|
| 402 |
+
}
|
| 403 |
+
};
|
| 404 |
+
|
| 405 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 406 |
+
|
| 407 |
+
inline __device__ float4 hmma_fp32(const uint2& a, uint32_t b)
|
| 408 |
+
{
|
| 409 |
+
float4 c;
|
| 410 |
+
float zero = 0.f;
|
| 411 |
+
asm volatile("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 \n"
|
| 412 |
+
" {%0, %1, %2, %3}, \n"
|
| 413 |
+
" {%4, %5}, \n"
|
| 414 |
+
" {%6}, \n"
|
| 415 |
+
" {%7, %7, %7, %7}; \n"
|
| 416 |
+
|
| 417 |
+
: "=f"(c.x), "=f"(c.y), "=f"(c.z), "=f"(c.w)
|
| 418 |
+
: "r"(a.x) "r"(a.y), "r"(b), "f"(zero));
|
| 419 |
+
return c;
|
| 420 |
+
}
|
| 421 |
+
|
| 422 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 423 |
+
|
| 424 |
+
template<int N>
|
| 425 |
+
inline __device__ float qk_hmma_dot_(const uint32_t (&q)[N], const uint32_t (&k)[N])
|
| 426 |
+
{
|
| 427 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 750
|
| 428 |
+
#ifdef MMHA_USE_FP32_ACUM_FOR_FMA
|
| 429 |
+
using K_vec_acum = typename K_vec_acum_fp32_<uint32_t>::Type;
|
| 430 |
+
#else
|
| 431 |
+
using K_vec_acum = uint32_t;
|
| 432 |
+
#endif
|
| 433 |
+
K_vec_acum qk_vec = mul<K_vec_acum, uint32_t, uint32_t>(q[0], k[0]);
|
| 434 |
+
#pragma unroll
|
| 435 |
+
for (int ii = 1; ii < N; ++ii) {
|
| 436 |
+
qk_vec = fma(q[ii], k[ii], qk_vec);
|
| 437 |
+
}
|
| 438 |
+
#ifdef MMHA_USE_FP32_ACUM_FOR_FMA
|
| 439 |
+
uint32_t qk_vec_ = float2_to_half2(qk_vec);
|
| 440 |
+
return hmma_fp32(make_uint2(qk_vec_, 0u), 0x3c003c00u).x;
|
| 441 |
+
#else
|
| 442 |
+
return hmma_fp32(make_uint2(qk_vec, 0u), 0x3c003c00u).x;
|
| 443 |
+
#endif
|
| 444 |
+
#else
|
| 445 |
+
return 0.f;
|
| 446 |
+
#endif
|
| 447 |
+
}
|
| 448 |
+
|
| 449 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 450 |
+
|
| 451 |
+
template<>
|
| 452 |
+
struct Qk_dot<uint16_t, 4> {
|
| 453 |
+
template<int N>
|
| 454 |
+
static inline __device__ float dot(const uint32_t (&q)[N], const uint32_t (&k)[N])
|
| 455 |
+
{
|
| 456 |
+
#if __CUDA_ARCH__ >= 750 && defined(MMHA_USE_HMMA_FOR_REDUCTION)
|
| 457 |
+
return qk_hmma_dot_(q, k);
|
| 458 |
+
#else
|
| 459 |
+
return qk_dot_<4>(q, k);
|
| 460 |
+
#endif // defined MMHA_USE_HMMA_FOR_REDUCTION
|
| 461 |
+
}
|
| 462 |
+
};
|
| 463 |
+
|
| 464 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 465 |
+
|
| 466 |
+
template<int WARPS_PER_BLOCK, int WARP_SIZE = 32>
|
| 467 |
+
inline __device__ float block_sum(float* red_smem, float sum)
|
| 468 |
+
{
|
| 469 |
+
|
| 470 |
+
// Decompose the thread index into warp / lane.
|
| 471 |
+
int warp = threadIdx.x / WARP_SIZE;
|
| 472 |
+
int lane = threadIdx.x % WARP_SIZE;
|
| 473 |
+
|
| 474 |
+
// Compute the sum per warp.
|
| 475 |
+
#pragma unroll
|
| 476 |
+
for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
|
| 477 |
+
sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
|
| 478 |
+
}
|
| 479 |
+
|
| 480 |
+
// Warp leaders store the data to shared memory.
|
| 481 |
+
if (lane == 0) {
|
| 482 |
+
red_smem[warp] = sum;
|
| 483 |
+
}
|
| 484 |
+
|
| 485 |
+
// Make sure the data is in shared memory.
|
| 486 |
+
__syncthreads();
|
| 487 |
+
|
| 488 |
+
// The warps compute the final sums.
|
| 489 |
+
if (lane < WARPS_PER_BLOCK) {
|
| 490 |
+
sum = red_smem[lane];
|
| 491 |
+
}
|
| 492 |
+
|
| 493 |
+
// Parallel reduction inside the warp.
|
| 494 |
+
#pragma unroll
|
| 495 |
+
for (int mask = WARPS_PER_BLOCK / 2; mask >= 1; mask /= 2) {
|
| 496 |
+
sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
|
| 497 |
+
}
|
| 498 |
+
|
| 499 |
+
// Broadcast to other threads.
|
| 500 |
+
return __shfl_sync(uint32_t(-1), sum, 0);
|
| 501 |
+
}
|
| 502 |
+
|
| 503 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 504 |
+
|
| 505 |
+
inline __device__ void convert_from_float(float& dst, float src)
|
| 506 |
+
{
|
| 507 |
+
dst = src;
|
| 508 |
+
}
|
| 509 |
+
|
| 510 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 511 |
+
|
| 512 |
+
inline __device__ void convert_from_float(uint16_t& dst, float src)
|
| 513 |
+
{
|
| 514 |
+
dst = float_to_half(src);
|
| 515 |
+
}
|
| 516 |
+
|
| 517 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 518 |
+
|
| 519 |
+
inline __device__ void convert_from_float(uint32_t& dst, float2 src)
|
| 520 |
+
{
|
| 521 |
+
dst = float2_to_half2(src);
|
| 522 |
+
}
|
| 523 |
+
|
| 524 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 525 |
+
#ifdef ENABLE_BF16
|
| 526 |
+
inline __device__ void convert_from_float(__nv_bfloat16& dst, float src)
|
| 527 |
+
{
|
| 528 |
+
dst = __float2bfloat16(src);
|
| 529 |
+
}
|
| 530 |
+
|
| 531 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 532 |
+
|
| 533 |
+
inline __device__ void convert_from_float(__nv_bfloat162& dst, float2 src)
|
| 534 |
+
{
|
| 535 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
| 536 |
+
dst = __float22bfloat162_rn(src);
|
| 537 |
+
#else
|
| 538 |
+
dst = __floats2bfloat162_rn(src.x, src.y);
|
| 539 |
+
#endif
|
| 540 |
+
}
|
| 541 |
+
#endif // ENABLE_BF16
|
| 542 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 543 |
+
|
| 544 |
+
inline __device__ void convert_from_float(uint2& dst, Float4_ src)
|
| 545 |
+
{
|
| 546 |
+
dst.x = float2_to_half2(src.x);
|
| 547 |
+
dst.y = float2_to_half2(src.y);
|
| 548 |
+
}
|
| 549 |
+
|
| 550 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 551 |
+
|
| 552 |
+
inline __device__ void convert_from_float(uint2& dst, float4 src)
|
| 553 |
+
{
|
| 554 |
+
convert_from_float(dst, Float4_{make_float2(src.x, src.y), make_float2(src.z, src.w)});
|
| 555 |
+
}
|
| 556 |
+
|
| 557 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 558 |
+
|
| 559 |
+
inline __device__ void convert_from_float(uint4& dst, Float8_ src)
|
| 560 |
+
{
|
| 561 |
+
dst.x = float2_to_half2(src.x);
|
| 562 |
+
dst.y = float2_to_half2(src.y);
|
| 563 |
+
dst.z = float2_to_half2(src.z);
|
| 564 |
+
dst.w = float2_to_half2(src.w);
|
| 565 |
+
}
|
| 566 |
+
|
| 567 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 568 |
+
|
| 569 |
+
#ifdef ENABLE_BF16
|
| 570 |
+
inline __device__ void convert_from_float(bf16_4_t& dst, Float4_ src)
|
| 571 |
+
{
|
| 572 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
| 573 |
+
dst.x = __float22bfloat162_rn(src.x);
|
| 574 |
+
dst.y = __float22bfloat162_rn(src.y);
|
| 575 |
+
#else
|
| 576 |
+
dst.x = __floats2bfloat162_rn(src.x.x, src.x.y);
|
| 577 |
+
dst.y = __floats2bfloat162_rn(src.y.x, src.y.y);
|
| 578 |
+
#endif
|
| 579 |
+
}
|
| 580 |
+
|
| 581 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 582 |
+
|
| 583 |
+
inline __device__ void convert_from_float(bf16_4_t& dst, float4 src)
|
| 584 |
+
{
|
| 585 |
+
convert_from_float(dst, Float4_{make_float2(src.x, src.y), make_float2(src.z, src.w)});
|
| 586 |
+
}
|
| 587 |
+
|
| 588 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 589 |
+
|
| 590 |
+
inline __device__ void convert_from_float(bf16_8_t& dst, Float8_ src)
|
| 591 |
+
{
|
| 592 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
| 593 |
+
dst.x = __float22bfloat162_rn(src.x);
|
| 594 |
+
dst.y = __float22bfloat162_rn(src.y);
|
| 595 |
+
dst.z = __float22bfloat162_rn(src.z);
|
| 596 |
+
dst.w = __float22bfloat162_rn(src.w);
|
| 597 |
+
#else
|
| 598 |
+
dst.x = __floats2bfloat162_rn(src.x.x, src.x.y);
|
| 599 |
+
dst.y = __floats2bfloat162_rn(src.y.x, src.y.y);
|
| 600 |
+
dst.z = __floats2bfloat162_rn(src.z.x, src.z.y);
|
| 601 |
+
dst.w = __floats2bfloat162_rn(src.w.x, src.w.y);
|
| 602 |
+
#endif
|
| 603 |
+
}
|
| 604 |
+
#endif // ENABLE_BF16
|
| 605 |
+
|
| 606 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 607 |
+
|
| 608 |
+
inline __device__ void convert_from_float(float2& dst, float2 src)
|
| 609 |
+
{
|
| 610 |
+
dst = src;
|
| 611 |
+
}
|
| 612 |
+
|
| 613 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 614 |
+
|
| 615 |
+
inline __device__ void convert_from_float(float4& dst, float4 src)
|
| 616 |
+
{
|
| 617 |
+
dst = src;
|
| 618 |
+
}
|
| 619 |
+
|
| 620 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 621 |
+
|
| 622 |
+
inline __device__ float convert_to_float(float4 u)
|
| 623 |
+
{
|
| 624 |
+
return u.x;
|
| 625 |
+
}
|
| 626 |
+
|
| 627 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 628 |
+
|
| 629 |
+
inline __device__ float convert_to_float(uint4 u)
|
| 630 |
+
{
|
| 631 |
+
float2 tmp = half2_to_float2(u.x);
|
| 632 |
+
return tmp.x;
|
| 633 |
+
}
|
| 634 |
+
|
| 635 |
+
#if defined(MMHA_USE_FP32_ACUM_FOR_LOGITS)
|
| 636 |
+
|
| 637 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 638 |
+
|
| 639 |
+
inline __device__ float cast_to_float(float u)
|
| 640 |
+
{
|
| 641 |
+
return u;
|
| 642 |
+
}
|
| 643 |
+
|
| 644 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 645 |
+
|
| 646 |
+
inline __device__ float2 cast_to_float(float2 u)
|
| 647 |
+
{
|
| 648 |
+
return u;
|
| 649 |
+
}
|
| 650 |
+
|
| 651 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 652 |
+
|
| 653 |
+
inline __device__ float4 cast_to_float(float4 u)
|
| 654 |
+
{
|
| 655 |
+
return u;
|
| 656 |
+
}
|
| 657 |
+
|
| 658 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 659 |
+
|
| 660 |
+
inline __device__ Float4_ cast_to_float(Float4_ u)
|
| 661 |
+
{
|
| 662 |
+
return u;
|
| 663 |
+
}
|
| 664 |
+
|
| 665 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 666 |
+
|
| 667 |
+
inline __device__ Float8_ cast_to_float(Float8_ u)
|
| 668 |
+
{
|
| 669 |
+
return u;
|
| 670 |
+
}
|
| 671 |
+
|
| 672 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 673 |
+
|
| 674 |
+
inline __device__ float2 cast_to_float(uint32_t u)
|
| 675 |
+
{
|
| 676 |
+
return half2_to_float2(u);
|
| 677 |
+
}
|
| 678 |
+
|
| 679 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 680 |
+
|
| 681 |
+
inline __device__ Float4_ cast_to_float(uint2 u)
|
| 682 |
+
{
|
| 683 |
+
Float4_ tmp;
|
| 684 |
+
tmp.x = half2_to_float2(u.x);
|
| 685 |
+
tmp.y = half2_to_float2(u.y);
|
| 686 |
+
return tmp;
|
| 687 |
+
}
|
| 688 |
+
|
| 689 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 690 |
+
|
| 691 |
+
inline __device__ Float8_ cast_to_float(uint4 u)
|
| 692 |
+
{
|
| 693 |
+
Float8_ tmp;
|
| 694 |
+
tmp.x = half2_to_float2(u.x);
|
| 695 |
+
tmp.y = half2_to_float2(u.y);
|
| 696 |
+
tmp.z = half2_to_float2(u.z);
|
| 697 |
+
tmp.w = half2_to_float2(u.w);
|
| 698 |
+
return tmp;
|
| 699 |
+
}
|
| 700 |
+
|
| 701 |
+
#endif
|
| 702 |
+
|
| 703 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 704 |
+
|
| 705 |
+
inline __device__ float float_from_int8(int8_t u)
|
| 706 |
+
{
|
| 707 |
+
return u;
|
| 708 |
+
}
|
| 709 |
+
|
| 710 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 711 |
+
|
| 712 |
+
inline __device__ float2 float_from_int8(int16_t u)
|
| 713 |
+
{
|
| 714 |
+
union {
|
| 715 |
+
int16_t int16;
|
| 716 |
+
int8_t int8[2];
|
| 717 |
+
};
|
| 718 |
+
int16 = u;
|
| 719 |
+
return make_float2(int8[0], int8[1]);
|
| 720 |
+
}
|
| 721 |
+
|
| 722 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 723 |
+
|
| 724 |
+
inline __device__ float4 float_from_int8(int32_t u)
|
| 725 |
+
{
|
| 726 |
+
union {
|
| 727 |
+
int32_t int32;
|
| 728 |
+
int8_t int8[4];
|
| 729 |
+
};
|
| 730 |
+
int32 = u;
|
| 731 |
+
return make_float4(int8[0], int8[1], int8[2], int8[3]);
|
| 732 |
+
}
|
| 733 |
+
|
| 734 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 735 |
+
|
| 736 |
+
// clang-format off
|
| 737 |
+
inline __device__ Float8_ float_from_int8(int64_t u)
|
| 738 |
+
{
|
| 739 |
+
union {
|
| 740 |
+
int64_t int64;
|
| 741 |
+
int16_t int16[4];
|
| 742 |
+
};
|
| 743 |
+
int64 = u;
|
| 744 |
+
return Float8_ {float_from_int8(int16[0]),
|
| 745 |
+
float_from_int8(int16[1]),
|
| 746 |
+
float_from_int8(int16[2]),
|
| 747 |
+
float_from_int8(int16[3])};
|
| 748 |
+
}
|
| 749 |
+
// clang-format on
|
| 750 |
+
|
| 751 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 752 |
+
|
| 753 |
+
inline __device__ int8_t cast_to_int8(float val)
|
| 754 |
+
{
|
| 755 |
+
union {
|
| 756 |
+
int8_t int8[2];
|
| 757 |
+
int16_t int16;
|
| 758 |
+
};
|
| 759 |
+
asm volatile("cvt.rni.sat.s8.f32 %0, %1;" : "=h"(int16) : "f"(val));
|
| 760 |
+
return int8[0];
|
| 761 |
+
}
|
| 762 |
+
|
| 763 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 764 |
+
|
| 765 |
+
inline __device__ int32_t cast_to_int8(float4 val)
|
| 766 |
+
{
|
| 767 |
+
union {
|
| 768 |
+
int8_t int8[4];
|
| 769 |
+
int32_t int32;
|
| 770 |
+
};
|
| 771 |
+
int8[0] = cast_to_int8(val.x);
|
| 772 |
+
int8[1] = cast_to_int8(val.y);
|
| 773 |
+
int8[2] = cast_to_int8(val.z);
|
| 774 |
+
int8[3] = cast_to_int8(val.w);
|
| 775 |
+
return int32;
|
| 776 |
+
}
|
| 777 |
+
|
| 778 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 779 |
+
|
| 780 |
+
inline __device__ int64_t cast_to_int8(Float8_ val)
|
| 781 |
+
{
|
| 782 |
+
union {
|
| 783 |
+
int8_t int8[8];
|
| 784 |
+
int64_t int64;
|
| 785 |
+
};
|
| 786 |
+
int8[0] = cast_to_int8(val.x.x);
|
| 787 |
+
int8[1] = cast_to_int8(val.x.y);
|
| 788 |
+
int8[2] = cast_to_int8(val.y.x);
|
| 789 |
+
int8[3] = cast_to_int8(val.y.y);
|
| 790 |
+
int8[4] = cast_to_int8(val.z.x);
|
| 791 |
+
int8[5] = cast_to_int8(val.z.y);
|
| 792 |
+
int8[6] = cast_to_int8(val.w.x);
|
| 793 |
+
int8[7] = cast_to_int8(val.w.y);
|
| 794 |
+
return int64;
|
| 795 |
+
}
|
| 796 |
+
|
| 797 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 798 |
+
|
| 799 |
+
template<typename T>
|
| 800 |
+
inline __device__ __host__ T div_up(T m, T n)
|
| 801 |
+
{
|
| 802 |
+
return (m + n - 1) / n;
|
| 803 |
+
}
|
| 804 |
+
|
| 805 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 806 |
+
|
| 807 |
+
template<typename T, bool DO_CROSS_ATTENTION>
|
| 808 |
+
inline size_t smem_size_in_bytes(const Multihead_attention_params<T, DO_CROSS_ATTENTION>& params,
|
| 809 |
+
int threads_per_value,
|
| 810 |
+
int threads_per_block)
|
| 811 |
+
{
|
| 812 |
+
// The amount of shared memory needed to store the Q*K^T values in float.
|
| 813 |
+
const int max_timesteps = min(params.timestep, params.memory_max_len);
|
| 814 |
+
size_t qk_sz = (DO_CROSS_ATTENTION) ? div_up(params.memory_max_len + 1, 4) * 16 : div_up(max_timesteps + 1, 4) * 16;
|
| 815 |
+
|
| 816 |
+
// The extra memory needed if we are not using floats for the final logits.
|
| 817 |
+
size_t logits_sz = 0;
|
| 818 |
+
#ifndef MMHA_USE_FP32_ACUM_FOR_LOGITS
|
| 819 |
+
if (sizeof(T) != 4) {
|
| 820 |
+
// TDOD
|
| 821 |
+
logits_sz = (DO_CROSS_ATTENTION) ? div_up(params.memory_max_len + 1, 4) * 4 * sizeof(T) :
|
| 822 |
+
div_up(max_timesteps + 1, 4) * 4 * sizeof(T);
|
| 823 |
+
}
|
| 824 |
+
#endif
|
| 825 |
+
|
| 826 |
+
// The total size needed during softmax.
|
| 827 |
+
size_t softmax_sz = qk_sz + logits_sz;
|
| 828 |
+
|
| 829 |
+
// The number of partial rows to reduce in the final reduction.
|
| 830 |
+
int rows_per_red = threads_per_block / threads_per_value;
|
| 831 |
+
// The amount of storage needed to finalize the outputs.
|
| 832 |
+
size_t red_sz = rows_per_red * params.hidden_size_per_head * sizeof(T) / 2;
|
| 833 |
+
|
| 834 |
+
size_t transpose_rotary_size = 0;
|
| 835 |
+
if (params.rotary_embedding_dim > 0 && params.neox_rotary_style) {
|
| 836 |
+
transpose_rotary_size = 2 * params.rotary_embedding_dim * sizeof(T);
|
| 837 |
+
}
|
| 838 |
+
|
| 839 |
+
// The max.
|
| 840 |
+
return max(max(softmax_sz, red_sz), transpose_rotary_size);
|
| 841 |
+
}
|
| 842 |
+
|
| 843 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 844 |
+
|
| 845 |
+
inline __device__ constexpr uint32_t shfl_mask(int threads)
|
| 846 |
+
{
|
| 847 |
+
return threads == 32 ? uint32_t(-1) : (1u << threads) - 1u;
|
| 848 |
+
}
|
| 849 |
+
|
| 850 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 851 |
+
|
| 852 |
+
template<
|
| 853 |
+
// The type of the inputs. Supported types: float and half.
|
| 854 |
+
typename T,
|
| 855 |
+
// The hidden dimension per head.
|
| 856 |
+
int Dh,
|
| 857 |
+
int Dh_MAX,
|
| 858 |
+
// The number of threads per key.
|
| 859 |
+
int THREADS_PER_KEY,
|
| 860 |
+
// The number of threads per value.
|
| 861 |
+
int THREADS_PER_VALUE,
|
| 862 |
+
// The number of threads in a threadblock.
|
| 863 |
+
int THREADS_PER_BLOCK,
|
| 864 |
+
bool DO_CROSS_ATTENTION>
|
| 865 |
+
__global__ void masked_multihead_attention_kernel(Multihead_attention_params<T, DO_CROSS_ATTENTION> params)
|
| 866 |
+
{
|
| 867 |
+
|
| 868 |
+
// Make sure the hidden dimension per head is a multiple of the number of threads per key.
|
| 869 |
+
static_assert(Dh_MAX % THREADS_PER_KEY == 0, "");
|
| 870 |
+
// Make sure the hidden dimension per head is a multiple of the number of threads per value.
|
| 871 |
+
static_assert(Dh_MAX % THREADS_PER_VALUE == 0, "");
|
| 872 |
+
|
| 873 |
+
// The size of a warp.
|
| 874 |
+
constexpr int WARP_SIZE = 32;
|
| 875 |
+
// The number of warps in a threadblock.
|
| 876 |
+
constexpr int WARPS_PER_BLOCK = THREADS_PER_BLOCK / WARP_SIZE;
|
| 877 |
+
|
| 878 |
+
// Use smem_size_in_bytes (above) to determine the amount of shared memory.
|
| 879 |
+
extern __shared__ char smem_[];
|
| 880 |
+
|
| 881 |
+
// The shared memory for the Q*K^T values and partial logits in softmax.
|
| 882 |
+
float* qk_smem = reinterpret_cast<float*>(smem_);
|
| 883 |
+
|
| 884 |
+
// The shared memory for the logits. For FP32, that's the same buffer as qk_smem.
|
| 885 |
+
char* logits_smem_ = smem_;
|
| 886 |
+
#ifndef MMHA_USE_FP32_ACUM_FOR_LOGITS
|
| 887 |
+
if (sizeof(T) != 4) {
|
| 888 |
+
// TODO - change to tlength
|
| 889 |
+
const int max_timesteps = min(params.timestep, params.memory_max_len);
|
| 890 |
+
logits_smem_ +=
|
| 891 |
+
(DO_CROSS_ATTENTION) ? div_up(params.memory_max_len + 1, 4) * 16 : div_up(max_timesteps + 1, 4) * 16;
|
| 892 |
+
}
|
| 893 |
+
T* logits_smem = reinterpret_cast<T*>(logits_smem_);
|
| 894 |
+
#else
|
| 895 |
+
float* logits_smem = reinterpret_cast<float*>(logits_smem_);
|
| 896 |
+
#endif
|
| 897 |
+
|
| 898 |
+
// The shared memory to do the final reduction for the output values. Reuse qk_smem.
|
| 899 |
+
T* out_smem = reinterpret_cast<T*>(smem_);
|
| 900 |
+
|
| 901 |
+
// The shared memory buffers for the block-wide reductions. One for max, one for sum.
|
| 902 |
+
__shared__ float red_smem[WARPS_PER_BLOCK * 2];
|
| 903 |
+
|
| 904 |
+
// A vector of Q or K elements for the current timestep.
|
| 905 |
+
using Qk_vec = typename Qk_vec_<T, Dh_MAX>::Type;
|
| 906 |
+
|
| 907 |
+
// Use alignment for safely casting the shared buffers as Qk_vec.
|
| 908 |
+
// Shared memory to store Q inputs.
|
| 909 |
+
__shared__ __align__(sizeof(Qk_vec)) T q_smem[Dh_MAX];
|
| 910 |
+
|
| 911 |
+
// This is one of the reasons we should have a separate kernel for cross attention
|
| 912 |
+
__shared__ __align__(sizeof(Qk_vec)) T bias_smem[DO_CROSS_ATTENTION ? Dh_MAX : 1];
|
| 913 |
+
|
| 914 |
+
// A vector of Q or K elements for the current timestep.
|
| 915 |
+
using Qk_vec = typename Qk_vec_<T, Dh_MAX>::Type;
|
| 916 |
+
// The number of elements per vector.
|
| 917 |
+
constexpr int QK_VEC_SIZE = sizeof(Qk_vec) / sizeof(T);
|
| 918 |
+
// Make sure the hidden size per head is a multiple of the vector size.
|
| 919 |
+
static_assert(Dh_MAX % QK_VEC_SIZE == 0, "");
|
| 920 |
+
// We will use block wide reduction if needed
|
| 921 |
+
// static_assert(Dh_MAX / QK_VEC_SIZE <= WARP_SIZE, "");
|
| 922 |
+
// The number of vectors per warp.
|
| 923 |
+
constexpr int QK_VECS_PER_WARP = Dh_MAX / QK_VEC_SIZE;
|
| 924 |
+
|
| 925 |
+
// The layout of the cache is [B, H, Dh/x, L, x] with x == 4/8 for FP32/FP16. Since each thread
|
| 926 |
+
// owns x elements, we have to decompose the linear index into chunks of x values and the posi-
|
| 927 |
+
// tion of the thread in that chunk.
|
| 928 |
+
|
| 929 |
+
// The number of elements in a chunk of 16B (that's the x in the above formula).
|
| 930 |
+
constexpr int QK_ELTS_IN_16B = 16 / sizeof(T);
|
| 931 |
+
// The number of K vectors in 16B.
|
| 932 |
+
constexpr int QK_VECS_IN_16B = 16 / sizeof(Qk_vec);
|
| 933 |
+
|
| 934 |
+
// The batch/beam idx
|
| 935 |
+
const int bi = blockIdx.y;
|
| 936 |
+
if (params.finished != nullptr && params.finished[bi] == true) {
|
| 937 |
+
return;
|
| 938 |
+
}
|
| 939 |
+
// The beam idx
|
| 940 |
+
const int beami = bi % params.beam_width;
|
| 941 |
+
// The "beam-aware" batch idx
|
| 942 |
+
const int bbi = bi / params.beam_width;
|
| 943 |
+
// The head.
|
| 944 |
+
// const int hi = blockIdx.x;
|
| 945 |
+
const int hi = params.nnz_head_idx == nullptr ? blockIdx.x : params.nnz_head_idx[blockIdx.x];
|
| 946 |
+
const int hi_kv = hi / params.num_heads_q_kv_ratio;
|
| 947 |
+
// Combine the batch and the head indices.
|
| 948 |
+
const int bhi = bi * params.num_heads + hi;
|
| 949 |
+
const int bhi_kv = bi * params.num_heads_kv + hi_kv;
|
| 950 |
+
// Combine the "beam-aware" batch idx and the head indices.
|
| 951 |
+
const int bbhi = bbi * params.beam_width * params.num_heads_kv + hi_kv;
|
| 952 |
+
// The thread in the block.
|
| 953 |
+
const int tidx = threadIdx.x;
|
| 954 |
+
|
| 955 |
+
const bool handle_kv = !DO_CROSS_ATTENTION || (DO_CROSS_ATTENTION && params.timestep == 0);
|
| 956 |
+
|
| 957 |
+
// While doing the product Q*K^T for the different keys we track the max.
|
| 958 |
+
float qk_max = -FLT_MAX;
|
| 959 |
+
|
| 960 |
+
float qk = 0.0F;
|
| 961 |
+
|
| 962 |
+
int q_base_offset = (params.stride_q == 0) ? bhi * Dh : bi * params.stride_q + hi * Dh;
|
| 963 |
+
int k_base_offset = (params.stride_k == 0) ? bhi_kv * Dh : bi * params.stride_k + hi_kv * Dh;
|
| 964 |
+
int v_base_offset = (params.stride_v == 0) ? bhi_kv * Dh : bi * params.stride_v + hi_kv * Dh;
|
| 965 |
+
|
| 966 |
+
const size_t bi_seq_len_offset = bi * params.memory_max_len;
|
| 967 |
+
|
| 968 |
+
// int tlength = (DO_CROSS_ATTENTION)? params.memory_length_per_sample[bi] - 1 : params.timestep;
|
| 969 |
+
int tlength = (DO_CROSS_ATTENTION) ? params.memory_length_per_sample[bi] - 1 :
|
| 970 |
+
(params.length_per_sample == nullptr) ?
|
| 971 |
+
params.timestep :
|
| 972 |
+
params.length_per_sample[bi] + params.max_prefix_prompt_length;
|
| 973 |
+
const int first_step = max(0, tlength + 1 - params.memory_max_len);
|
| 974 |
+
const int tlength_circ = tlength % params.memory_max_len;
|
| 975 |
+
|
| 976 |
+
// First QK_VECS_PER_WARP load Q and K + the bias values for the current timestep.
|
| 977 |
+
const bool is_masked = tidx >= QK_VECS_PER_WARP;
|
| 978 |
+
|
| 979 |
+
// The offset in the Q and K buffer also accounts for the batch.
|
| 980 |
+
int q_offset = q_base_offset + tidx * QK_VEC_SIZE;
|
| 981 |
+
int k_offset = k_base_offset + tidx * QK_VEC_SIZE;
|
| 982 |
+
// The offset in the bias buffer.
|
| 983 |
+
int q_bias_offset = hi * Dh + tidx * QK_VEC_SIZE;
|
| 984 |
+
int k_bias_offset = hi_kv * Dh + tidx * QK_VEC_SIZE;
|
| 985 |
+
|
| 986 |
+
const bool do_ia3 = handle_kv && params.ia3_tasks != nullptr;
|
| 987 |
+
const int ia3_task_id = do_ia3 ? params.ia3_tasks[bbi] : 0;
|
| 988 |
+
|
| 989 |
+
// Trigger the loads from the Q and K buffers.
|
| 990 |
+
Qk_vec q;
|
| 991 |
+
zero(q);
|
| 992 |
+
if (!is_masked && (Dh == Dh_MAX || tidx * QK_VEC_SIZE < Dh)) {
|
| 993 |
+
if (params.int8_mode == 2) {
|
| 994 |
+
using Packed_Int8_t = typename packed_type<int8_t, num_elems<Qk_vec>::value>::type;
|
| 995 |
+
using Packed_Float_t = typename packed_type<float, num_elems<Qk_vec>::value>::type;
|
| 996 |
+
const auto q_scaling = params.qkv_scale_out[0];
|
| 997 |
+
const auto q_quant =
|
| 998 |
+
*reinterpret_cast<const Packed_Int8_t*>(&reinterpret_cast<const int8_t*>(params.q)[q_offset]);
|
| 999 |
+
|
| 1000 |
+
convert_from_float(q, mul<Packed_Float_t, float>(q_scaling, float_from_int8(q_quant)));
|
| 1001 |
+
}
|
| 1002 |
+
else {
|
| 1003 |
+
q = *reinterpret_cast<const Qk_vec*>(¶ms.q[q_offset]);
|
| 1004 |
+
}
|
| 1005 |
+
}
|
| 1006 |
+
|
| 1007 |
+
Qk_vec k;
|
| 1008 |
+
zero(k);
|
| 1009 |
+
if (DO_CROSS_ATTENTION) {
|
| 1010 |
+
// The 16B chunk written by the thread.
|
| 1011 |
+
int co = tidx / QK_VECS_IN_16B;
|
| 1012 |
+
// The position of the thread in that 16B chunk.
|
| 1013 |
+
int ci = tidx % QK_VECS_IN_16B * QK_VEC_SIZE;
|
| 1014 |
+
|
| 1015 |
+
// Two chunks are separated by L * x elements. A thread write QK_VEC_SIZE elements.
|
| 1016 |
+
int offset = bhi_kv * params.memory_max_len * Dh + co * params.memory_max_len * QK_ELTS_IN_16B +
|
| 1017 |
+
// params.timestep*QK_ELTS_IN_16B +
|
| 1018 |
+
tlength * QK_ELTS_IN_16B + ci;
|
| 1019 |
+
k = !is_masked && (Dh == Dh_MAX || tidx * QK_VEC_SIZE < Dh) ?
|
| 1020 |
+
*reinterpret_cast<const Qk_vec*>(¶ms.k_cache[offset]) :
|
| 1021 |
+
k;
|
| 1022 |
+
}
|
| 1023 |
+
else {
|
| 1024 |
+
if (!is_masked && (Dh == Dh_MAX || tidx * QK_VEC_SIZE < Dh)) {
|
| 1025 |
+
if (params.int8_mode == 2) {
|
| 1026 |
+
using Packed_Int8_t = typename packed_type<int8_t, num_elems<Qk_vec>::value>::type;
|
| 1027 |
+
using Packed_Float_t = typename packed_type<float, num_elems<Qk_vec>::value>::type;
|
| 1028 |
+
const auto k_scaling = params.qkv_scale_out[1];
|
| 1029 |
+
const auto k_quant =
|
| 1030 |
+
*reinterpret_cast<const Packed_Int8_t*>(&reinterpret_cast<const int8_t*>(params.k)[k_offset]);
|
| 1031 |
+
|
| 1032 |
+
convert_from_float(k, mul<Packed_Float_t, float>(k_scaling, float_from_int8(k_quant)));
|
| 1033 |
+
}
|
| 1034 |
+
else {
|
| 1035 |
+
k = *reinterpret_cast<const Qk_vec*>(¶ms.k[k_offset]);
|
| 1036 |
+
}
|
| 1037 |
+
}
|
| 1038 |
+
}
|
| 1039 |
+
|
| 1040 |
+
// Trigger the loads from the Q and K bias buffers.
|
| 1041 |
+
Qk_vec q_bias;
|
| 1042 |
+
zero(q_bias);
|
| 1043 |
+
q_bias = (!is_masked && Dh == Dh_MAX || tidx * QK_VEC_SIZE < Dh) && params.q_bias != nullptr ?
|
| 1044 |
+
*reinterpret_cast<const Qk_vec*>(¶ms.q_bias[q_bias_offset]) :
|
| 1045 |
+
q_bias;
|
| 1046 |
+
|
| 1047 |
+
Qk_vec k_bias;
|
| 1048 |
+
zero(k_bias);
|
| 1049 |
+
if (handle_kv) {
|
| 1050 |
+
k_bias = !is_masked && (Dh == Dh_MAX || tidx * QK_VEC_SIZE < Dh) && params.k_bias != nullptr ?
|
| 1051 |
+
*reinterpret_cast<const Qk_vec*>(¶ms.k_bias[k_bias_offset]) :
|
| 1052 |
+
k_bias;
|
| 1053 |
+
}
|
| 1054 |
+
|
| 1055 |
+
// Computes the Q/K values with bias.
|
| 1056 |
+
q = add(q, q_bias);
|
| 1057 |
+
if (handle_kv) {
|
| 1058 |
+
k = add(k, k_bias);
|
| 1059 |
+
}
|
| 1060 |
+
if (do_ia3 && !is_masked) {
|
| 1061 |
+
k = mul<Qk_vec, Qk_vec, Qk_vec>(
|
| 1062 |
+
k,
|
| 1063 |
+
*reinterpret_cast<const Qk_vec*>(
|
| 1064 |
+
¶ms.ia3_key_weights[(ia3_task_id * params.num_heads + hi) * Dh + tidx * QK_VEC_SIZE]));
|
| 1065 |
+
}
|
| 1066 |
+
|
| 1067 |
+
// Padded len
|
| 1068 |
+
const int padd_len = (params.total_padding_tokens == nullptr) ? 0 : params.total_padding_tokens[bi];
|
| 1069 |
+
if (params.rotary_embedding_dim > 0 && !params.neox_rotary_style) {
|
| 1070 |
+
if (handle_kv) {
|
| 1071 |
+
if (params.rotary_cos == nullptr) {
|
| 1072 |
+
apply_rotary_embedding(q, k, tidx, params.rotary_embedding_dim, tlength - padd_len, params.rotary_base);
|
| 1073 |
+
} else {
|
| 1074 |
+
apply_rotary_embedding(q, k, tidx, params.rotary_embedding_dim, tlength - padd_len,
|
| 1075 |
+
params.rotary_cos + bi * params.rotary_embedding_dim / 2,
|
| 1076 |
+
params.rotary_sin + bi * params.rotary_embedding_dim / 2);
|
| 1077 |
+
}
|
| 1078 |
+
}
|
| 1079 |
+
else {
|
| 1080 |
+
if (params.rotary_cos == nullptr) {
|
| 1081 |
+
apply_rotary_embedding(q, tidx, params.rotary_embedding_dim, tlength - padd_len, params.rotary_base);
|
| 1082 |
+
} else {
|
| 1083 |
+
apply_rotary_embedding(q, tidx, params.rotary_embedding_dim, tlength - padd_len,
|
| 1084 |
+
params.rotary_cos + bi * params.rotary_embedding_dim / 2,
|
| 1085 |
+
params.rotary_sin + bi * params.rotary_embedding_dim / 2);
|
| 1086 |
+
}
|
| 1087 |
+
}
|
| 1088 |
+
}
|
| 1089 |
+
else if (params.rotary_embedding_dim > 0 && params.neox_rotary_style) {
|
| 1090 |
+
const bool do_rotary = !is_masked && QK_VEC_SIZE * tidx < params.rotary_embedding_dim;
|
| 1091 |
+
|
| 1092 |
+
T* q_smem = reinterpret_cast<T*>(smem_);
|
| 1093 |
+
T* k_smem = q_smem + params.rotary_embedding_dim;
|
| 1094 |
+
|
| 1095 |
+
const int half_rotary_dim = params.rotary_embedding_dim / 2;
|
| 1096 |
+
const int half_idx = (tidx * QK_VEC_SIZE) / half_rotary_dim;
|
| 1097 |
+
const int intra_half_idx = (tidx * QK_VEC_SIZE) % half_rotary_dim;
|
| 1098 |
+
const int smem_pitch = half_rotary_dim; // TODO: adjust for bank conflicts
|
| 1099 |
+
|
| 1100 |
+
assert(half_rotary_dim % QK_VEC_SIZE == 0);
|
| 1101 |
+
|
| 1102 |
+
if (do_rotary) {
|
| 1103 |
+
*reinterpret_cast<Qk_vec*>(q_smem + half_idx * smem_pitch + intra_half_idx) = q;
|
| 1104 |
+
|
| 1105 |
+
if (handle_kv) {
|
| 1106 |
+
*reinterpret_cast<Qk_vec*>(k_smem + half_idx * smem_pitch + intra_half_idx) = k;
|
| 1107 |
+
}
|
| 1108 |
+
}
|
| 1109 |
+
|
| 1110 |
+
__syncthreads();
|
| 1111 |
+
|
| 1112 |
+
const int transpose_idx = half_idx * (half_rotary_dim / 2) + intra_half_idx / 2;
|
| 1113 |
+
constexpr int tidx_factor = (QK_VEC_SIZE > 1) ? QK_VEC_SIZE / 2 : 1;
|
| 1114 |
+
if (do_rotary) {
|
| 1115 |
+
mmha::vec_from_smem_transpose(q, q_smem, transpose_idx, smem_pitch);
|
| 1116 |
+
|
| 1117 |
+
if (handle_kv) {
|
| 1118 |
+
mmha::vec_from_smem_transpose(k, k_smem, transpose_idx, smem_pitch);
|
| 1119 |
+
|
| 1120 |
+
if (params.rotary_cos == nullptr) {
|
| 1121 |
+
mmha::apply_rotary_embedding(
|
| 1122 |
+
q, k, transpose_idx / tidx_factor, params.rotary_embedding_dim, tlength - padd_len, params.rotary_base);
|
| 1123 |
+
} else {
|
| 1124 |
+
mmha::apply_rotary_embedding(
|
| 1125 |
+
q, k, transpose_idx / tidx_factor, params.rotary_embedding_dim, tlength - padd_len,
|
| 1126 |
+
params.rotary_cos + bi * params.rotary_embedding_dim / 2,
|
| 1127 |
+
params.rotary_sin + bi * params.rotary_embedding_dim / 2);
|
| 1128 |
+
}
|
| 1129 |
+
|
| 1130 |
+
mmha::write_smem_transpose(k, k_smem, transpose_idx, smem_pitch);
|
| 1131 |
+
}
|
| 1132 |
+
else {
|
| 1133 |
+
if (params.rotary_cos == nullptr) {
|
| 1134 |
+
mmha::apply_rotary_embedding(
|
| 1135 |
+
q, transpose_idx / tidx_factor, params.rotary_embedding_dim, tlength, params.rotary_base);
|
| 1136 |
+
} else {
|
| 1137 |
+
mmha::apply_rotary_embedding(
|
| 1138 |
+
q, transpose_idx / tidx_factor, params.rotary_embedding_dim, tlength,
|
| 1139 |
+
params.rotary_cos + bi * params.rotary_embedding_dim / 2,
|
| 1140 |
+
params.rotary_sin + bi * params.rotary_embedding_dim / 2);
|
| 1141 |
+
}
|
| 1142 |
+
}
|
| 1143 |
+
mmha::write_smem_transpose(q, q_smem, transpose_idx, smem_pitch);
|
| 1144 |
+
}
|
| 1145 |
+
|
| 1146 |
+
__syncthreads();
|
| 1147 |
+
|
| 1148 |
+
if (do_rotary) {
|
| 1149 |
+
q = *reinterpret_cast<Qk_vec*>(q_smem + half_idx * smem_pitch + intra_half_idx);
|
| 1150 |
+
if (handle_kv) {
|
| 1151 |
+
k = *reinterpret_cast<Qk_vec*>(k_smem + half_idx * smem_pitch + intra_half_idx);
|
| 1152 |
+
}
|
| 1153 |
+
}
|
| 1154 |
+
|
| 1155 |
+
__syncthreads();
|
| 1156 |
+
}
|
| 1157 |
+
|
| 1158 |
+
if (!is_masked) {
|
| 1159 |
+
// Store the Q values to shared memory.
|
| 1160 |
+
*reinterpret_cast<Qk_vec*>(&q_smem[tidx * QK_VEC_SIZE]) = q;
|
| 1161 |
+
|
| 1162 |
+
// Store Dh values of k_bias into smem, since will need to add later
|
| 1163 |
+
// if params.timestep == 0
|
| 1164 |
+
if (DO_CROSS_ATTENTION && params.timestep == 0) {
|
| 1165 |
+
*reinterpret_cast<Qk_vec*>(&bias_smem[tidx * QK_VEC_SIZE]) = k_bias;
|
| 1166 |
+
}
|
| 1167 |
+
|
| 1168 |
+
// Write the K values to the global memory cache.
|
| 1169 |
+
//
|
| 1170 |
+
// NOTE: The stores are uncoalesced as we have multiple chunks of 16B spread across the memory
|
| 1171 |
+
// system. We designed it this way as it allows much better memory loads (and there are many
|
| 1172 |
+
// more loads) + the stores are really "write and forget" since we won't need the ack before
|
| 1173 |
+
// the end of the kernel. There's plenty of time for the transactions to complete.
|
| 1174 |
+
|
| 1175 |
+
// The 16B chunk written by the thread.
|
| 1176 |
+
int co = tidx / QK_VECS_IN_16B;
|
| 1177 |
+
// The position of the thread in that 16B chunk.
|
| 1178 |
+
int ci = tidx % QK_VECS_IN_16B * QK_VEC_SIZE;
|
| 1179 |
+
|
| 1180 |
+
// Two chunks are separated by L * x elements. A thread write QK_VEC_SIZE elements.
|
| 1181 |
+
int offset = bhi_kv * params.memory_max_len * Dh + co * params.memory_max_len * QK_ELTS_IN_16B +
|
| 1182 |
+
// params.timestep*QK_ELTS_IN_16B +
|
| 1183 |
+
tlength_circ * QK_ELTS_IN_16B + ci;
|
| 1184 |
+
|
| 1185 |
+
if (handle_kv && hi % params.num_heads_q_kv_ratio == 0) {
|
| 1186 |
+
// Trigger the stores to global memory.
|
| 1187 |
+
if (Dh == Dh_MAX || co < Dh / QK_ELTS_IN_16B) {
|
| 1188 |
+
*reinterpret_cast<Qk_vec*>(¶ms.k_cache[offset]) = k;
|
| 1189 |
+
}
|
| 1190 |
+
}
|
| 1191 |
+
|
| 1192 |
+
// Compute \sum_i Q[i] * K^T[i] for the current timestep.
|
| 1193 |
+
#ifdef MMHA_USE_FP32_ACUM_FOR_FMA
|
| 1194 |
+
using Qk_vec_acum = typename Qk_vec_acum_fp32_<Qk_vec>::Type;
|
| 1195 |
+
#else
|
| 1196 |
+
using Qk_vec_acum = Qk_vec;
|
| 1197 |
+
#endif
|
| 1198 |
+
qk = dot<Qk_vec_acum, Qk_vec>(q, k);
|
| 1199 |
+
if (QK_VECS_PER_WARP <= WARP_SIZE) {
|
| 1200 |
+
#pragma unroll
|
| 1201 |
+
for (int mask = QK_VECS_PER_WARP / 2; mask >= 1; mask /= 2) {
|
| 1202 |
+
qk += __shfl_xor_sync(shfl_mask(QK_VECS_PER_WARP), qk, mask);
|
| 1203 |
+
}
|
| 1204 |
+
}
|
| 1205 |
+
}
|
| 1206 |
+
|
| 1207 |
+
if (QK_VECS_PER_WARP > WARP_SIZE) {
|
| 1208 |
+
constexpr int WARPS_PER_RED = (QK_VECS_PER_WARP + WARP_SIZE - 1) / WARP_SIZE;
|
| 1209 |
+
qk = block_sum<WARPS_PER_RED>(&red_smem[WARPS_PER_RED], qk);
|
| 1210 |
+
}
|
| 1211 |
+
|
| 1212 |
+
// Store that value in shared memory. Keep the Q*K^T value in register for softmax.
|
| 1213 |
+
if (tidx == 0) {
|
| 1214 |
+
// Normalize qk.
|
| 1215 |
+
qk *= params.inv_sqrt_dh;
|
| 1216 |
+
if (params.relative_attention_bias != nullptr) {
|
| 1217 |
+
qk = add(qk,
|
| 1218 |
+
params.relative_attention_bias[hi * params.relative_attention_bias_stride
|
| 1219 |
+
* params.relative_attention_bias_stride
|
| 1220 |
+
+ (tlength - padd_len) * params.relative_attention_bias_stride
|
| 1221 |
+
+ (tlength - padd_len)]);
|
| 1222 |
+
}
|
| 1223 |
+
// We don't need to apply the linear position bias here since qi - ki = 0 yields the position bias 0.
|
| 1224 |
+
|
| 1225 |
+
qk_max = qk;
|
| 1226 |
+
qk_smem[tlength - first_step] = qk;
|
| 1227 |
+
// qk_smem[params.timestep] = qk;
|
| 1228 |
+
}
|
| 1229 |
+
|
| 1230 |
+
// Make sure the data is in shared memory.
|
| 1231 |
+
__syncthreads();
|
| 1232 |
+
|
| 1233 |
+
// The type of queries and keys for the math in the Q*K^T product.
|
| 1234 |
+
using K_vec = typename K_vec_<T, THREADS_PER_KEY>::Type;
|
| 1235 |
+
// The number of elements per vector.
|
| 1236 |
+
constexpr int K_VEC_SIZE = sizeof(K_vec) / sizeof(T);
|
| 1237 |
+
// Make sure the hidden size per head is a multiple of the vector size.
|
| 1238 |
+
static_assert(Dh_MAX % K_VEC_SIZE == 0, "");
|
| 1239 |
+
// The number of elements per thread.
|
| 1240 |
+
constexpr int K_ELTS_PER_THREAD = Dh_MAX / THREADS_PER_KEY;
|
| 1241 |
+
// The number of vectors per thread.
|
| 1242 |
+
constexpr int K_VECS_PER_THREAD = K_ELTS_PER_THREAD / K_VEC_SIZE;
|
| 1243 |
+
|
| 1244 |
+
// The position the first key loaded by each thread from the cache buffer (for this B * H).
|
| 1245 |
+
int ko = tidx / THREADS_PER_KEY;
|
| 1246 |
+
// The position of the thread in the chunk of keys.
|
| 1247 |
+
int ki = tidx % THREADS_PER_KEY * K_VEC_SIZE;
|
| 1248 |
+
|
| 1249 |
+
static_assert(Dh_MAX == THREADS_PER_KEY * K_VEC_SIZE * K_VECS_PER_THREAD);
|
| 1250 |
+
|
| 1251 |
+
// Load the Q values from shared memory. The values are reused during the loop on K.
|
| 1252 |
+
K_vec q_vec[K_VECS_PER_THREAD];
|
| 1253 |
+
#pragma unroll
|
| 1254 |
+
for (int ii = 0; ii < K_VECS_PER_THREAD; ++ii) {
|
| 1255 |
+
q_vec[ii] = *reinterpret_cast<const K_vec*>(&q_smem[ki + ii * THREADS_PER_KEY * K_VEC_SIZE]);
|
| 1256 |
+
}
|
| 1257 |
+
|
| 1258 |
+
K_vec k_bias_vec[DO_CROSS_ATTENTION ? K_VECS_PER_THREAD : 1];
|
| 1259 |
+
if (DO_CROSS_ATTENTION && params.timestep == 0) {
|
| 1260 |
+
#pragma unroll
|
| 1261 |
+
for (int ii = 0; ii < K_VECS_PER_THREAD; ++ii) {
|
| 1262 |
+
k_bias_vec[ii] = *reinterpret_cast<const K_vec*>(&bias_smem[ki + ii * THREADS_PER_KEY * K_VEC_SIZE]);
|
| 1263 |
+
}
|
| 1264 |
+
}
|
| 1265 |
+
|
| 1266 |
+
// The number of timesteps loaded per iteration.
|
| 1267 |
+
constexpr int K_PER_ITER = THREADS_PER_BLOCK / THREADS_PER_KEY;
|
| 1268 |
+
// The number of keys per warp.
|
| 1269 |
+
constexpr int K_PER_WARP = WARP_SIZE / THREADS_PER_KEY;
|
| 1270 |
+
|
| 1271 |
+
// The base pointer for the key in the cache buffer.
|
| 1272 |
+
T* k_cache = ¶ms.k_cache[bhi_kv * params.memory_max_len * Dh + ki];
|
| 1273 |
+
// Base pointer for the beam's batch, before offsetting with indirection buffer
|
| 1274 |
+
T* k_cache_batch = ¶ms.k_cache[bbhi * params.memory_max_len * Dh + ki];
|
| 1275 |
+
|
| 1276 |
+
// Pick a number of keys to make sure all the threads of a warp enter (due to shfl_sync).
|
| 1277 |
+
// int ti_end = div_up(params.timestep, K_PER_WARP) * K_PER_WARP;
|
| 1278 |
+
int ti_end = div_up(tlength - first_step, K_PER_WARP) * K_PER_WARP + first_step;
|
| 1279 |
+
|
| 1280 |
+
// prefix prompt length if has
|
| 1281 |
+
const int prefix_prompt_length = (params.prefix_prompt_lengths == nullptr) ? 0 : params.prefix_prompt_lengths[bi];
|
| 1282 |
+
|
| 1283 |
+
// Iterate over the keys/timesteps to compute the various (Q*K^T)_{ti} values.
|
| 1284 |
+
const bool has_beams = params.cache_indir != nullptr;
|
| 1285 |
+
const int* beam_indices = has_beams ? ¶ms.cache_indir[bi_seq_len_offset] : nullptr;
|
| 1286 |
+
|
| 1287 |
+
for (int ti = first_step + ko; ti < ti_end; ti += K_PER_ITER) {
|
| 1288 |
+
const int ti_circ = ti % params.memory_max_len;
|
| 1289 |
+
|
| 1290 |
+
// The keys loaded from the key cache.
|
| 1291 |
+
K_vec k[K_VECS_PER_THREAD];
|
| 1292 |
+
K_vec k_vec_zero;
|
| 1293 |
+
zero(k_vec_zero);
|
| 1294 |
+
#pragma unroll
|
| 1295 |
+
for (int ii = 0; ii < K_VECS_PER_THREAD; ++ii) {
|
| 1296 |
+
int jj = ii * params.memory_max_len + ti_circ;
|
| 1297 |
+
// if( ti < params.timestep ) {
|
| 1298 |
+
const bool within_bounds = (Dh == Dh_MAX || jj * QK_ELTS_IN_16B < Dh * params.memory_max_len);
|
| 1299 |
+
if (ti < tlength) {
|
| 1300 |
+
if (!within_bounds) {
|
| 1301 |
+
k[ii] = k_vec_zero;
|
| 1302 |
+
}
|
| 1303 |
+
else {
|
| 1304 |
+
if (has_beams) {
|
| 1305 |
+
const int beam_offset = beam_indices[ti_circ] * params.num_heads * params.memory_max_len * Dh;
|
| 1306 |
+
k[ii] = *reinterpret_cast<const K_vec*>(&k_cache_batch[beam_offset + jj * QK_ELTS_IN_16B]);
|
| 1307 |
+
}
|
| 1308 |
+
else {
|
| 1309 |
+
k[ii] = *reinterpret_cast<const K_vec*>(&k_cache_batch[jj * QK_ELTS_IN_16B]);
|
| 1310 |
+
}
|
| 1311 |
+
}
|
| 1312 |
+
// add bias and update k_cache
|
| 1313 |
+
if (DO_CROSS_ATTENTION && params.timestep == 0) {
|
| 1314 |
+
k[ii] = add(k[ii], k_bias_vec[ii]);
|
| 1315 |
+
|
| 1316 |
+
if (do_ia3) {
|
| 1317 |
+
k[ii] = mul<K_vec, K_vec, K_vec>(
|
| 1318 |
+
k[ii],
|
| 1319 |
+
*reinterpret_cast<const K_vec*>(
|
| 1320 |
+
¶ms.ia3_key_weights[(ia3_task_id * params.num_heads + hi) * Dh + ki
|
| 1321 |
+
+ ii * THREADS_PER_KEY * K_VEC_SIZE]));
|
| 1322 |
+
}
|
| 1323 |
+
|
| 1324 |
+
if (Dh == Dh_MAX || jj * QK_ELTS_IN_16B < Dh * params.memory_max_len) {
|
| 1325 |
+
*reinterpret_cast<K_vec*>(&k_cache[jj * QK_ELTS_IN_16B]) = k[ii];
|
| 1326 |
+
}
|
| 1327 |
+
}
|
| 1328 |
+
}
|
| 1329 |
+
}
|
| 1330 |
+
|
| 1331 |
+
// Perform the dot product and normalize qk.
|
| 1332 |
+
//
|
| 1333 |
+
// WARNING: ALL THE THREADS OF A WARP MUST ENTER!!!
|
| 1334 |
+
float qk = Qk_dot<T, THREADS_PER_KEY>::dot(q_vec, k) * params.inv_sqrt_dh;
|
| 1335 |
+
bool is_mask = (params.masked_tokens != nullptr) && params.masked_tokens[bi_seq_len_offset + ti];
|
| 1336 |
+
|
| 1337 |
+
// Store the product to shared memory. There's one qk value per timestep. Update the max.
|
| 1338 |
+
// if( ti < params.timestep && tidx % THREADS_PER_KEY == 0 ) {
|
| 1339 |
+
if (ti < tlength && tidx % THREADS_PER_KEY == 0) {
|
| 1340 |
+
if (params.relative_attention_bias != nullptr) {
|
| 1341 |
+
qk = add(qk,
|
| 1342 |
+
params.relative_attention_bias[hi * params.relative_attention_bias_stride
|
| 1343 |
+
* params.relative_attention_bias_stride
|
| 1344 |
+
+ tlength * params.relative_attention_bias_stride + ti]);
|
| 1345 |
+
}
|
| 1346 |
+
if (params.linear_bias_slopes != nullptr) {
|
| 1347 |
+
// Apply the linear position bias: (ki - qi) * slope[hi].
|
| 1348 |
+
// The padding token locates between the input context and the generated tokens.
|
| 1349 |
+
// We need to remove the number of padding tokens in the distance computation.
|
| 1350 |
+
// ti : 0 1 2 3 4 5 6 7 8 9(tlength)
|
| 1351 |
+
// token: i i i i p p p o o o where i=input, p=pad, o=output.
|
| 1352 |
+
// e.g. ti = 2, dist = (9 - 3) - 2 = 4.
|
| 1353 |
+
int max_context_length = params.max_prefix_prompt_length + params.max_input_length;
|
| 1354 |
+
float dist = (ti < max_context_length ? ti + padd_len : ti) - tlength;
|
| 1355 |
+
|
| 1356 |
+
qk += mul<float, T, float>(params.linear_bias_slopes[hi], dist);
|
| 1357 |
+
}
|
| 1358 |
+
qk_max = is_mask ? qk_max : fmaxf(qk_max, qk);
|
| 1359 |
+
qk_smem[ti - first_step] = qk;
|
| 1360 |
+
}
|
| 1361 |
+
}
|
| 1362 |
+
|
| 1363 |
+
// Perform the final reduction to compute the max inside each warp.
|
| 1364 |
+
//
|
| 1365 |
+
// NOTE: In a group of THREADS_PER_KEY threads, the leader already has the max value for the
|
| 1366 |
+
// group so it's not needed to run the reduction inside the group (again).
|
| 1367 |
+
#pragma unroll
|
| 1368 |
+
for (int mask = WARP_SIZE / 2; mask >= THREADS_PER_KEY; mask /= 2) {
|
| 1369 |
+
qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
|
| 1370 |
+
}
|
| 1371 |
+
|
| 1372 |
+
// Decompose the thread index into warp and lane.
|
| 1373 |
+
const int warp = tidx / WARP_SIZE;
|
| 1374 |
+
const int lane = tidx % WARP_SIZE;
|
| 1375 |
+
|
| 1376 |
+
// The warp leader writes the max to shared memory.
|
| 1377 |
+
if (lane == 0) {
|
| 1378 |
+
red_smem[warp] = qk_max;
|
| 1379 |
+
}
|
| 1380 |
+
|
| 1381 |
+
// Make sure the products are in shared memory.
|
| 1382 |
+
__syncthreads();
|
| 1383 |
+
|
| 1384 |
+
// The warps finalize the reduction.
|
| 1385 |
+
qk_max = lane < WARPS_PER_BLOCK ? red_smem[lane] : -FLT_MAX;
|
| 1386 |
+
#pragma unroll
|
| 1387 |
+
for (int mask = WARPS_PER_BLOCK / 2; mask >= 1; mask /= 2) {
|
| 1388 |
+
qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
|
| 1389 |
+
}
|
| 1390 |
+
|
| 1391 |
+
// Broadcast to all the threads in the warp.
|
| 1392 |
+
qk_max = __shfl_sync(uint32_t(-1), qk_max, 0);
|
| 1393 |
+
|
| 1394 |
+
// Compute the logits and start the sum.
|
| 1395 |
+
float sum = 0.f;
|
| 1396 |
+
// for( int ti = tidx; ti <= params.timestep; ti += THREADS_PER_BLOCK ) {
|
| 1397 |
+
for (int ti = first_step + tidx; ti <= tlength; ti += THREADS_PER_BLOCK) {
|
| 1398 |
+
bool is_mask = (params.masked_tokens != nullptr) && params.masked_tokens[bi_seq_len_offset + ti];
|
| 1399 |
+
float logit = is_mask ? 0.f : __expf(qk_smem[ti - first_step] - qk_max);
|
| 1400 |
+
sum += logit;
|
| 1401 |
+
qk_smem[ti - first_step] = logit;
|
| 1402 |
+
}
|
| 1403 |
+
|
| 1404 |
+
// Compute the sum.
|
| 1405 |
+
sum = block_sum<WARPS_PER_BLOCK>(&red_smem[WARPS_PER_BLOCK], sum);
|
| 1406 |
+
|
| 1407 |
+
// Normalize the logits.
|
| 1408 |
+
float inv_sum = __fdividef(1.f, sum + 1.e-6f);
|
| 1409 |
+
// for( int ti = tidx; ti <= params.timestep; ti += THREADS_PER_BLOCK ) {
|
| 1410 |
+
const size_t cross_attention_out_offset =
|
| 1411 |
+
params.is_return_cross_attentions ?
|
| 1412 |
+
bhi * params.max_decoder_seq_len * params.memory_max_len + params.timestep * params.memory_max_len :
|
| 1413 |
+
0;
|
| 1414 |
+
for (int ti = first_step + tidx; ti <= tlength; ti += THREADS_PER_BLOCK) {
|
| 1415 |
+
float logit = qk_smem[ti - first_step] * inv_sum;
|
| 1416 |
+
if (params.is_return_cross_attentions) {
|
| 1417 |
+
params.cross_attention_out[cross_attention_out_offset + ti] = logit;
|
| 1418 |
+
}
|
| 1419 |
+
convert_from_float(logits_smem[ti - first_step], logit);
|
| 1420 |
+
}
|
| 1421 |
+
|
| 1422 |
+
// Put Values part below so we leverage __syncthreads
|
| 1423 |
+
// from the previous step
|
| 1424 |
+
|
| 1425 |
+
// The number of elements per vector.
|
| 1426 |
+
constexpr int V_VEC_SIZE = Dh_MAX / THREADS_PER_VALUE;
|
| 1427 |
+
// A vector of V elements for the current timestep.
|
| 1428 |
+
using V_vec = typename V_vec_<T, V_VEC_SIZE>::Type;
|
| 1429 |
+
|
| 1430 |
+
// The value computed by this thread.
|
| 1431 |
+
int vo = tidx / THREADS_PER_VALUE;
|
| 1432 |
+
// The hidden dimensions computed by this particular thread.
|
| 1433 |
+
int vi = tidx % THREADS_PER_VALUE * V_VEC_SIZE;
|
| 1434 |
+
|
| 1435 |
+
// The base pointer for the value in the cache buffer.
|
| 1436 |
+
T* v_cache = ¶ms.v_cache[bhi_kv * params.memory_max_len * Dh + vi];
|
| 1437 |
+
// Base pointer for the beam's batch, before offsetting with indirection buffer
|
| 1438 |
+
T* v_cache_batch = ¶ms.v_cache[bbhi * params.memory_max_len * Dh + vi];
|
| 1439 |
+
|
| 1440 |
+
// The number of values processed per iteration of the loop.
|
| 1441 |
+
constexpr int V_PER_ITER = THREADS_PER_BLOCK / THREADS_PER_VALUE;
|
| 1442 |
+
|
| 1443 |
+
// One group of threads computes the product(s) for the current timestep.
|
| 1444 |
+
V_vec v_bias;
|
| 1445 |
+
zero(v_bias);
|
| 1446 |
+
// if( vo == params.timestep % V_PER_ITER ) {
|
| 1447 |
+
if (Dh == Dh_MAX || vi < Dh) {
|
| 1448 |
+
if (handle_kv) {
|
| 1449 |
+
if (vo == tlength % V_PER_ITER) {
|
| 1450 |
+
// Trigger the loads from the V bias buffer.
|
| 1451 |
+
if (params.v_bias != nullptr) {
|
| 1452 |
+
v_bias = *reinterpret_cast<const V_vec*>(¶ms.v_bias[hi_kv * Dh + vi]);
|
| 1453 |
+
}
|
| 1454 |
+
if (DO_CROSS_ATTENTION) {
|
| 1455 |
+
*reinterpret_cast<V_vec*>(&bias_smem[vi]) = v_bias;
|
| 1456 |
+
}
|
| 1457 |
+
}
|
| 1458 |
+
}
|
| 1459 |
+
}
|
| 1460 |
+
|
| 1461 |
+
// From previous, before values, step
|
| 1462 |
+
// Also make sure the logits are in shared memory.
|
| 1463 |
+
__syncthreads();
|
| 1464 |
+
|
| 1465 |
+
// Values continued
|
| 1466 |
+
#ifdef MMHA_USE_FP32_ACUM_FOR_OUT
|
| 1467 |
+
using V_vec_acum = typename V_vec_acum_fp32_<V_vec>::Type;
|
| 1468 |
+
#else
|
| 1469 |
+
using V_vec_acum = V_vec;
|
| 1470 |
+
#endif
|
| 1471 |
+
// The partial outputs computed by each thread.
|
| 1472 |
+
V_vec_acum out;
|
| 1473 |
+
zero(out);
|
| 1474 |
+
|
| 1475 |
+
// Loop over the timesteps to compute the partial outputs.
|
| 1476 |
+
// for( int ti = vo; ti < params.timestep; ti += V_PER_ITER ) {
|
| 1477 |
+
if (Dh == Dh_MAX || vi < Dh) {
|
| 1478 |
+
for (int ti = first_step + vo; ti < tlength; ti += V_PER_ITER) {
|
| 1479 |
+
const int ti_circ = ti % params.memory_max_len;
|
| 1480 |
+
|
| 1481 |
+
// Fetch offset based on cache_indir when beam sampling
|
| 1482 |
+
const int beam_src = (params.cache_indir != nullptr) ? params.cache_indir[bi_seq_len_offset + ti_circ] : 0;
|
| 1483 |
+
const int beam_offset = beam_src * params.num_heads * params.memory_max_len * Dh;
|
| 1484 |
+
// Load the values from the cache.
|
| 1485 |
+
V_vec v = *reinterpret_cast<const V_vec*>(&v_cache_batch[beam_offset + ti_circ * Dh]);
|
| 1486 |
+
if (DO_CROSS_ATTENTION && params.timestep == 0) {
|
| 1487 |
+
v = add(v, *reinterpret_cast<V_vec*>(&bias_smem[vi]));
|
| 1488 |
+
if (do_ia3) {
|
| 1489 |
+
v = mul<V_vec, V_vec, V_vec>(
|
| 1490 |
+
v,
|
| 1491 |
+
*reinterpret_cast<const V_vec*>(
|
| 1492 |
+
¶ms.ia3_value_weights[(ia3_task_id * params.num_heads + hi) * Dh + vi]));
|
| 1493 |
+
}
|
| 1494 |
+
*reinterpret_cast<V_vec*>(&v_cache[ti * Dh]) = v;
|
| 1495 |
+
}
|
| 1496 |
+
// Load the logits from shared memory.
|
| 1497 |
+
#if defined(MMHA_USE_FP32_ACUM_FOR_LOGITS)
|
| 1498 |
+
float logit = logits_smem[ti - first_step];
|
| 1499 |
+
out = fma(logit, cast_to_float(v), out);
|
| 1500 |
+
#else
|
| 1501 |
+
T logit = logits_smem[ti - first_step];
|
| 1502 |
+
|
| 1503 |
+
// Update the partial sums.
|
| 1504 |
+
out = fma(logit, v, out);
|
| 1505 |
+
#endif
|
| 1506 |
+
}
|
| 1507 |
+
}
|
| 1508 |
+
|
| 1509 |
+
// One group of threads computes the product(s) for the current timestep.
|
| 1510 |
+
// if( vo == params.timestep % V_PER_ITER ) {
|
| 1511 |
+
if (vo == tlength % V_PER_ITER && (Dh == Dh_MAX || vi < Dh)) {
|
| 1512 |
+
|
| 1513 |
+
V_vec v;
|
| 1514 |
+
if (DO_CROSS_ATTENTION) {
|
| 1515 |
+
v = *reinterpret_cast<const V_vec*>(&v_cache[tlength * Dh]);
|
| 1516 |
+
}
|
| 1517 |
+
else {
|
| 1518 |
+
// Trigger the loads from the V buffer.
|
| 1519 |
+
const auto v_offset = v_base_offset + vi;
|
| 1520 |
+
if (params.int8_mode == 2) {
|
| 1521 |
+
using Packed_Int8_t = typename packed_type<int8_t, num_elems<V_vec>::value>::type;
|
| 1522 |
+
using Packed_Float_t = typename packed_type<float, num_elems<V_vec>::value>::type;
|
| 1523 |
+
const auto v_scaling = params.qkv_scale_out[2];
|
| 1524 |
+
const auto v_quant =
|
| 1525 |
+
*reinterpret_cast<const Packed_Int8_t*>(&reinterpret_cast<const int8_t*>(params.v)[v_offset]);
|
| 1526 |
+
|
| 1527 |
+
convert_from_float(v, mul<Packed_Float_t, float>(v_scaling, float_from_int8(v_quant)));
|
| 1528 |
+
}
|
| 1529 |
+
else {
|
| 1530 |
+
v = *reinterpret_cast<const V_vec*>(¶ms.v[v_offset]);
|
| 1531 |
+
}
|
| 1532 |
+
// Trigger the loads from the V bias buffer.
|
| 1533 |
+
// V_vec v_bias = *reinterpret_cast<const V_vec*>(¶ms.v_bias[hi*Dh + vi]);
|
| 1534 |
+
}
|
| 1535 |
+
|
| 1536 |
+
// Compute the V values with bias.
|
| 1537 |
+
if (handle_kv) {
|
| 1538 |
+
v = add(v, v_bias);
|
| 1539 |
+
|
| 1540 |
+
if (do_ia3) {
|
| 1541 |
+
v = mul<V_vec, V_vec, V_vec>(
|
| 1542 |
+
v,
|
| 1543 |
+
*reinterpret_cast<const V_vec*>(
|
| 1544 |
+
¶ms.ia3_value_weights[(ia3_task_id * params.num_heads + hi) * Dh + vi]));
|
| 1545 |
+
}
|
| 1546 |
+
|
| 1547 |
+
// Store the values with bias back to global memory in the cache for V.
|
| 1548 |
+
if (hi % params.num_heads_q_kv_ratio == 0) {
|
| 1549 |
+
//*reinterpret_cast<V_vec*>(&v_cache[params.timestep*Dh]) = v;
|
| 1550 |
+
*reinterpret_cast<V_vec*>(&v_cache[tlength_circ * Dh]) = v;
|
| 1551 |
+
}
|
| 1552 |
+
}
|
| 1553 |
+
|
| 1554 |
+
// Initialize the output value with the current timestep.
|
| 1555 |
+
#if defined(MMHA_USE_FP32_ACUM_FOR_LOGITS)
|
| 1556 |
+
// out = fma(logits_smem[params.timestep], cast_to_float(v), out);
|
| 1557 |
+
out = fma(logits_smem[tlength - first_step], cast_to_float(v), out);
|
| 1558 |
+
#else
|
| 1559 |
+
// out = fma(logits_smem[params.timestep], v, out);
|
| 1560 |
+
out = fma(logits_smem[tlength - first_step], v, out);
|
| 1561 |
+
#endif
|
| 1562 |
+
}
|
| 1563 |
+
|
| 1564 |
+
// Make sure we can start writing to shared memory.
|
| 1565 |
+
__syncthreads();
|
| 1566 |
+
|
| 1567 |
+
// Run the final reduction amongst the different groups computing different partial outputs.
|
| 1568 |
+
if (Dh == Dh_MAX || vi < Dh) {
|
| 1569 |
+
#pragma unroll
|
| 1570 |
+
for (int active_groups = V_PER_ITER; active_groups >= 2; active_groups /= 2) {
|
| 1571 |
+
|
| 1572 |
+
// The midpoint in the number of active groups.
|
| 1573 |
+
int midpoint = active_groups / 2;
|
| 1574 |
+
|
| 1575 |
+
// The upper part of active threads store to shared memory.
|
| 1576 |
+
if (vo >= midpoint && vo < active_groups && (Dh == Dh_MAX || vi < Dh)) {
|
| 1577 |
+
#ifdef MMHA_USE_FP32_ACUM_FOR_OUT
|
| 1578 |
+
convert_from_float(*reinterpret_cast<V_vec*>(&out_smem[(vo - midpoint) * Dh + vi]), out);
|
| 1579 |
+
#else
|
| 1580 |
+
*reinterpret_cast<V_vec*>(&out_smem[(vo - midpoint) * Dh + vi]) = out;
|
| 1581 |
+
#endif
|
| 1582 |
+
}
|
| 1583 |
+
__syncthreads();
|
| 1584 |
+
|
| 1585 |
+
// The bottom warps update their values.
|
| 1586 |
+
if (vo < midpoint && (Dh == Dh_MAX || vi < Dh)) {
|
| 1587 |
+
out = add(*reinterpret_cast<const V_vec*>(&out_smem[vo * Dh + vi]), out);
|
| 1588 |
+
}
|
| 1589 |
+
__syncthreads();
|
| 1590 |
+
}
|
| 1591 |
+
}
|
| 1592 |
+
|
| 1593 |
+
// Output the final values.
|
| 1594 |
+
if (vo == 0 && (Dh == Dh_MAX || vi < Dh)) {
|
| 1595 |
+
#ifdef MMHA_USE_FP32_ACUM_FOR_OUT
|
| 1596 |
+
if (params.int8_mode == 2) {
|
| 1597 |
+
using Packed_Int8_t = typename packed_type<int8_t, num_elems<V_vec_acum>::value>::type;
|
| 1598 |
+
out = mul<V_vec_acum, float>(*params.attention_out_scale, out);
|
| 1599 |
+
*reinterpret_cast<Packed_Int8_t*>(&(reinterpret_cast<int8_t*>(params.out)[bhi * Dh + vi])) =
|
| 1600 |
+
cast_to_int8(out);
|
| 1601 |
+
}
|
| 1602 |
+
else {
|
| 1603 |
+
convert_from_float(*reinterpret_cast<V_vec*>(¶ms.out[bhi * Dh + vi]), out);
|
| 1604 |
+
}
|
| 1605 |
+
#else
|
| 1606 |
+
// TODO: support int8_mode?
|
| 1607 |
+
*reinterpret_cast<V_vec*>(¶ms.out[bhi * Dh + vi]) = out;
|
| 1608 |
+
#endif
|
| 1609 |
+
}
|
| 1610 |
+
}
|
| 1611 |
+
|
| 1612 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1613 |
+
|
| 1614 |
+
} // namespace mmha
|
| 1615 |
+
|
| 1616 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1617 |
+
|
| 1618 |
+
template<typename T, int Dh, int Dh_MAX, typename KERNEL_PARAMS_TYPE>
|
| 1619 |
+
void mmha_launch_kernel(const KERNEL_PARAMS_TYPE& params, const cudaStream_t& stream);
|
flash-attention/csrc/ft_attention/decoder_masked_multihead_attention_utils.h
ADDED
|
@@ -0,0 +1,2017 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Downloaded from from FasterTransformer v5.2.1
|
| 2 |
+
// https://github.com/NVIDIA/FasterTransformer/blob/release/v5.2.1_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
|
| 3 |
+
/*
|
| 4 |
+
* Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
|
| 5 |
+
*
|
| 6 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
* you may not use this file except in compliance with the License.
|
| 8 |
+
* You may obtain a copy of the License at
|
| 9 |
+
*
|
| 10 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
*
|
| 12 |
+
* Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
* See the License for the specific language governing permissions and
|
| 16 |
+
* limitations under the License.
|
| 17 |
+
*/
|
| 18 |
+
|
| 19 |
+
#pragma once
|
| 20 |
+
|
| 21 |
+
#include "cuda_bf16_wrapper.h"
|
| 22 |
+
#include "cuda_bf16_fallbacks.cuh"
|
| 23 |
+
#include <stdint.h>
|
| 24 |
+
|
| 25 |
+
using namespace fastertransformer;
|
| 26 |
+
|
| 27 |
+
namespace mmha {
|
| 28 |
+
|
| 29 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 30 |
+
|
| 31 |
+
struct Float8_ {
|
| 32 |
+
float2 x;
|
| 33 |
+
float2 y;
|
| 34 |
+
float2 z;
|
| 35 |
+
float2 w;
|
| 36 |
+
};
|
| 37 |
+
|
| 38 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 39 |
+
|
| 40 |
+
struct Float4_ {
|
| 41 |
+
float2 x;
|
| 42 |
+
float2 y;
|
| 43 |
+
};
|
| 44 |
+
|
| 45 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 46 |
+
|
| 47 |
+
#ifdef ENABLE_BF16
|
| 48 |
+
struct bf16_4_t {
|
| 49 |
+
__nv_bfloat162 x;
|
| 50 |
+
__nv_bfloat162 y;
|
| 51 |
+
};
|
| 52 |
+
|
| 53 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 54 |
+
|
| 55 |
+
struct bf16_8_t {
|
| 56 |
+
__nv_bfloat162 x;
|
| 57 |
+
__nv_bfloat162 y;
|
| 58 |
+
__nv_bfloat162 z;
|
| 59 |
+
__nv_bfloat162 w;
|
| 60 |
+
};
|
| 61 |
+
#endif
|
| 62 |
+
|
| 63 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 64 |
+
|
| 65 |
+
template<typename T>
|
| 66 |
+
struct num_elems;
|
| 67 |
+
template<>
|
| 68 |
+
struct num_elems<float> {
|
| 69 |
+
static constexpr int value = 1;
|
| 70 |
+
};
|
| 71 |
+
template<>
|
| 72 |
+
struct num_elems<float2> {
|
| 73 |
+
static constexpr int value = 2;
|
| 74 |
+
};
|
| 75 |
+
template<>
|
| 76 |
+
struct num_elems<float4> {
|
| 77 |
+
static constexpr int value = 4;
|
| 78 |
+
};
|
| 79 |
+
template<>
|
| 80 |
+
struct num_elems<Float4_> {
|
| 81 |
+
static constexpr int value = 4;
|
| 82 |
+
};
|
| 83 |
+
template<>
|
| 84 |
+
struct num_elems<Float8_> {
|
| 85 |
+
static constexpr int value = 8;
|
| 86 |
+
};
|
| 87 |
+
|
| 88 |
+
template<>
|
| 89 |
+
struct num_elems<uint32_t> {
|
| 90 |
+
static constexpr int value = 2;
|
| 91 |
+
};
|
| 92 |
+
template<>
|
| 93 |
+
struct num_elems<uint2> {
|
| 94 |
+
static constexpr int value = 4;
|
| 95 |
+
};
|
| 96 |
+
template<>
|
| 97 |
+
struct num_elems<uint4> {
|
| 98 |
+
static constexpr int value = 8;
|
| 99 |
+
};
|
| 100 |
+
|
| 101 |
+
#ifdef ENABLE_BF16
|
| 102 |
+
template<>
|
| 103 |
+
struct num_elems<__nv_bfloat162> {
|
| 104 |
+
static constexpr int value = 2;
|
| 105 |
+
};
|
| 106 |
+
template<>
|
| 107 |
+
struct num_elems<bf16_4_t> {
|
| 108 |
+
static constexpr int value = 4;
|
| 109 |
+
};
|
| 110 |
+
template<>
|
| 111 |
+
struct num_elems<bf16_8_t> {
|
| 112 |
+
static constexpr int value = 8;
|
| 113 |
+
};
|
| 114 |
+
#endif
|
| 115 |
+
|
| 116 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 117 |
+
|
| 118 |
+
template<typename T, int N>
|
| 119 |
+
struct packed_type;
|
| 120 |
+
template<typename T>
|
| 121 |
+
struct packed_type<T, 1> {
|
| 122 |
+
using type = T;
|
| 123 |
+
};
|
| 124 |
+
template<>
|
| 125 |
+
struct packed_type<int8_t, 2> {
|
| 126 |
+
using type = int16_t;
|
| 127 |
+
};
|
| 128 |
+
template<>
|
| 129 |
+
struct packed_type<int8_t, 4> {
|
| 130 |
+
using type = int32_t;
|
| 131 |
+
};
|
| 132 |
+
template<>
|
| 133 |
+
struct packed_type<int8_t, 8> {
|
| 134 |
+
using type = int64_t;
|
| 135 |
+
};
|
| 136 |
+
|
| 137 |
+
template<>
|
| 138 |
+
struct packed_type<float, 2> {
|
| 139 |
+
using type = float2;
|
| 140 |
+
};
|
| 141 |
+
template<>
|
| 142 |
+
struct packed_type<float, 4> {
|
| 143 |
+
using type = float4;
|
| 144 |
+
};
|
| 145 |
+
template<>
|
| 146 |
+
struct packed_type<float, 8> {
|
| 147 |
+
using type = Float8_;
|
| 148 |
+
};
|
| 149 |
+
|
| 150 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 151 |
+
|
| 152 |
+
inline __device__ float add(float a, float b)
|
| 153 |
+
{
|
| 154 |
+
return a + b;
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 158 |
+
|
| 159 |
+
inline __device__ float2 add(float2 a, float2 b)
|
| 160 |
+
{
|
| 161 |
+
float2 c;
|
| 162 |
+
c.x = add(a.x, b.x);
|
| 163 |
+
c.y = add(a.y, b.y);
|
| 164 |
+
return c;
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 168 |
+
|
| 169 |
+
inline __device__ float4 add(float4 a, float4 b)
|
| 170 |
+
{
|
| 171 |
+
float4 c;
|
| 172 |
+
c.x = add(a.x, b.x);
|
| 173 |
+
c.y = add(a.y, b.y);
|
| 174 |
+
c.z = add(a.z, b.z);
|
| 175 |
+
c.w = add(a.w, b.w);
|
| 176 |
+
return c;
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 180 |
+
|
| 181 |
+
#ifdef ENABLE_BF16
|
| 182 |
+
inline __device__ __nv_bfloat16 add(__nv_bfloat16 a, __nv_bfloat16 b)
|
| 183 |
+
{
|
| 184 |
+
return a + b;
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 188 |
+
|
| 189 |
+
inline __device__ __nv_bfloat162 add(__nv_bfloat162 a, __nv_bfloat162 b)
|
| 190 |
+
{
|
| 191 |
+
return bf16hadd2(a, b);
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 195 |
+
|
| 196 |
+
inline __device__ bf16_4_t add(bf16_4_t a, bf16_4_t b)
|
| 197 |
+
{
|
| 198 |
+
bf16_4_t c;
|
| 199 |
+
c.x = add(a.x, b.x);
|
| 200 |
+
c.y = add(a.y, b.y);
|
| 201 |
+
return c;
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 205 |
+
|
| 206 |
+
inline __device__ bf16_8_t add(bf16_8_t a, bf16_8_t b)
|
| 207 |
+
{
|
| 208 |
+
bf16_8_t c;
|
| 209 |
+
c.x = add(a.x, b.x);
|
| 210 |
+
c.y = add(a.y, b.y);
|
| 211 |
+
c.z = add(a.z, b.z);
|
| 212 |
+
c.w = add(a.w, b.w);
|
| 213 |
+
return c;
|
| 214 |
+
}
|
| 215 |
+
#endif // ENABLE_BF16
|
| 216 |
+
|
| 217 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 218 |
+
|
| 219 |
+
inline __device__ uint16_t add(uint16_t a, uint16_t b)
|
| 220 |
+
{
|
| 221 |
+
uint16_t c;
|
| 222 |
+
asm volatile("add.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
|
| 223 |
+
return c;
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 227 |
+
|
| 228 |
+
inline __device__ uint32_t add(uint32_t a, uint32_t b)
|
| 229 |
+
{
|
| 230 |
+
uint32_t c;
|
| 231 |
+
asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
|
| 232 |
+
return c;
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 236 |
+
|
| 237 |
+
inline __device__ uint2 add(uint2 a, uint2 b)
|
| 238 |
+
{
|
| 239 |
+
uint2 c;
|
| 240 |
+
c.x = add(a.x, b.x);
|
| 241 |
+
c.y = add(a.y, b.y);
|
| 242 |
+
return c;
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 246 |
+
|
| 247 |
+
inline __device__ uint4 add(uint4 a, uint4 b)
|
| 248 |
+
{
|
| 249 |
+
uint4 c;
|
| 250 |
+
c.x = add(a.x, b.x);
|
| 251 |
+
c.y = add(a.y, b.y);
|
| 252 |
+
c.z = add(a.z, b.z);
|
| 253 |
+
c.w = add(a.w, b.w);
|
| 254 |
+
return c;
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 258 |
+
|
| 259 |
+
inline __device__ uint16_t float_to_half(float f)
|
| 260 |
+
{
|
| 261 |
+
union {
|
| 262 |
+
uint32_t u32;
|
| 263 |
+
uint16_t u16[2];
|
| 264 |
+
} tmp;
|
| 265 |
+
#if 0 && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 // Is it better?
|
| 266 |
+
float zero = 0.f;
|
| 267 |
+
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(zero), "f"(f));
|
| 268 |
+
#else
|
| 269 |
+
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f));
|
| 270 |
+
#endif
|
| 271 |
+
return tmp.u16[0];
|
| 272 |
+
}
|
| 273 |
+
|
| 274 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 275 |
+
|
| 276 |
+
inline __device__ uint32_t float2_to_half2(float2 f)
|
| 277 |
+
{
|
| 278 |
+
union {
|
| 279 |
+
uint32_t u32;
|
| 280 |
+
uint16_t u16[2];
|
| 281 |
+
} tmp;
|
| 282 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
| 283 |
+
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(f.y), "f"(f.x));
|
| 284 |
+
#else
|
| 285 |
+
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f.x));
|
| 286 |
+
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[1]) : "f"(f.y));
|
| 287 |
+
#endif
|
| 288 |
+
return tmp.u32;
|
| 289 |
+
}
|
| 290 |
+
|
| 291 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 292 |
+
|
| 293 |
+
inline __device__ float half_to_float(uint16_t h)
|
| 294 |
+
{
|
| 295 |
+
float f;
|
| 296 |
+
asm volatile("cvt.f32.f16 %0, %1;\n" : "=f"(f) : "h"(h));
|
| 297 |
+
return f;
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 301 |
+
|
| 302 |
+
inline __device__ float2 half2_to_float2(uint32_t v)
|
| 303 |
+
{
|
| 304 |
+
uint16_t lo, hi;
|
| 305 |
+
asm volatile("mov.b32 {%0, %1}, %2;\n" : "=h"(lo), "=h"(hi) : "r"(v));
|
| 306 |
+
return make_float2(half_to_float(lo), half_to_float(hi));
|
| 307 |
+
}
|
| 308 |
+
|
| 309 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 310 |
+
|
| 311 |
+
inline __device__ float add(float a, uint16_t b)
|
| 312 |
+
{
|
| 313 |
+
return a + half_to_float(b);
|
| 314 |
+
}
|
| 315 |
+
|
| 316 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 317 |
+
|
| 318 |
+
#ifdef ENABLE_BF16
|
| 319 |
+
inline __device__ float add(float a, __nv_bfloat16 b)
|
| 320 |
+
{
|
| 321 |
+
return a + __bfloat162float(b);
|
| 322 |
+
}
|
| 323 |
+
#endif
|
| 324 |
+
|
| 325 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 326 |
+
|
| 327 |
+
inline __device__ float2 add(uint32_t a, float2 fb)
|
| 328 |
+
{
|
| 329 |
+
float2 fa = half2_to_float2(a);
|
| 330 |
+
return add(fa, fb);
|
| 331 |
+
}
|
| 332 |
+
|
| 333 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 334 |
+
|
| 335 |
+
inline __device__ Float4_ add(uint2 a, Float4_ fb)
|
| 336 |
+
{
|
| 337 |
+
Float4_ fc;
|
| 338 |
+
fc.x = add(a.x, fb.x);
|
| 339 |
+
fc.y = add(a.y, fb.y);
|
| 340 |
+
return fc;
|
| 341 |
+
}
|
| 342 |
+
|
| 343 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 344 |
+
|
| 345 |
+
inline __device__ Float8_ add(uint4 a, Float8_ fb)
|
| 346 |
+
{
|
| 347 |
+
Float8_ fc;
|
| 348 |
+
fc.x = add(a.x, fb.x);
|
| 349 |
+
fc.y = add(a.y, fb.y);
|
| 350 |
+
fc.z = add(a.z, fb.z);
|
| 351 |
+
fc.w = add(a.w, fb.w);
|
| 352 |
+
return fc;
|
| 353 |
+
}
|
| 354 |
+
|
| 355 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 356 |
+
|
| 357 |
+
inline __device__ uint32_t h0_h0(uint16_t a)
|
| 358 |
+
{
|
| 359 |
+
uint32_t b;
|
| 360 |
+
asm volatile("mov.b32 %0, {%1, %1};" : "=r"(b) : "h"(a));
|
| 361 |
+
return b;
|
| 362 |
+
}
|
| 363 |
+
|
| 364 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 365 |
+
|
| 366 |
+
inline __device__ float fma(float a, float b, float c)
|
| 367 |
+
{
|
| 368 |
+
return a * b + c;
|
| 369 |
+
}
|
| 370 |
+
|
| 371 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 372 |
+
|
| 373 |
+
inline __device__ float2 fma(float2 a, float2 b, float2 c)
|
| 374 |
+
{
|
| 375 |
+
float2 d;
|
| 376 |
+
d.x = fma(a.x, b.x, c.x);
|
| 377 |
+
d.y = fma(a.y, b.y, c.y);
|
| 378 |
+
return d;
|
| 379 |
+
}
|
| 380 |
+
|
| 381 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 382 |
+
|
| 383 |
+
inline __device__ float2 fma(float a, float2 b, float2 c)
|
| 384 |
+
{
|
| 385 |
+
float2 d;
|
| 386 |
+
d.x = fma(a, b.x, c.x);
|
| 387 |
+
d.y = fma(a, b.y, c.y);
|
| 388 |
+
return d;
|
| 389 |
+
}
|
| 390 |
+
|
| 391 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 392 |
+
|
| 393 |
+
inline __device__ float4 fma(float4 a, float4 b, float4 c)
|
| 394 |
+
{
|
| 395 |
+
float4 d;
|
| 396 |
+
d.x = fma(a.x, b.x, c.x);
|
| 397 |
+
d.y = fma(a.y, b.y, c.y);
|
| 398 |
+
d.z = fma(a.z, b.z, c.z);
|
| 399 |
+
d.w = fma(a.w, b.w, c.w);
|
| 400 |
+
return d;
|
| 401 |
+
}
|
| 402 |
+
|
| 403 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 404 |
+
|
| 405 |
+
inline __device__ float4 fma(float a, float4 b, float4 c)
|
| 406 |
+
{
|
| 407 |
+
float4 d;
|
| 408 |
+
d.x = fma(a, b.x, c.x);
|
| 409 |
+
d.y = fma(a, b.y, c.y);
|
| 410 |
+
d.z = fma(a, b.z, c.z);
|
| 411 |
+
d.w = fma(a, b.w, c.w);
|
| 412 |
+
return d;
|
| 413 |
+
}
|
| 414 |
+
|
| 415 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 416 |
+
|
| 417 |
+
inline __device__ Float4_ fma(float a, Float4_ b, Float4_ c)
|
| 418 |
+
{
|
| 419 |
+
Float4_ d;
|
| 420 |
+
d.x = fma(a, b.x, c.x);
|
| 421 |
+
d.y = fma(a, b.y, c.y);
|
| 422 |
+
return d;
|
| 423 |
+
}
|
| 424 |
+
|
| 425 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 426 |
+
|
| 427 |
+
inline __device__ Float8_ fma(float a, Float8_ b, Float8_ c)
|
| 428 |
+
{
|
| 429 |
+
Float8_ d;
|
| 430 |
+
d.x = fma(a, b.x, c.x);
|
| 431 |
+
d.y = fma(a, b.y, c.y);
|
| 432 |
+
d.z = fma(a, b.z, c.z);
|
| 433 |
+
d.w = fma(a, b.w, c.w);
|
| 434 |
+
return d;
|
| 435 |
+
}
|
| 436 |
+
|
| 437 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 438 |
+
|
| 439 |
+
#ifdef ENABLE_BF16
|
| 440 |
+
inline __device__ float2 add(__nv_bfloat162 a, float2 fb)
|
| 441 |
+
{
|
| 442 |
+
float2 fa = bf1622float2(a);
|
| 443 |
+
return add(fa, fb);
|
| 444 |
+
}
|
| 445 |
+
|
| 446 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 447 |
+
|
| 448 |
+
inline __device__ Float4_ add(bf16_4_t a, Float4_ fb)
|
| 449 |
+
{
|
| 450 |
+
Float4_ fc;
|
| 451 |
+
fc.x = add(a.x, fb.x);
|
| 452 |
+
fc.y = add(a.y, fb.y);
|
| 453 |
+
return fc;
|
| 454 |
+
}
|
| 455 |
+
|
| 456 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 457 |
+
|
| 458 |
+
inline __device__ Float8_ add(bf16_8_t a, Float8_ fb)
|
| 459 |
+
{
|
| 460 |
+
Float8_ fc;
|
| 461 |
+
fc.x = add(a.x, fb.x);
|
| 462 |
+
fc.y = add(a.y, fb.y);
|
| 463 |
+
fc.z = add(a.z, fb.z);
|
| 464 |
+
fc.w = add(a.w, fb.w);
|
| 465 |
+
return fc;
|
| 466 |
+
}
|
| 467 |
+
#endif // ENABLE_BF16
|
| 468 |
+
|
| 469 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 470 |
+
|
| 471 |
+
inline __device__ uint32_t fma(uint32_t a, uint32_t b, uint32_t c)
|
| 472 |
+
{
|
| 473 |
+
uint32_t d;
|
| 474 |
+
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(d) : "r"(a), "r"(b), "r"(c));
|
| 475 |
+
return d;
|
| 476 |
+
}
|
| 477 |
+
|
| 478 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 479 |
+
|
| 480 |
+
inline __device__ uint32_t fma(uint16_t a, uint32_t b, uint32_t c)
|
| 481 |
+
{
|
| 482 |
+
return fma(h0_h0(a), b, c);
|
| 483 |
+
}
|
| 484 |
+
|
| 485 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 486 |
+
|
| 487 |
+
inline __device__ uint2 fma(uint2 a, uint2 b, uint2 c)
|
| 488 |
+
{
|
| 489 |
+
uint2 d;
|
| 490 |
+
d.x = fma(a.x, b.x, c.x);
|
| 491 |
+
d.y = fma(a.y, b.y, c.y);
|
| 492 |
+
return d;
|
| 493 |
+
}
|
| 494 |
+
|
| 495 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 496 |
+
|
| 497 |
+
inline __device__ uint2 fma(uint16_t a, uint2 b, uint2 c)
|
| 498 |
+
{
|
| 499 |
+
uint32_t s = h0_h0(a);
|
| 500 |
+
uint2 d;
|
| 501 |
+
d.x = fma(s, b.x, c.x);
|
| 502 |
+
d.y = fma(s, b.y, c.y);
|
| 503 |
+
return d;
|
| 504 |
+
}
|
| 505 |
+
|
| 506 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 507 |
+
|
| 508 |
+
inline __device__ uint4 fma(uint4 a, uint4 b, uint4 c)
|
| 509 |
+
{
|
| 510 |
+
uint4 d;
|
| 511 |
+
d.x = fma(a.x, b.x, c.x);
|
| 512 |
+
d.y = fma(a.y, b.y, c.y);
|
| 513 |
+
d.z = fma(a.z, b.z, c.z);
|
| 514 |
+
d.w = fma(a.w, b.w, c.w);
|
| 515 |
+
return d;
|
| 516 |
+
}
|
| 517 |
+
|
| 518 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 519 |
+
|
| 520 |
+
inline __device__ uint4 fma(uint16_t a, uint4 b, uint4 c)
|
| 521 |
+
{
|
| 522 |
+
uint32_t s = h0_h0(a);
|
| 523 |
+
uint4 d;
|
| 524 |
+
d.x = fma(s, b.x, c.x);
|
| 525 |
+
d.y = fma(s, b.y, c.y);
|
| 526 |
+
d.z = fma(s, b.z, c.z);
|
| 527 |
+
d.w = fma(s, b.w, c.w);
|
| 528 |
+
return d;
|
| 529 |
+
}
|
| 530 |
+
|
| 531 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 532 |
+
|
| 533 |
+
inline __device__ float fma(uint16_t a, uint16_t b, float fc)
|
| 534 |
+
{
|
| 535 |
+
float fa = half_to_float(a);
|
| 536 |
+
float fb = half_to_float(b);
|
| 537 |
+
return fa * fb + fc;
|
| 538 |
+
}
|
| 539 |
+
|
| 540 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 541 |
+
|
| 542 |
+
inline __device__ float2 fma(uint32_t a, uint32_t b, float2 fc)
|
| 543 |
+
{
|
| 544 |
+
float2 fa = half2_to_float2(a);
|
| 545 |
+
float2 fb = half2_to_float2(b);
|
| 546 |
+
return fma(fa, fb, fc);
|
| 547 |
+
}
|
| 548 |
+
|
| 549 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 550 |
+
|
| 551 |
+
inline __device__ float2 fma(uint16_t a, uint32_t b, float2 fc)
|
| 552 |
+
{
|
| 553 |
+
return fma(h0_h0(a), b, fc);
|
| 554 |
+
}
|
| 555 |
+
|
| 556 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 557 |
+
|
| 558 |
+
inline __device__ Float4_ fma(uint2 a, uint2 b, Float4_ fc)
|
| 559 |
+
{
|
| 560 |
+
Float4_ fd;
|
| 561 |
+
fd.x = fma(a.x, b.x, fc.x);
|
| 562 |
+
fd.y = fma(a.y, b.y, fc.y);
|
| 563 |
+
return fd;
|
| 564 |
+
}
|
| 565 |
+
|
| 566 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 567 |
+
|
| 568 |
+
inline __device__ Float4_ fma(uint16_t a, uint2 b, Float4_ fc)
|
| 569 |
+
{
|
| 570 |
+
uint32_t s = h0_h0(a);
|
| 571 |
+
Float4_ fd;
|
| 572 |
+
fd.x = fma(s, b.x, fc.x);
|
| 573 |
+
fd.y = fma(s, b.y, fc.y);
|
| 574 |
+
return fd;
|
| 575 |
+
}
|
| 576 |
+
|
| 577 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 578 |
+
|
| 579 |
+
inline __device__ Float8_ fma(uint4 a, uint4 b, Float8_ fc)
|
| 580 |
+
{
|
| 581 |
+
Float8_ fd;
|
| 582 |
+
fd.x = fma(a.x, b.x, fc.x);
|
| 583 |
+
fd.y = fma(a.y, b.y, fc.y);
|
| 584 |
+
fd.z = fma(a.z, b.z, fc.z);
|
| 585 |
+
fd.w = fma(a.w, b.w, fc.w);
|
| 586 |
+
return fd;
|
| 587 |
+
}
|
| 588 |
+
|
| 589 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 590 |
+
|
| 591 |
+
inline __device__ Float8_ fma(uint16_t a, uint4 b, Float8_ fc)
|
| 592 |
+
{
|
| 593 |
+
uint32_t s = h0_h0(a);
|
| 594 |
+
Float8_ fd;
|
| 595 |
+
fd.x = fma(s, b.x, fc.x);
|
| 596 |
+
fd.y = fma(s, b.y, fc.y);
|
| 597 |
+
fd.z = fma(s, b.z, fc.z);
|
| 598 |
+
fd.w = fma(s, b.w, fc.w);
|
| 599 |
+
return fd;
|
| 600 |
+
}
|
| 601 |
+
|
| 602 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 603 |
+
#ifdef ENABLE_BF16
|
| 604 |
+
inline __device__ __nv_bfloat162 fma(__nv_bfloat162 a, __nv_bfloat162 b, __nv_bfloat162 c)
|
| 605 |
+
{
|
| 606 |
+
return bf16hfma2(a, b, c);
|
| 607 |
+
}
|
| 608 |
+
|
| 609 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 610 |
+
|
| 611 |
+
inline __device__ __nv_bfloat162 fma(__nv_bfloat16 a, __nv_bfloat162 b, __nv_bfloat162 c)
|
| 612 |
+
{
|
| 613 |
+
return bf16hfma2(bf162bf162(a), b, c);
|
| 614 |
+
}
|
| 615 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 616 |
+
|
| 617 |
+
inline __device__ bf16_4_t fma(bf16_4_t a, bf16_4_t b, bf16_4_t c)
|
| 618 |
+
{
|
| 619 |
+
bf16_4_t d;
|
| 620 |
+
d.x = fma(a.x, b.x, c.x);
|
| 621 |
+
d.y = fma(a.y, b.y, c.y);
|
| 622 |
+
return d;
|
| 623 |
+
}
|
| 624 |
+
|
| 625 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 626 |
+
|
| 627 |
+
inline __device__ bf16_4_t fma(__nv_bfloat16 a, bf16_4_t b, bf16_4_t c)
|
| 628 |
+
{
|
| 629 |
+
__nv_bfloat162 s = bf162bf162(a);
|
| 630 |
+
bf16_4_t d;
|
| 631 |
+
d.x = fma(s, b.x, c.x);
|
| 632 |
+
d.y = fma(s, b.y, c.y);
|
| 633 |
+
return d;
|
| 634 |
+
}
|
| 635 |
+
|
| 636 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 637 |
+
|
| 638 |
+
inline __device__ bf16_8_t fma(bf16_8_t a, bf16_8_t b, bf16_8_t c)
|
| 639 |
+
{
|
| 640 |
+
bf16_8_t d;
|
| 641 |
+
d.x = fma(a.x, b.x, c.x);
|
| 642 |
+
d.y = fma(a.y, b.y, c.y);
|
| 643 |
+
d.z = fma(a.z, b.z, c.z);
|
| 644 |
+
d.w = fma(a.w, b.w, c.w);
|
| 645 |
+
return d;
|
| 646 |
+
}
|
| 647 |
+
|
| 648 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 649 |
+
|
| 650 |
+
inline __device__ bf16_8_t fma(__nv_bfloat16 a, bf16_8_t b, bf16_8_t c)
|
| 651 |
+
{
|
| 652 |
+
__nv_bfloat162 s = bf162bf162(a);
|
| 653 |
+
bf16_8_t d;
|
| 654 |
+
d.x = fma(s, b.x, c.x);
|
| 655 |
+
d.y = fma(s, b.y, c.y);
|
| 656 |
+
d.z = fma(s, b.z, c.z);
|
| 657 |
+
d.w = fma(s, b.w, c.w);
|
| 658 |
+
return d;
|
| 659 |
+
}
|
| 660 |
+
|
| 661 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 662 |
+
|
| 663 |
+
inline __device__ float fma(__nv_bfloat16 a, __nv_bfloat16 b, float fc)
|
| 664 |
+
{
|
| 665 |
+
return __bfloat162float(a) * __bfloat162float(b) + fc;
|
| 666 |
+
}
|
| 667 |
+
|
| 668 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 669 |
+
|
| 670 |
+
inline __device__ float2 fma(__nv_bfloat162 a, __nv_bfloat162 b, float2 fc)
|
| 671 |
+
{
|
| 672 |
+
float2 fa = bf1622float2(a);
|
| 673 |
+
float2 fb = bf1622float2(b);
|
| 674 |
+
return fma(fa, fb, fc);
|
| 675 |
+
}
|
| 676 |
+
|
| 677 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 678 |
+
|
| 679 |
+
inline __device__ float2 fma(__nv_bfloat16 a, __nv_bfloat162 b, float2 fc)
|
| 680 |
+
{
|
| 681 |
+
return fma(bf162bf162(a), b, fc);
|
| 682 |
+
}
|
| 683 |
+
|
| 684 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 685 |
+
|
| 686 |
+
inline __device__ Float4_ fma(bf16_4_t a, bf16_4_t b, Float4_ fc)
|
| 687 |
+
{
|
| 688 |
+
Float4_ fd;
|
| 689 |
+
fd.x = fma(a.x, b.x, fc.x);
|
| 690 |
+
fd.y = fma(a.y, b.y, fc.y);
|
| 691 |
+
return fd;
|
| 692 |
+
}
|
| 693 |
+
|
| 694 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 695 |
+
|
| 696 |
+
inline __device__ Float4_ fma(__nv_bfloat16 a, bf16_4_t b, Float4_ fc)
|
| 697 |
+
{
|
| 698 |
+
__nv_bfloat162 s = bf162bf162(a);
|
| 699 |
+
Float4_ fd;
|
| 700 |
+
fd.x = fma(s, b.x, fc.x);
|
| 701 |
+
fd.y = fma(s, b.y, fc.y);
|
| 702 |
+
return fd;
|
| 703 |
+
}
|
| 704 |
+
|
| 705 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 706 |
+
|
| 707 |
+
inline __device__ Float8_ fma(bf16_8_t a, bf16_8_t b, Float8_ fc)
|
| 708 |
+
{
|
| 709 |
+
Float8_ fd;
|
| 710 |
+
fd.x = fma(a.x, b.x, fc.x);
|
| 711 |
+
fd.y = fma(a.y, b.y, fc.y);
|
| 712 |
+
fd.z = fma(a.z, b.z, fc.z);
|
| 713 |
+
fd.w = fma(a.w, b.w, fc.w);
|
| 714 |
+
return fd;
|
| 715 |
+
}
|
| 716 |
+
|
| 717 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 718 |
+
|
| 719 |
+
inline __device__ Float8_ fma(__nv_bfloat16 a, bf16_8_t b, Float8_ fc)
|
| 720 |
+
{
|
| 721 |
+
__nv_bfloat162 s = bf162bf162(a);
|
| 722 |
+
Float8_ fd;
|
| 723 |
+
fd.x = fma(s, b.x, fc.x);
|
| 724 |
+
fd.y = fma(s, b.y, fc.y);
|
| 725 |
+
fd.z = fma(s, b.z, fc.z);
|
| 726 |
+
fd.w = fma(s, b.w, fc.w);
|
| 727 |
+
return fd;
|
| 728 |
+
}
|
| 729 |
+
#endif // ENABLE_BF16
|
| 730 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 731 |
+
|
| 732 |
+
template<typename Acc, typename A, typename B>
|
| 733 |
+
inline __device__ Acc mul(A a, B b)
|
| 734 |
+
{
|
| 735 |
+
return a * b;
|
| 736 |
+
}
|
| 737 |
+
|
| 738 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 739 |
+
|
| 740 |
+
template<>
|
| 741 |
+
inline __device__ float mul<float, float>(float a, float b)
|
| 742 |
+
{
|
| 743 |
+
return a * b;
|
| 744 |
+
}
|
| 745 |
+
|
| 746 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 747 |
+
|
| 748 |
+
template<>
|
| 749 |
+
inline __device__ float2 mul(float2 a, float2 b)
|
| 750 |
+
{
|
| 751 |
+
float2 c;
|
| 752 |
+
c.x = a.x * b.x;
|
| 753 |
+
c.y = a.y * b.y;
|
| 754 |
+
return c;
|
| 755 |
+
}
|
| 756 |
+
|
| 757 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 758 |
+
|
| 759 |
+
template<>
|
| 760 |
+
inline __device__ float2 mul(float a, float2 b)
|
| 761 |
+
{
|
| 762 |
+
float2 c;
|
| 763 |
+
c.x = a * b.x;
|
| 764 |
+
c.y = a * b.y;
|
| 765 |
+
return c;
|
| 766 |
+
}
|
| 767 |
+
|
| 768 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 769 |
+
|
| 770 |
+
template<>
|
| 771 |
+
inline __device__ float4 mul(float4 a, float4 b)
|
| 772 |
+
{
|
| 773 |
+
float4 c;
|
| 774 |
+
c.x = a.x * b.x;
|
| 775 |
+
c.y = a.y * b.y;
|
| 776 |
+
c.z = a.z * b.z;
|
| 777 |
+
c.w = a.w * b.w;
|
| 778 |
+
return c;
|
| 779 |
+
}
|
| 780 |
+
|
| 781 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 782 |
+
|
| 783 |
+
template<>
|
| 784 |
+
inline __device__ float4 mul(float a, float4 b)
|
| 785 |
+
{
|
| 786 |
+
float4 c;
|
| 787 |
+
c.x = a * b.x;
|
| 788 |
+
c.y = a * b.y;
|
| 789 |
+
c.z = a * b.z;
|
| 790 |
+
c.w = a * b.w;
|
| 791 |
+
return c;
|
| 792 |
+
}
|
| 793 |
+
|
| 794 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 795 |
+
|
| 796 |
+
template<>
|
| 797 |
+
inline __device__ Float8_ mul(float a, Float8_ b)
|
| 798 |
+
{
|
| 799 |
+
Float8_ c;
|
| 800 |
+
c.x = make_float2(a * b.x.x, a * b.x.y);
|
| 801 |
+
c.y = make_float2(a * b.y.x, a * b.y.y);
|
| 802 |
+
c.z = make_float2(a * b.z.x, a * b.z.y);
|
| 803 |
+
c.w = make_float2(a * b.w.x, a * b.w.y);
|
| 804 |
+
return c;
|
| 805 |
+
}
|
| 806 |
+
|
| 807 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 808 |
+
|
| 809 |
+
template<>
|
| 810 |
+
inline __device__ uint16_t mul(uint16_t a, uint16_t b)
|
| 811 |
+
{
|
| 812 |
+
uint16_t c;
|
| 813 |
+
asm volatile("mul.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
|
| 814 |
+
return c;
|
| 815 |
+
}
|
| 816 |
+
|
| 817 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 818 |
+
|
| 819 |
+
template<>
|
| 820 |
+
inline __device__ uint32_t mul(uint32_t a, uint32_t b)
|
| 821 |
+
{
|
| 822 |
+
uint32_t c;
|
| 823 |
+
asm volatile("mul.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
|
| 824 |
+
return c;
|
| 825 |
+
}
|
| 826 |
+
|
| 827 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 828 |
+
|
| 829 |
+
template<>
|
| 830 |
+
inline __device__ uint32_t mul(uint16_t a, uint32_t b)
|
| 831 |
+
{
|
| 832 |
+
return mul<uint32_t, uint32_t, uint32_t>(h0_h0(a), b);
|
| 833 |
+
}
|
| 834 |
+
|
| 835 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 836 |
+
|
| 837 |
+
template<>
|
| 838 |
+
inline __device__ uint2 mul(uint2 a, uint2 b)
|
| 839 |
+
{
|
| 840 |
+
uint2 c;
|
| 841 |
+
c.x = mul<uint32_t, uint32_t, uint32_t>(a.x, b.x);
|
| 842 |
+
c.y = mul<uint32_t, uint32_t, uint32_t>(a.y, b.y);
|
| 843 |
+
return c;
|
| 844 |
+
}
|
| 845 |
+
|
| 846 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 847 |
+
|
| 848 |
+
template<>
|
| 849 |
+
inline __device__ uint2 mul(uint16_t a, uint2 b)
|
| 850 |
+
{
|
| 851 |
+
uint32_t s = h0_h0(a);
|
| 852 |
+
uint2 c;
|
| 853 |
+
c.x = mul<uint32_t, uint32_t, uint32_t>(s, b.x);
|
| 854 |
+
c.y = mul<uint32_t, uint32_t, uint32_t>(s, b.y);
|
| 855 |
+
return c;
|
| 856 |
+
}
|
| 857 |
+
|
| 858 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 859 |
+
|
| 860 |
+
template<>
|
| 861 |
+
inline __device__ uint4 mul(uint4 a, uint4 b)
|
| 862 |
+
{
|
| 863 |
+
uint4 c;
|
| 864 |
+
c.x = mul<uint32_t, uint32_t, uint32_t>(a.x, b.x);
|
| 865 |
+
c.y = mul<uint32_t, uint32_t, uint32_t>(a.y, b.y);
|
| 866 |
+
c.z = mul<uint32_t, uint32_t, uint32_t>(a.z, b.z);
|
| 867 |
+
c.w = mul<uint32_t, uint32_t, uint32_t>(a.w, b.w);
|
| 868 |
+
return c;
|
| 869 |
+
}
|
| 870 |
+
|
| 871 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 872 |
+
|
| 873 |
+
template<>
|
| 874 |
+
inline __device__ uint4 mul(uint16_t a, uint4 b)
|
| 875 |
+
{
|
| 876 |
+
uint32_t s = h0_h0(a);
|
| 877 |
+
uint4 c;
|
| 878 |
+
c.x = mul<uint32_t, uint32_t, uint32_t>(s, b.x);
|
| 879 |
+
c.y = mul<uint32_t, uint32_t, uint32_t>(s, b.y);
|
| 880 |
+
c.z = mul<uint32_t, uint32_t, uint32_t>(s, b.z);
|
| 881 |
+
c.w = mul<uint32_t, uint32_t, uint32_t>(s, b.w);
|
| 882 |
+
return c;
|
| 883 |
+
}
|
| 884 |
+
|
| 885 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 886 |
+
|
| 887 |
+
template<>
|
| 888 |
+
inline __device__ float mul(uint16_t a, uint16_t b)
|
| 889 |
+
{
|
| 890 |
+
float fa = half_to_float(a);
|
| 891 |
+
float fb = half_to_float(b);
|
| 892 |
+
return fa * fb;
|
| 893 |
+
}
|
| 894 |
+
|
| 895 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 896 |
+
|
| 897 |
+
template<>
|
| 898 |
+
inline __device__ float mul(uint16_t a, float b)
|
| 899 |
+
{
|
| 900 |
+
return half_to_float(a) * b;
|
| 901 |
+
}
|
| 902 |
+
|
| 903 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 904 |
+
|
| 905 |
+
template<>
|
| 906 |
+
inline __device__ float2 mul(uint32_t a, uint32_t b)
|
| 907 |
+
{
|
| 908 |
+
float2 fa = half2_to_float2(a);
|
| 909 |
+
float2 fb = half2_to_float2(b);
|
| 910 |
+
return mul<float2, float2, float2>(fa, fb);
|
| 911 |
+
}
|
| 912 |
+
|
| 913 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 914 |
+
|
| 915 |
+
template<>
|
| 916 |
+
inline __device__ float2 mul(uint16_t a, uint32_t b)
|
| 917 |
+
{
|
| 918 |
+
return mul<float2, uint32_t, uint32_t>(h0_h0(a), b);
|
| 919 |
+
}
|
| 920 |
+
|
| 921 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 922 |
+
|
| 923 |
+
template<>
|
| 924 |
+
inline __device__ Float4_ mul(uint2 a, uint2 b)
|
| 925 |
+
{
|
| 926 |
+
Float4_ fc;
|
| 927 |
+
fc.x = mul<float2, uint32_t, uint32_t>(a.x, b.x);
|
| 928 |
+
fc.y = mul<float2, uint32_t, uint32_t>(a.y, b.y);
|
| 929 |
+
return fc;
|
| 930 |
+
}
|
| 931 |
+
|
| 932 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 933 |
+
|
| 934 |
+
template<>
|
| 935 |
+
inline __device__ Float4_ mul(uint16_t a, uint2 b)
|
| 936 |
+
{
|
| 937 |
+
uint32_t s = h0_h0(a);
|
| 938 |
+
Float4_ fc;
|
| 939 |
+
fc.x = mul<float2, uint32_t, uint32_t>(s, b.x);
|
| 940 |
+
fc.y = mul<float2, uint32_t, uint32_t>(s, b.y);
|
| 941 |
+
return fc;
|
| 942 |
+
}
|
| 943 |
+
|
| 944 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 945 |
+
|
| 946 |
+
template<>
|
| 947 |
+
inline __device__ Float8_ mul(uint4 a, uint4 b)
|
| 948 |
+
{
|
| 949 |
+
Float8_ fc;
|
| 950 |
+
fc.x = mul<float2, uint32_t, uint32_t>(a.x, b.x);
|
| 951 |
+
fc.y = mul<float2, uint32_t, uint32_t>(a.y, b.y);
|
| 952 |
+
fc.z = mul<float2, uint32_t, uint32_t>(a.z, b.z);
|
| 953 |
+
fc.w = mul<float2, uint32_t, uint32_t>(a.w, b.w);
|
| 954 |
+
return fc;
|
| 955 |
+
}
|
| 956 |
+
|
| 957 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 958 |
+
|
| 959 |
+
template<>
|
| 960 |
+
inline __device__ Float8_ mul(uint16_t a, uint4 b)
|
| 961 |
+
{
|
| 962 |
+
uint32_t s = h0_h0(a);
|
| 963 |
+
Float8_ fc;
|
| 964 |
+
fc.x = mul<float2, uint32_t, uint32_t>(s, b.x);
|
| 965 |
+
fc.y = mul<float2, uint32_t, uint32_t>(s, b.y);
|
| 966 |
+
fc.z = mul<float2, uint32_t, uint32_t>(s, b.z);
|
| 967 |
+
fc.w = mul<float2, uint32_t, uint32_t>(s, b.w);
|
| 968 |
+
return fc;
|
| 969 |
+
}
|
| 970 |
+
|
| 971 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 972 |
+
|
| 973 |
+
#ifdef ENABLE_BF16
|
| 974 |
+
template<>
|
| 975 |
+
inline __device__ __nv_bfloat16 mul(__nv_bfloat16 a, __nv_bfloat16 b)
|
| 976 |
+
{
|
| 977 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
| 978 |
+
return __hmul(a, b);
|
| 979 |
+
#else
|
| 980 |
+
return bf16hmul(a, b);
|
| 981 |
+
#endif
|
| 982 |
+
}
|
| 983 |
+
|
| 984 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 985 |
+
|
| 986 |
+
template<>
|
| 987 |
+
inline __device__ __nv_bfloat162 mul(__nv_bfloat162 a, __nv_bfloat162 b)
|
| 988 |
+
{
|
| 989 |
+
return bf16hmul2(a, b);
|
| 990 |
+
}
|
| 991 |
+
|
| 992 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 993 |
+
|
| 994 |
+
template<>
|
| 995 |
+
inline __device__ __nv_bfloat162 mul(__nv_bfloat16 a, __nv_bfloat162 b)
|
| 996 |
+
{
|
| 997 |
+
return mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
|
| 998 |
+
}
|
| 999 |
+
|
| 1000 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1001 |
+
|
| 1002 |
+
template<>
|
| 1003 |
+
inline __device__ bf16_4_t mul(bf16_4_t a, bf16_4_t b)
|
| 1004 |
+
{
|
| 1005 |
+
bf16_4_t c;
|
| 1006 |
+
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
|
| 1007 |
+
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
|
| 1008 |
+
return c;
|
| 1009 |
+
}
|
| 1010 |
+
|
| 1011 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1012 |
+
|
| 1013 |
+
template<>
|
| 1014 |
+
inline __device__ bf16_4_t mul(__nv_bfloat16 a, bf16_4_t b)
|
| 1015 |
+
{
|
| 1016 |
+
__nv_bfloat162 s = bf162bf162(a);
|
| 1017 |
+
bf16_4_t c;
|
| 1018 |
+
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
|
| 1019 |
+
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
|
| 1020 |
+
return c;
|
| 1021 |
+
}
|
| 1022 |
+
|
| 1023 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1024 |
+
|
| 1025 |
+
template<>
|
| 1026 |
+
inline __device__ bf16_8_t mul(bf16_8_t a, bf16_8_t b)
|
| 1027 |
+
{
|
| 1028 |
+
bf16_8_t c;
|
| 1029 |
+
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
|
| 1030 |
+
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
|
| 1031 |
+
c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
|
| 1032 |
+
c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
|
| 1033 |
+
return c;
|
| 1034 |
+
}
|
| 1035 |
+
|
| 1036 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1037 |
+
|
| 1038 |
+
template<>
|
| 1039 |
+
inline __device__ bf16_8_t mul(__nv_bfloat16 a, bf16_8_t b)
|
| 1040 |
+
{
|
| 1041 |
+
__nv_bfloat162 s = bf162bf162(a);
|
| 1042 |
+
bf16_8_t c;
|
| 1043 |
+
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
|
| 1044 |
+
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
|
| 1045 |
+
c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.z);
|
| 1046 |
+
c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.w);
|
| 1047 |
+
return c;
|
| 1048 |
+
}
|
| 1049 |
+
|
| 1050 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1051 |
+
|
| 1052 |
+
template<>
|
| 1053 |
+
inline __device__ float mul(__nv_bfloat16 a, __nv_bfloat16 b)
|
| 1054 |
+
{
|
| 1055 |
+
float fa = (float)a;
|
| 1056 |
+
float fb = (float)b;
|
| 1057 |
+
return fa * fb;
|
| 1058 |
+
}
|
| 1059 |
+
|
| 1060 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1061 |
+
|
| 1062 |
+
template<>
|
| 1063 |
+
inline __device__ float mul(__nv_bfloat16 a, float b)
|
| 1064 |
+
{
|
| 1065 |
+
return __bfloat162float(a) * b;
|
| 1066 |
+
}
|
| 1067 |
+
|
| 1068 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1069 |
+
|
| 1070 |
+
template<>
|
| 1071 |
+
inline __device__ float2 mul(__nv_bfloat162 a, __nv_bfloat162 b)
|
| 1072 |
+
{
|
| 1073 |
+
float2 fa = bf1622float2(a);
|
| 1074 |
+
float2 fb = bf1622float2(b);
|
| 1075 |
+
return mul<float2, float2, float2>(fa, fb);
|
| 1076 |
+
}
|
| 1077 |
+
|
| 1078 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1079 |
+
|
| 1080 |
+
template<>
|
| 1081 |
+
inline __device__ float2 mul(__nv_bfloat16 a, __nv_bfloat162 b)
|
| 1082 |
+
{
|
| 1083 |
+
return mul<float2, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
|
| 1084 |
+
}
|
| 1085 |
+
|
| 1086 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1087 |
+
|
| 1088 |
+
template<>
|
| 1089 |
+
inline __device__ Float4_ mul(bf16_4_t a, bf16_4_t b)
|
| 1090 |
+
{
|
| 1091 |
+
Float4_ fc;
|
| 1092 |
+
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
|
| 1093 |
+
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
|
| 1094 |
+
return fc;
|
| 1095 |
+
}
|
| 1096 |
+
|
| 1097 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1098 |
+
|
| 1099 |
+
template<>
|
| 1100 |
+
inline __device__ Float4_ mul(__nv_bfloat16 a, bf16_4_t b)
|
| 1101 |
+
{
|
| 1102 |
+
__nv_bfloat162 s = bf162bf162(a);
|
| 1103 |
+
Float4_ fc;
|
| 1104 |
+
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
|
| 1105 |
+
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
|
| 1106 |
+
return fc;
|
| 1107 |
+
}
|
| 1108 |
+
|
| 1109 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1110 |
+
|
| 1111 |
+
template<>
|
| 1112 |
+
inline __device__ Float8_ mul(bf16_8_t a, bf16_8_t b)
|
| 1113 |
+
{
|
| 1114 |
+
Float8_ fc;
|
| 1115 |
+
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
|
| 1116 |
+
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
|
| 1117 |
+
fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
|
| 1118 |
+
fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
|
| 1119 |
+
return fc;
|
| 1120 |
+
}
|
| 1121 |
+
|
| 1122 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1123 |
+
|
| 1124 |
+
template<>
|
| 1125 |
+
inline __device__ Float8_ mul(__nv_bfloat16 a, bf16_8_t b)
|
| 1126 |
+
{
|
| 1127 |
+
__nv_bfloat162 s = bf162bf162(a);
|
| 1128 |
+
Float8_ fc;
|
| 1129 |
+
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
|
| 1130 |
+
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
|
| 1131 |
+
fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.z);
|
| 1132 |
+
fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.w);
|
| 1133 |
+
return fc;
|
| 1134 |
+
}
|
| 1135 |
+
#endif // ENABLE_BF16
|
| 1136 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1137 |
+
|
| 1138 |
+
inline __device__ float sum(float v)
|
| 1139 |
+
{
|
| 1140 |
+
return v;
|
| 1141 |
+
}
|
| 1142 |
+
|
| 1143 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1144 |
+
|
| 1145 |
+
inline __device__ float sum(float2 v)
|
| 1146 |
+
{
|
| 1147 |
+
return v.x + v.y;
|
| 1148 |
+
}
|
| 1149 |
+
|
| 1150 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1151 |
+
|
| 1152 |
+
inline __device__ float sum(float4 v)
|
| 1153 |
+
{
|
| 1154 |
+
return v.x + v.y + v.z + v.w;
|
| 1155 |
+
}
|
| 1156 |
+
|
| 1157 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1158 |
+
|
| 1159 |
+
#ifdef ENABLE_BF16
|
| 1160 |
+
inline __device__ float sum(__nv_bfloat162 v)
|
| 1161 |
+
{
|
| 1162 |
+
float2 vf = bf1622float2(v);
|
| 1163 |
+
return vf.x + vf.y;
|
| 1164 |
+
}
|
| 1165 |
+
|
| 1166 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1167 |
+
|
| 1168 |
+
inline __device__ float sum(bf16_4_t v)
|
| 1169 |
+
{
|
| 1170 |
+
return sum(v.x) + sum(v.y);
|
| 1171 |
+
}
|
| 1172 |
+
|
| 1173 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1174 |
+
|
| 1175 |
+
inline __device__ float sum(bf16_8_t v)
|
| 1176 |
+
{
|
| 1177 |
+
return sum(v.x) + sum(v.y) + sum(v.z) + sum(v.w);
|
| 1178 |
+
}
|
| 1179 |
+
#endif // ENABLE_BF16
|
| 1180 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1181 |
+
|
| 1182 |
+
inline __device__ float sum(uint16_t v)
|
| 1183 |
+
{
|
| 1184 |
+
return half_to_float(v);
|
| 1185 |
+
}
|
| 1186 |
+
|
| 1187 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1188 |
+
|
| 1189 |
+
inline __device__ float sum(uint32_t v)
|
| 1190 |
+
{
|
| 1191 |
+
float2 tmp = half2_to_float2(v);
|
| 1192 |
+
return tmp.x + tmp.y;
|
| 1193 |
+
}
|
| 1194 |
+
|
| 1195 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1196 |
+
|
| 1197 |
+
inline __device__ float sum(uint2 v)
|
| 1198 |
+
{
|
| 1199 |
+
uint32_t c = add(v.x, v.y);
|
| 1200 |
+
return sum(c);
|
| 1201 |
+
}
|
| 1202 |
+
|
| 1203 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1204 |
+
|
| 1205 |
+
inline __device__ float sum(uint4 v)
|
| 1206 |
+
{
|
| 1207 |
+
#if 1
|
| 1208 |
+
uint32_t c = add(v.x, v.y);
|
| 1209 |
+
c = add(c, v.z);
|
| 1210 |
+
c = add(c, v.w);
|
| 1211 |
+
#else
|
| 1212 |
+
uint32_t c = add(v.x, v.y);
|
| 1213 |
+
uint32_t d = add(v.z, v.w);
|
| 1214 |
+
c = add(c, d);
|
| 1215 |
+
#endif
|
| 1216 |
+
return sum(c);
|
| 1217 |
+
}
|
| 1218 |
+
|
| 1219 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1220 |
+
|
| 1221 |
+
inline __device__ float sum(Float4_ v)
|
| 1222 |
+
{
|
| 1223 |
+
return v.x.x + v.x.y + v.y.x + v.y.y;
|
| 1224 |
+
}
|
| 1225 |
+
|
| 1226 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1227 |
+
|
| 1228 |
+
inline __device__ float sum(Float8_ v)
|
| 1229 |
+
{
|
| 1230 |
+
return v.x.x + v.x.y + v.y.x + v.y.y + v.z.x + v.z.y + v.w.x + v.w.y;
|
| 1231 |
+
}
|
| 1232 |
+
|
| 1233 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1234 |
+
|
| 1235 |
+
template<typename T>
|
| 1236 |
+
inline __device__ float dot(T a, T b)
|
| 1237 |
+
{
|
| 1238 |
+
return sum(mul<T, T, T>(a, b));
|
| 1239 |
+
}
|
| 1240 |
+
|
| 1241 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1242 |
+
|
| 1243 |
+
template<typename A, typename T>
|
| 1244 |
+
inline __device__ float dot(T a, T b)
|
| 1245 |
+
{
|
| 1246 |
+
return sum(mul<A, T, T>(a, b));
|
| 1247 |
+
}
|
| 1248 |
+
|
| 1249 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1250 |
+
|
| 1251 |
+
inline __device__ void zero(uint16_t& dst)
|
| 1252 |
+
{
|
| 1253 |
+
dst = uint16_t(0);
|
| 1254 |
+
}
|
| 1255 |
+
|
| 1256 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1257 |
+
|
| 1258 |
+
template<typename T>
|
| 1259 |
+
inline __device__ void zero(T& dst)
|
| 1260 |
+
{
|
| 1261 |
+
constexpr int WORDS = sizeof(T) / 4;
|
| 1262 |
+
union {
|
| 1263 |
+
T raw;
|
| 1264 |
+
uint32_t words[WORDS];
|
| 1265 |
+
} tmp;
|
| 1266 |
+
#pragma unroll
|
| 1267 |
+
for (int ii = 0; ii < WORDS; ++ii) {
|
| 1268 |
+
tmp.words[ii] = 0u;
|
| 1269 |
+
}
|
| 1270 |
+
dst = tmp.raw;
|
| 1271 |
+
}
|
| 1272 |
+
|
| 1273 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
| 1274 |
+
|
| 1275 |
+
inline __device__ float2 rotary_embedding_coefficient(const int zid, const int rot_embed_dim, const int t_step, const float base)
|
| 1276 |
+
{
|
| 1277 |
+
const float pos_idx_inv_freq = t_step / pow(base, zid / (float)rot_embed_dim);
|
| 1278 |
+
return {cos(pos_idx_inv_freq), sin(pos_idx_inv_freq)};
|
| 1279 |
+
}
|
| 1280 |
+
|
| 1281 |
+
inline __device__ float2 rotary_embedding_transform(const float2 v, const float2 coef)
|
| 1282 |
+
{
|
| 1283 |
+
float2 rot_v;
|
| 1284 |
+
rot_v.x = coef.x * v.x - coef.y * v.y;
|
| 1285 |
+
rot_v.y = coef.x * v.y + coef.y * v.x;
|
| 1286 |
+
return rot_v;
|
| 1287 |
+
}
|
| 1288 |
+
|
| 1289 |
+
inline __device__ uint32_t rotary_embedding_transform(const uint32_t v, const float2 coef)
|
| 1290 |
+
{
|
| 1291 |
+
float2 fv = half2_to_float2(v);
|
| 1292 |
+
float2 rot_fv = rotary_embedding_transform(fv, coef);
|
| 1293 |
+
return float2_to_half2(rot_fv);
|
| 1294 |
+
}
|
| 1295 |
+
|
| 1296 |
+
#ifdef ENABLE_BF16
|
| 1297 |
+
inline __device__ __nv_bfloat162 rotary_embedding_transform(const __nv_bfloat162 v, const float2 coef)
|
| 1298 |
+
{
|
| 1299 |
+
float2 fv = bf1622float2(v);
|
| 1300 |
+
float2 rot_fv = rotary_embedding_transform(fv, coef);
|
| 1301 |
+
return __floats2bfloat162_rn(rot_fv.x, rot_fv.y);
|
| 1302 |
+
}
|
| 1303 |
+
#endif
|
| 1304 |
+
|
| 1305 |
+
inline __device__ void apply_rotary_embedding(float& q, int zid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1306 |
+
{
|
| 1307 |
+
return;
|
| 1308 |
+
}
|
| 1309 |
+
|
| 1310 |
+
inline __device__ void apply_rotary_embedding(float& q, float& k, int zid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1311 |
+
{
|
| 1312 |
+
return;
|
| 1313 |
+
}
|
| 1314 |
+
|
| 1315 |
+
inline __device__ void apply_rotary_embedding(float2& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1316 |
+
{
|
| 1317 |
+
if (2 * tid >= rot_embed_dim) {
|
| 1318 |
+
return;
|
| 1319 |
+
}
|
| 1320 |
+
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base);
|
| 1321 |
+
q = rotary_embedding_transform(q, coef);
|
| 1322 |
+
}
|
| 1323 |
+
|
| 1324 |
+
inline __device__ void apply_rotary_embedding(float2& q, float2& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1325 |
+
{
|
| 1326 |
+
if (2 * tid >= rot_embed_dim) {
|
| 1327 |
+
return;
|
| 1328 |
+
}
|
| 1329 |
+
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base);
|
| 1330 |
+
q = rotary_embedding_transform(q, coef);
|
| 1331 |
+
k = rotary_embedding_transform(k, coef);
|
| 1332 |
+
}
|
| 1333 |
+
|
| 1334 |
+
inline __device__ void apply_rotary_embedding(float4& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1335 |
+
{
|
| 1336 |
+
if (4 * tid >= rot_embed_dim) {
|
| 1337 |
+
return;
|
| 1338 |
+
}
|
| 1339 |
+
|
| 1340 |
+
Float4_& q_ = *reinterpret_cast<Float4_*>(&q);
|
| 1341 |
+
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base);
|
| 1342 |
+
q_.x = rotary_embedding_transform(q_.x, coef0);
|
| 1343 |
+
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base);
|
| 1344 |
+
q_.y = rotary_embedding_transform(q_.y, coef1);
|
| 1345 |
+
}
|
| 1346 |
+
|
| 1347 |
+
inline __device__ void apply_rotary_embedding(float4& q, float4& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1348 |
+
{
|
| 1349 |
+
if (4 * tid >= rot_embed_dim) {
|
| 1350 |
+
return;
|
| 1351 |
+
}
|
| 1352 |
+
|
| 1353 |
+
Float4_& q_ = *reinterpret_cast<Float4_*>(&q);
|
| 1354 |
+
Float4_& k_ = *reinterpret_cast<Float4_*>(&k);
|
| 1355 |
+
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base);
|
| 1356 |
+
q_.x = rotary_embedding_transform(q_.x, coef0);
|
| 1357 |
+
k_.x = rotary_embedding_transform(k_.x, coef0);
|
| 1358 |
+
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base);
|
| 1359 |
+
q_.y = rotary_embedding_transform(q_.y, coef1);
|
| 1360 |
+
k_.y = rotary_embedding_transform(k_.y, coef1);
|
| 1361 |
+
}
|
| 1362 |
+
|
| 1363 |
+
inline __device__ void apply_rotary_embedding(uint32_t& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1364 |
+
{
|
| 1365 |
+
if (2 * tid >= rot_embed_dim) {
|
| 1366 |
+
return;
|
| 1367 |
+
}
|
| 1368 |
+
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base);
|
| 1369 |
+
q = rotary_embedding_transform(q, coef);
|
| 1370 |
+
}
|
| 1371 |
+
|
| 1372 |
+
inline __device__ void apply_rotary_embedding(uint32_t& q, uint32_t& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1373 |
+
{
|
| 1374 |
+
if (2 * tid >= rot_embed_dim) {
|
| 1375 |
+
return;
|
| 1376 |
+
}
|
| 1377 |
+
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base);
|
| 1378 |
+
q = rotary_embedding_transform(q, coef);
|
| 1379 |
+
k = rotary_embedding_transform(k, coef);
|
| 1380 |
+
}
|
| 1381 |
+
|
| 1382 |
+
inline __device__ void apply_rotary_embedding(uint2& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1383 |
+
{
|
| 1384 |
+
if (4 * tid >= rot_embed_dim) {
|
| 1385 |
+
return;
|
| 1386 |
+
}
|
| 1387 |
+
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base);
|
| 1388 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1389 |
+
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base);
|
| 1390 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1391 |
+
}
|
| 1392 |
+
|
| 1393 |
+
inline __device__ void apply_rotary_embedding(uint2& q, uint2& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1394 |
+
{
|
| 1395 |
+
if (4 * tid >= rot_embed_dim) {
|
| 1396 |
+
return;
|
| 1397 |
+
}
|
| 1398 |
+
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base);
|
| 1399 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1400 |
+
k.x = rotary_embedding_transform(k.x, coef0);
|
| 1401 |
+
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base);
|
| 1402 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1403 |
+
k.y = rotary_embedding_transform(k.y, coef1);
|
| 1404 |
+
}
|
| 1405 |
+
|
| 1406 |
+
inline __device__ void apply_rotary_embedding(uint4& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1407 |
+
{
|
| 1408 |
+
if (8 * tid >= rot_embed_dim) {
|
| 1409 |
+
return;
|
| 1410 |
+
}
|
| 1411 |
+
const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base);
|
| 1412 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1413 |
+
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base);
|
| 1414 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1415 |
+
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base);
|
| 1416 |
+
q.z = rotary_embedding_transform(q.z, coef2);
|
| 1417 |
+
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base);
|
| 1418 |
+
q.w = rotary_embedding_transform(q.w, coef3);
|
| 1419 |
+
}
|
| 1420 |
+
|
| 1421 |
+
inline __device__ void apply_rotary_embedding(uint4& q, uint4& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1422 |
+
{
|
| 1423 |
+
if (8 * tid >= rot_embed_dim) {
|
| 1424 |
+
return;
|
| 1425 |
+
}
|
| 1426 |
+
const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base);
|
| 1427 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1428 |
+
k.x = rotary_embedding_transform(k.x, coef0);
|
| 1429 |
+
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base);
|
| 1430 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1431 |
+
k.y = rotary_embedding_transform(k.y, coef1);
|
| 1432 |
+
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base);
|
| 1433 |
+
q.z = rotary_embedding_transform(q.z, coef2);
|
| 1434 |
+
k.z = rotary_embedding_transform(k.z, coef2);
|
| 1435 |
+
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base);
|
| 1436 |
+
q.w = rotary_embedding_transform(q.w, coef3);
|
| 1437 |
+
k.w = rotary_embedding_transform(k.w, coef3);
|
| 1438 |
+
}
|
| 1439 |
+
|
| 1440 |
+
#ifdef ENABLE_BF16
|
| 1441 |
+
inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1442 |
+
{
|
| 1443 |
+
if (2 * tid >= rot_embed_dim) {
|
| 1444 |
+
return;
|
| 1445 |
+
}
|
| 1446 |
+
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base);
|
| 1447 |
+
q = rotary_embedding_transform(q, coef);
|
| 1448 |
+
}
|
| 1449 |
+
|
| 1450 |
+
inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, __nv_bfloat162& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1451 |
+
{
|
| 1452 |
+
if (2 * tid >= rot_embed_dim) {
|
| 1453 |
+
return;
|
| 1454 |
+
}
|
| 1455 |
+
const auto coef = rotary_embedding_coefficient(2 * tid, rot_embed_dim, t_step, base);
|
| 1456 |
+
q = rotary_embedding_transform(q, coef);
|
| 1457 |
+
k = rotary_embedding_transform(k, coef);
|
| 1458 |
+
}
|
| 1459 |
+
|
| 1460 |
+
inline __device__ void apply_rotary_embedding(bf16_4_t& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1461 |
+
{
|
| 1462 |
+
if (4 * tid >= rot_embed_dim) {
|
| 1463 |
+
return;
|
| 1464 |
+
}
|
| 1465 |
+
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base);
|
| 1466 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1467 |
+
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base);
|
| 1468 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1469 |
+
}
|
| 1470 |
+
|
| 1471 |
+
inline __device__ void apply_rotary_embedding(bf16_4_t& q, bf16_4_t& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1472 |
+
{
|
| 1473 |
+
if (4 * tid >= rot_embed_dim) {
|
| 1474 |
+
return;
|
| 1475 |
+
}
|
| 1476 |
+
const auto coef0 = rotary_embedding_coefficient(4 * tid, rot_embed_dim, t_step, base);
|
| 1477 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1478 |
+
k.x = rotary_embedding_transform(k.x, coef0);
|
| 1479 |
+
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, rot_embed_dim, t_step, base);
|
| 1480 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1481 |
+
k.y = rotary_embedding_transform(k.y, coef1);
|
| 1482 |
+
}
|
| 1483 |
+
|
| 1484 |
+
inline __device__ void apply_rotary_embedding(bf16_8_t& q, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1485 |
+
{
|
| 1486 |
+
if (8 * tid >= rot_embed_dim) {
|
| 1487 |
+
return;
|
| 1488 |
+
}
|
| 1489 |
+
const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base);
|
| 1490 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1491 |
+
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base);
|
| 1492 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1493 |
+
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base);
|
| 1494 |
+
q.z = rotary_embedding_transform(q.z, coef2);
|
| 1495 |
+
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base);
|
| 1496 |
+
q.w = rotary_embedding_transform(q.w, coef3);
|
| 1497 |
+
}
|
| 1498 |
+
|
| 1499 |
+
inline __device__ void apply_rotary_embedding(bf16_8_t& q, bf16_8_t& k, int tid, int rot_embed_dim, int t_step, const float base=10000.0f)
|
| 1500 |
+
{
|
| 1501 |
+
if (8 * tid >= rot_embed_dim) {
|
| 1502 |
+
return;
|
| 1503 |
+
}
|
| 1504 |
+
const auto coef0 = rotary_embedding_coefficient(8 * tid, rot_embed_dim, t_step, base);
|
| 1505 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1506 |
+
k.x = rotary_embedding_transform(k.x, coef0);
|
| 1507 |
+
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, rot_embed_dim, t_step, base);
|
| 1508 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1509 |
+
k.y = rotary_embedding_transform(k.y, coef1);
|
| 1510 |
+
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, rot_embed_dim, t_step, base);
|
| 1511 |
+
q.z = rotary_embedding_transform(q.z, coef2);
|
| 1512 |
+
k.z = rotary_embedding_transform(k.z, coef2);
|
| 1513 |
+
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, rot_embed_dim, t_step, base);
|
| 1514 |
+
q.w = rotary_embedding_transform(q.w, coef3);
|
| 1515 |
+
k.w = rotary_embedding_transform(k.w, coef3);
|
| 1516 |
+
}
|
| 1517 |
+
#endif // ENABLE_BF16
|
| 1518 |
+
|
| 1519 |
+
template <typename T>
|
| 1520 |
+
inline __device__ float2 rotary_embedding_coefficient(const int zid, const int t_step, const T* rotary_cos, const T* rotary_sin)
|
| 1521 |
+
{
|
| 1522 |
+
// zid is the index of the dimension (0, 2, 4, ..., rotary_dim).
|
| 1523 |
+
// rotary_cos/sin stores those at index 0, 1, 2, ..., rotary_dim / 2.
|
| 1524 |
+
return {float(rotary_cos[zid / 2]), float(rotary_sin[zid / 2])};
|
| 1525 |
+
}
|
| 1526 |
+
|
| 1527 |
+
// fp16 is special because we use uint16_t for reading the data, for backward compatibility.
|
| 1528 |
+
template <>
|
| 1529 |
+
inline __device__ float2 rotary_embedding_coefficient<uint16_t>(const int zid, const int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
|
| 1530 |
+
{
|
| 1531 |
+
// zid is the index of the dimension (0, 2, 4, ..., rotary_dim).
|
| 1532 |
+
// rotary_cos/sin stores those at index 0, 1, 2, ..., rotary_dim / 2.
|
| 1533 |
+
return {float(reinterpret_cast<const __half*>(rotary_cos)[zid / 2]),
|
| 1534 |
+
float(reinterpret_cast<const __half*>(rotary_sin)[zid / 2])};
|
| 1535 |
+
}
|
| 1536 |
+
|
| 1537 |
+
inline __device__ void apply_rotary_embedding(float& q, int zid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin)
|
| 1538 |
+
{
|
| 1539 |
+
return;
|
| 1540 |
+
}
|
| 1541 |
+
|
| 1542 |
+
inline __device__ void apply_rotary_embedding(float& q, float& k, int zid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin)
|
| 1543 |
+
{
|
| 1544 |
+
return;
|
| 1545 |
+
}
|
| 1546 |
+
|
| 1547 |
+
inline __device__ void apply_rotary_embedding(float2& q, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin)
|
| 1548 |
+
{
|
| 1549 |
+
if (2 * tid >= rot_embed_dim) {
|
| 1550 |
+
return;
|
| 1551 |
+
}
|
| 1552 |
+
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin);
|
| 1553 |
+
q = rotary_embedding_transform(q, coef);
|
| 1554 |
+
}
|
| 1555 |
+
|
| 1556 |
+
inline __device__ void apply_rotary_embedding(float2& q, float2& k, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin)
|
| 1557 |
+
{
|
| 1558 |
+
if (2 * tid >= rot_embed_dim) {
|
| 1559 |
+
return;
|
| 1560 |
+
}
|
| 1561 |
+
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin);
|
| 1562 |
+
q = rotary_embedding_transform(q, coef);
|
| 1563 |
+
k = rotary_embedding_transform(k, coef);
|
| 1564 |
+
}
|
| 1565 |
+
|
| 1566 |
+
inline __device__ void apply_rotary_embedding(float4& q, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin)
|
| 1567 |
+
{
|
| 1568 |
+
if (4 * tid >= rot_embed_dim) {
|
| 1569 |
+
return;
|
| 1570 |
+
}
|
| 1571 |
+
|
| 1572 |
+
Float4_& q_ = *reinterpret_cast<Float4_*>(&q);
|
| 1573 |
+
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin);
|
| 1574 |
+
q_.x = rotary_embedding_transform(q_.x, coef0);
|
| 1575 |
+
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin);
|
| 1576 |
+
q_.y = rotary_embedding_transform(q_.y, coef1);
|
| 1577 |
+
}
|
| 1578 |
+
|
| 1579 |
+
inline __device__ void apply_rotary_embedding(float4& q, float4& k, int tid, int rot_embed_dim, int t_step, const float* rotary_cos, const float* rotary_sin)
|
| 1580 |
+
{
|
| 1581 |
+
if (4 * tid >= rot_embed_dim) {
|
| 1582 |
+
return;
|
| 1583 |
+
}
|
| 1584 |
+
|
| 1585 |
+
Float4_& q_ = *reinterpret_cast<Float4_*>(&q);
|
| 1586 |
+
Float4_& k_ = *reinterpret_cast<Float4_*>(&k);
|
| 1587 |
+
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin);
|
| 1588 |
+
q_.x = rotary_embedding_transform(q_.x, coef0);
|
| 1589 |
+
k_.x = rotary_embedding_transform(k_.x, coef0);
|
| 1590 |
+
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin);
|
| 1591 |
+
q_.y = rotary_embedding_transform(q_.y, coef1);
|
| 1592 |
+
k_.y = rotary_embedding_transform(k_.y, coef1);
|
| 1593 |
+
}
|
| 1594 |
+
|
| 1595 |
+
inline __device__ void apply_rotary_embedding(uint32_t& q, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
|
| 1596 |
+
{
|
| 1597 |
+
if (2 * tid >= rot_embed_dim) {
|
| 1598 |
+
return;
|
| 1599 |
+
}
|
| 1600 |
+
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin);
|
| 1601 |
+
q = rotary_embedding_transform(q, coef);
|
| 1602 |
+
}
|
| 1603 |
+
|
| 1604 |
+
inline __device__ void apply_rotary_embedding(uint32_t& q, uint32_t& k, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
|
| 1605 |
+
{
|
| 1606 |
+
if (2 * tid >= rot_embed_dim) {
|
| 1607 |
+
return;
|
| 1608 |
+
}
|
| 1609 |
+
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin);
|
| 1610 |
+
q = rotary_embedding_transform(q, coef);
|
| 1611 |
+
k = rotary_embedding_transform(k, coef);
|
| 1612 |
+
}
|
| 1613 |
+
|
| 1614 |
+
inline __device__ void apply_rotary_embedding(uint2& q, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
|
| 1615 |
+
{
|
| 1616 |
+
if (4 * tid >= rot_embed_dim) {
|
| 1617 |
+
return;
|
| 1618 |
+
}
|
| 1619 |
+
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin);
|
| 1620 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1621 |
+
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin);
|
| 1622 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1623 |
+
}
|
| 1624 |
+
|
| 1625 |
+
inline __device__ void apply_rotary_embedding(uint2& q, uint2& k, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
|
| 1626 |
+
{
|
| 1627 |
+
if (4 * tid >= rot_embed_dim) {
|
| 1628 |
+
return;
|
| 1629 |
+
}
|
| 1630 |
+
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin);
|
| 1631 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1632 |
+
k.x = rotary_embedding_transform(k.x, coef0);
|
| 1633 |
+
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin);
|
| 1634 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1635 |
+
k.y = rotary_embedding_transform(k.y, coef1);
|
| 1636 |
+
}
|
| 1637 |
+
|
| 1638 |
+
inline __device__ void apply_rotary_embedding(uint4& q, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
|
| 1639 |
+
{
|
| 1640 |
+
if (8 * tid >= rot_embed_dim) {
|
| 1641 |
+
return;
|
| 1642 |
+
}
|
| 1643 |
+
const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin);
|
| 1644 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1645 |
+
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin);
|
| 1646 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1647 |
+
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin);
|
| 1648 |
+
q.z = rotary_embedding_transform(q.z, coef2);
|
| 1649 |
+
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin);
|
| 1650 |
+
q.w = rotary_embedding_transform(q.w, coef3);
|
| 1651 |
+
}
|
| 1652 |
+
|
| 1653 |
+
inline __device__ void apply_rotary_embedding(uint4& q, uint4& k, int tid, int rot_embed_dim, int t_step, const uint16_t* rotary_cos, const uint16_t* rotary_sin)
|
| 1654 |
+
{
|
| 1655 |
+
if (8 * tid >= rot_embed_dim) {
|
| 1656 |
+
return;
|
| 1657 |
+
}
|
| 1658 |
+
const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin);
|
| 1659 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1660 |
+
k.x = rotary_embedding_transform(k.x, coef0);
|
| 1661 |
+
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin);
|
| 1662 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1663 |
+
k.y = rotary_embedding_transform(k.y, coef1);
|
| 1664 |
+
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin);
|
| 1665 |
+
q.z = rotary_embedding_transform(q.z, coef2);
|
| 1666 |
+
k.z = rotary_embedding_transform(k.z, coef2);
|
| 1667 |
+
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin);
|
| 1668 |
+
q.w = rotary_embedding_transform(q.w, coef3);
|
| 1669 |
+
k.w = rotary_embedding_transform(k.w, coef3);
|
| 1670 |
+
}
|
| 1671 |
+
|
| 1672 |
+
#ifdef ENABLE_BF16
|
| 1673 |
+
inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin)
|
| 1674 |
+
{
|
| 1675 |
+
if (2 * tid >= rot_embed_dim) {
|
| 1676 |
+
return;
|
| 1677 |
+
}
|
| 1678 |
+
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin);
|
| 1679 |
+
q = rotary_embedding_transform(q, coef);
|
| 1680 |
+
}
|
| 1681 |
+
|
| 1682 |
+
inline __device__ void apply_rotary_embedding(__nv_bfloat162& q, __nv_bfloat162& k, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin)
|
| 1683 |
+
{
|
| 1684 |
+
if (2 * tid >= rot_embed_dim) {
|
| 1685 |
+
return;
|
| 1686 |
+
}
|
| 1687 |
+
const auto coef = rotary_embedding_coefficient(2 * tid, t_step, rotary_cos, rotary_sin);
|
| 1688 |
+
q = rotary_embedding_transform(q, coef);
|
| 1689 |
+
k = rotary_embedding_transform(k, coef);
|
| 1690 |
+
}
|
| 1691 |
+
|
| 1692 |
+
inline __device__ void apply_rotary_embedding(bf16_4_t& q, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin)
|
| 1693 |
+
{
|
| 1694 |
+
if (4 * tid >= rot_embed_dim) {
|
| 1695 |
+
return;
|
| 1696 |
+
}
|
| 1697 |
+
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin);
|
| 1698 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1699 |
+
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin);
|
| 1700 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1701 |
+
}
|
| 1702 |
+
|
| 1703 |
+
inline __device__ void apply_rotary_embedding(bf16_4_t& q, bf16_4_t& k, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin)
|
| 1704 |
+
{
|
| 1705 |
+
if (4 * tid >= rot_embed_dim) {
|
| 1706 |
+
return;
|
| 1707 |
+
}
|
| 1708 |
+
const auto coef0 = rotary_embedding_coefficient(4 * tid, t_step, rotary_cos, rotary_sin);
|
| 1709 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1710 |
+
k.x = rotary_embedding_transform(k.x, coef0);
|
| 1711 |
+
const auto coef1 = rotary_embedding_coefficient(4 * tid + 2, t_step, rotary_cos, rotary_sin);
|
| 1712 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1713 |
+
k.y = rotary_embedding_transform(k.y, coef1);
|
| 1714 |
+
}
|
| 1715 |
+
|
| 1716 |
+
inline __device__ void apply_rotary_embedding(bf16_8_t& q, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin)
|
| 1717 |
+
{
|
| 1718 |
+
if (8 * tid >= rot_embed_dim) {
|
| 1719 |
+
return;
|
| 1720 |
+
}
|
| 1721 |
+
const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin);
|
| 1722 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1723 |
+
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin);
|
| 1724 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1725 |
+
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin);
|
| 1726 |
+
q.z = rotary_embedding_transform(q.z, coef2);
|
| 1727 |
+
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin);
|
| 1728 |
+
q.w = rotary_embedding_transform(q.w, coef3);
|
| 1729 |
+
}
|
| 1730 |
+
|
| 1731 |
+
inline __device__ void apply_rotary_embedding(bf16_8_t& q, bf16_8_t& k, int tid, int rot_embed_dim, int t_step, const __nv_bfloat16* rotary_cos, const __nv_bfloat16* rotary_sin)
|
| 1732 |
+
{
|
| 1733 |
+
if (8 * tid >= rot_embed_dim) {
|
| 1734 |
+
return;
|
| 1735 |
+
}
|
| 1736 |
+
const auto coef0 = rotary_embedding_coefficient(8 * tid, t_step, rotary_cos, rotary_sin);
|
| 1737 |
+
q.x = rotary_embedding_transform(q.x, coef0);
|
| 1738 |
+
k.x = rotary_embedding_transform(k.x, coef0);
|
| 1739 |
+
const auto coef1 = rotary_embedding_coefficient(8 * tid + 2, t_step, rotary_cos, rotary_sin);
|
| 1740 |
+
q.y = rotary_embedding_transform(q.y, coef1);
|
| 1741 |
+
k.y = rotary_embedding_transform(k.y, coef1);
|
| 1742 |
+
const auto coef2 = rotary_embedding_coefficient(8 * tid + 4, t_step, rotary_cos, rotary_sin);
|
| 1743 |
+
q.z = rotary_embedding_transform(q.z, coef2);
|
| 1744 |
+
k.z = rotary_embedding_transform(k.z, coef2);
|
| 1745 |
+
const auto coef3 = rotary_embedding_coefficient(8 * tid + 6, t_step, rotary_cos, rotary_sin);
|
| 1746 |
+
q.w = rotary_embedding_transform(q.w, coef3);
|
| 1747 |
+
k.w = rotary_embedding_transform(k.w, coef3);
|
| 1748 |
+
}
|
| 1749 |
+
#endif // ENABLE_BF16
|
| 1750 |
+
|
| 1751 |
+
template<typename Vec_T, typename T>
|
| 1752 |
+
__device__ __inline__ void vec_from_smem_transpose(Vec_T& vec, T* smem, int transpose_idx, int smem_pitch);
|
| 1753 |
+
|
| 1754 |
+
template<>
|
| 1755 |
+
__device__ __inline__ void vec_from_smem_transpose(float& vec, float* smem, int transpose_idx, int smem_pitch)
|
| 1756 |
+
{
|
| 1757 |
+
return;
|
| 1758 |
+
}
|
| 1759 |
+
|
| 1760 |
+
template<>
|
| 1761 |
+
__device__ __inline__ void vec_from_smem_transpose(uint32_t& vec, uint16_t* smem, int transpose_idx, int smem_pitch)
|
| 1762 |
+
{
|
| 1763 |
+
union {
|
| 1764 |
+
uint32_t u32;
|
| 1765 |
+
uint16_t u16[2];
|
| 1766 |
+
} tmp;
|
| 1767 |
+
tmp.u16[0] = smem[transpose_idx];
|
| 1768 |
+
tmp.u16[1] = smem[smem_pitch + transpose_idx];
|
| 1769 |
+
|
| 1770 |
+
vec = tmp.u32;
|
| 1771 |
+
}
|
| 1772 |
+
|
| 1773 |
+
template<>
|
| 1774 |
+
__device__ __inline__ void vec_from_smem_transpose(uint2& vec, uint16_t* smem, int transpose_idx, int smem_pitch)
|
| 1775 |
+
{
|
| 1776 |
+
union {
|
| 1777 |
+
uint32_t u32;
|
| 1778 |
+
uint16_t u16[2];
|
| 1779 |
+
} tmp_1, tmp_2;
|
| 1780 |
+
tmp_1.u32 = *reinterpret_cast<uint32_t*>(&smem[transpose_idx]);
|
| 1781 |
+
tmp_2.u32 = *reinterpret_cast<uint32_t*>(&smem[smem_pitch + transpose_idx]);
|
| 1782 |
+
|
| 1783 |
+
union {
|
| 1784 |
+
uint2 u32x2;
|
| 1785 |
+
uint16_t u16[4];
|
| 1786 |
+
} tmp_3;
|
| 1787 |
+
tmp_3.u16[0] = tmp_1.u16[0];
|
| 1788 |
+
tmp_3.u16[1] = tmp_2.u16[0];
|
| 1789 |
+
tmp_3.u16[2] = tmp_1.u16[1];
|
| 1790 |
+
tmp_3.u16[3] = tmp_2.u16[1];
|
| 1791 |
+
|
| 1792 |
+
vec = tmp_3.u32x2;
|
| 1793 |
+
}
|
| 1794 |
+
|
| 1795 |
+
template<>
|
| 1796 |
+
__device__ __inline__ void vec_from_smem_transpose(uint4& vec, uint16_t* smem, int transpose_idx, int smem_pitch)
|
| 1797 |
+
{
|
| 1798 |
+
union {
|
| 1799 |
+
uint64_t u64;
|
| 1800 |
+
uint16_t u16[4];
|
| 1801 |
+
} tmp_1, tmp_2;
|
| 1802 |
+
tmp_1.u64 = *reinterpret_cast<uint64_t*>(&smem[transpose_idx]);
|
| 1803 |
+
tmp_2.u64 = *reinterpret_cast<uint64_t*>(&smem[smem_pitch + transpose_idx]);
|
| 1804 |
+
|
| 1805 |
+
union {
|
| 1806 |
+
uint4 u32x4;
|
| 1807 |
+
uint16_t u16[8];
|
| 1808 |
+
} tmp_3;
|
| 1809 |
+
tmp_3.u16[0] = tmp_1.u16[0];
|
| 1810 |
+
tmp_3.u16[1] = tmp_2.u16[0];
|
| 1811 |
+
tmp_3.u16[2] = tmp_1.u16[1];
|
| 1812 |
+
tmp_3.u16[3] = tmp_2.u16[1];
|
| 1813 |
+
tmp_3.u16[4] = tmp_1.u16[2];
|
| 1814 |
+
tmp_3.u16[5] = tmp_2.u16[2];
|
| 1815 |
+
tmp_3.u16[6] = tmp_1.u16[3];
|
| 1816 |
+
tmp_3.u16[7] = tmp_2.u16[3];
|
| 1817 |
+
|
| 1818 |
+
vec = tmp_3.u32x4;
|
| 1819 |
+
}
|
| 1820 |
+
|
| 1821 |
+
#ifdef ENABLE_BF16
|
| 1822 |
+
template<>
|
| 1823 |
+
__device__ __inline__ void
|
| 1824 |
+
vec_from_smem_transpose(bf16_4_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch)
|
| 1825 |
+
{
|
| 1826 |
+
union {
|
| 1827 |
+
uint32_t u32;
|
| 1828 |
+
__nv_bfloat16 bf16[2];
|
| 1829 |
+
} tmp_1, tmp_2;
|
| 1830 |
+
tmp_1.u32 = *reinterpret_cast<uint32_t*>(&smem[transpose_idx]);
|
| 1831 |
+
tmp_2.u32 = *reinterpret_cast<uint32_t*>(&smem[smem_pitch + transpose_idx]);
|
| 1832 |
+
|
| 1833 |
+
vec.x = __nv_bfloat162{tmp_1.bf16[0], tmp_2.bf16[0]};
|
| 1834 |
+
vec.y = __nv_bfloat162{tmp_1.bf16[1], tmp_2.bf16[1]};
|
| 1835 |
+
}
|
| 1836 |
+
|
| 1837 |
+
template<>
|
| 1838 |
+
__device__ __inline__ void
|
| 1839 |
+
vec_from_smem_transpose(bf16_8_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch)
|
| 1840 |
+
{
|
| 1841 |
+
union {
|
| 1842 |
+
uint64_t u64;
|
| 1843 |
+
__nv_bfloat16 bf16[4];
|
| 1844 |
+
} tmp_1, tmp_2;
|
| 1845 |
+
tmp_1.u64 = *reinterpret_cast<uint64_t*>(&smem[transpose_idx]);
|
| 1846 |
+
tmp_2.u64 = *reinterpret_cast<uint64_t*>(&smem[smem_pitch + transpose_idx]);
|
| 1847 |
+
|
| 1848 |
+
vec.x = __nv_bfloat162{tmp_1.bf16[0], tmp_2.bf16[0]};
|
| 1849 |
+
vec.y = __nv_bfloat162{tmp_1.bf16[1], tmp_2.bf16[1]};
|
| 1850 |
+
vec.z = __nv_bfloat162{tmp_1.bf16[2], tmp_2.bf16[2]};
|
| 1851 |
+
vec.w = __nv_bfloat162{tmp_1.bf16[3], tmp_2.bf16[3]};
|
| 1852 |
+
}
|
| 1853 |
+
#endif // ENABLE_BF16
|
| 1854 |
+
|
| 1855 |
+
template<>
|
| 1856 |
+
__device__ __inline__ void vec_from_smem_transpose(float4& vec, float* smem, int transpose_idx, int smem_pitch)
|
| 1857 |
+
{
|
| 1858 |
+
vec.x = smem[transpose_idx];
|
| 1859 |
+
vec.z = smem[transpose_idx + 1];
|
| 1860 |
+
vec.y = smem[smem_pitch + transpose_idx];
|
| 1861 |
+
vec.w = smem[smem_pitch + transpose_idx + 1];
|
| 1862 |
+
}
|
| 1863 |
+
|
| 1864 |
+
template<>
|
| 1865 |
+
__device__ __inline__ void vec_from_smem_transpose(uint32_t& vec, half* smem, int transpose_idx, int smem_pitch)
|
| 1866 |
+
{
|
| 1867 |
+
union {
|
| 1868 |
+
uint32_t u32;
|
| 1869 |
+
half u16[2];
|
| 1870 |
+
} tmp;
|
| 1871 |
+
tmp.u16[0] = smem[transpose_idx];
|
| 1872 |
+
tmp.u16[1] = smem[smem_pitch + transpose_idx];
|
| 1873 |
+
|
| 1874 |
+
vec = tmp.u32;
|
| 1875 |
+
}
|
| 1876 |
+
|
| 1877 |
+
#ifdef ENABLE_BF16
|
| 1878 |
+
template<>
|
| 1879 |
+
__device__ __inline__ void
|
| 1880 |
+
vec_from_smem_transpose(__nv_bfloat162& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch)
|
| 1881 |
+
{
|
| 1882 |
+
vec.x = smem[transpose_idx];
|
| 1883 |
+
vec.y = smem[smem_pitch + transpose_idx];
|
| 1884 |
+
}
|
| 1885 |
+
#endif
|
| 1886 |
+
|
| 1887 |
+
template<>
|
| 1888 |
+
__device__ __inline__ void vec_from_smem_transpose(float2& vec, float* smem, int transpose_idx, int smem_pitch)
|
| 1889 |
+
{
|
| 1890 |
+
vec.x = smem[transpose_idx];
|
| 1891 |
+
vec.y = smem[smem_pitch + transpose_idx];
|
| 1892 |
+
}
|
| 1893 |
+
|
| 1894 |
+
template<typename Vec_T, typename T>
|
| 1895 |
+
__device__ __inline__ void write_smem_transpose(const Vec_T& vec, T* smem, int transpose_idx, int smem_pitch);
|
| 1896 |
+
|
| 1897 |
+
template<>
|
| 1898 |
+
__device__ __inline__ void write_smem_transpose(const float& vec, float* smem, int transpose_idx, int smem_pitch)
|
| 1899 |
+
{
|
| 1900 |
+
return;
|
| 1901 |
+
}
|
| 1902 |
+
|
| 1903 |
+
template<>
|
| 1904 |
+
__device__ __inline__ void write_smem_transpose(const uint4& vec, uint16_t* smem, int transpose_idx, int smem_pitch)
|
| 1905 |
+
{
|
| 1906 |
+
union {
|
| 1907 |
+
uint64_t u64;
|
| 1908 |
+
uint16_t u16[4];
|
| 1909 |
+
} tmp_1, tmp_2;
|
| 1910 |
+
|
| 1911 |
+
union {
|
| 1912 |
+
uint4 u32x4;
|
| 1913 |
+
uint16_t u16[8];
|
| 1914 |
+
} tmp_3;
|
| 1915 |
+
tmp_3.u32x4 = vec;
|
| 1916 |
+
tmp_1.u16[0] = tmp_3.u16[0];
|
| 1917 |
+
tmp_2.u16[0] = tmp_3.u16[1];
|
| 1918 |
+
tmp_1.u16[1] = tmp_3.u16[2];
|
| 1919 |
+
tmp_2.u16[1] = tmp_3.u16[3];
|
| 1920 |
+
tmp_1.u16[2] = tmp_3.u16[4];
|
| 1921 |
+
tmp_2.u16[2] = tmp_3.u16[5];
|
| 1922 |
+
tmp_1.u16[3] = tmp_3.u16[6];
|
| 1923 |
+
tmp_2.u16[3] = tmp_3.u16[7];
|
| 1924 |
+
|
| 1925 |
+
*reinterpret_cast<uint64_t*>(&smem[transpose_idx]) = tmp_1.u64;
|
| 1926 |
+
*reinterpret_cast<uint64_t*>(&smem[smem_pitch + transpose_idx]) = tmp_2.u64;
|
| 1927 |
+
}
|
| 1928 |
+
|
| 1929 |
+
template<>
|
| 1930 |
+
__device__ __inline__ void write_smem_transpose(const uint2& vec, uint16_t* smem, int transpose_idx, int smem_pitch)
|
| 1931 |
+
{
|
| 1932 |
+
union {
|
| 1933 |
+
uint32_t u32;
|
| 1934 |
+
uint16_t u16[2];
|
| 1935 |
+
} tmp_1, tmp_2;
|
| 1936 |
+
|
| 1937 |
+
union {
|
| 1938 |
+
uint2 u32x2;
|
| 1939 |
+
uint16_t u16[4];
|
| 1940 |
+
} tmp_3;
|
| 1941 |
+
tmp_3.u32x2 = vec;
|
| 1942 |
+
tmp_1.u16[0] = tmp_3.u16[0];
|
| 1943 |
+
tmp_2.u16[0] = tmp_3.u16[1];
|
| 1944 |
+
tmp_1.u16[1] = tmp_3.u16[2];
|
| 1945 |
+
tmp_2.u16[1] = tmp_3.u16[3];
|
| 1946 |
+
|
| 1947 |
+
*reinterpret_cast<uint32_t*>(&smem[transpose_idx]) = tmp_1.u32;
|
| 1948 |
+
*reinterpret_cast<uint32_t*>(&smem[smem_pitch + transpose_idx]) = tmp_2.u32;
|
| 1949 |
+
}
|
| 1950 |
+
|
| 1951 |
+
template<>
|
| 1952 |
+
__device__ __inline__ void write_smem_transpose(const uint32_t& vec, uint16_t* smem, int transpose_idx, int smem_pitch)
|
| 1953 |
+
{
|
| 1954 |
+
union {
|
| 1955 |
+
uint32_t u32;
|
| 1956 |
+
uint16_t u16[2];
|
| 1957 |
+
} tmp;
|
| 1958 |
+
tmp.u32 = vec;
|
| 1959 |
+
|
| 1960 |
+
smem[transpose_idx] = tmp.u16[0];
|
| 1961 |
+
smem[smem_pitch + transpose_idx] = tmp.u16[1];
|
| 1962 |
+
}
|
| 1963 |
+
|
| 1964 |
+
template<>
|
| 1965 |
+
__device__ __inline__ void write_smem_transpose(const float4& vec, float* smem, int transpose_idx, int smem_pitch)
|
| 1966 |
+
{
|
| 1967 |
+
smem[transpose_idx] = vec.x;
|
| 1968 |
+
smem[transpose_idx + 1] = vec.z;
|
| 1969 |
+
smem[smem_pitch + transpose_idx] = vec.y;
|
| 1970 |
+
smem[smem_pitch + transpose_idx + 1] = vec.w;
|
| 1971 |
+
}
|
| 1972 |
+
|
| 1973 |
+
template<>
|
| 1974 |
+
__device__ __inline__ void write_smem_transpose(const uint32_t& vec, half* smem, int transpose_idx, int smem_pitch)
|
| 1975 |
+
{
|
| 1976 |
+
union {
|
| 1977 |
+
uint32_t u32;
|
| 1978 |
+
half u16[2];
|
| 1979 |
+
} tmp;
|
| 1980 |
+
|
| 1981 |
+
tmp.u32 = vec;
|
| 1982 |
+
smem[transpose_idx] = tmp.u16[0];
|
| 1983 |
+
smem[smem_pitch + transpose_idx] = tmp.u16[1];
|
| 1984 |
+
}
|
| 1985 |
+
|
| 1986 |
+
#ifdef ENABLE_BF16
|
| 1987 |
+
template<>
|
| 1988 |
+
__device__ __inline__ void
|
| 1989 |
+
write_smem_transpose(const __nv_bfloat162& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch)
|
| 1990 |
+
{
|
| 1991 |
+
smem[transpose_idx] = vec.x;
|
| 1992 |
+
smem[smem_pitch + transpose_idx] = vec.y;
|
| 1993 |
+
}
|
| 1994 |
+
|
| 1995 |
+
template<>
|
| 1996 |
+
__device__ __inline__ void
|
| 1997 |
+
write_smem_transpose(const bf16_4_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch)
|
| 1998 |
+
{
|
| 1999 |
+
write_smem_transpose(reinterpret_cast<const uint2&>(vec), reinterpret_cast<uint16_t*>(smem), transpose_idx, smem_pitch);
|
| 2000 |
+
}
|
| 2001 |
+
|
| 2002 |
+
template<>
|
| 2003 |
+
__device__ __inline__ void
|
| 2004 |
+
write_smem_transpose(const bf16_8_t& vec, __nv_bfloat16* smem, int transpose_idx, int smem_pitch)
|
| 2005 |
+
{
|
| 2006 |
+
write_smem_transpose(reinterpret_cast<const uint4&>(vec), reinterpret_cast<uint16_t*>(smem), transpose_idx, smem_pitch);
|
| 2007 |
+
}
|
| 2008 |
+
#endif
|
| 2009 |
+
|
| 2010 |
+
template<>
|
| 2011 |
+
__device__ __inline__ void write_smem_transpose(const float2& vec, float* smem, int transpose_idx, int smem_pitch)
|
| 2012 |
+
{
|
| 2013 |
+
smem[transpose_idx] = vec.x;
|
| 2014 |
+
smem[smem_pitch + transpose_idx] = vec.y;
|
| 2015 |
+
}
|
| 2016 |
+
|
| 2017 |
+
} // namespace mmha
|
flash-attention/csrc/ft_attention/ft_attention.cpp
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include <torch/extension.h>
|
| 2 |
+
#include "ATen/cuda/CUDAContext.h"
|
| 3 |
+
#include <c10/cuda/CUDAGuard.h>
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
#include "decoder_masked_multihead_attention.h"
|
| 7 |
+
|
| 8 |
+
#define CHECK_DEVICE(x) TORCH_CHECK(x.device().type() == torch::kCUDA, #x " must be on CUDA")
|
| 9 |
+
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
|
| 10 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
| 11 |
+
|
| 12 |
+
#define DISPATCH_FLOAT_AND_HALF_AND_BF16(TYPE, NAME, ...) \
|
| 13 |
+
if (TYPE == at::ScalarType::Half) { \
|
| 14 |
+
using scalar_t = at::Half; \
|
| 15 |
+
__VA_ARGS__(); \
|
| 16 |
+
} else if (TYPE == at::ScalarType::BFloat16) { \
|
| 17 |
+
using scalar_t = at::BFloat16; \
|
| 18 |
+
__VA_ARGS__(); \
|
| 19 |
+
} else if (TYPE == at::ScalarType::Float) { \
|
| 20 |
+
using scalar_t = float; \
|
| 21 |
+
__VA_ARGS__(); \
|
| 22 |
+
} else { \
|
| 23 |
+
AT_ERROR(#NAME, " not implemented for type '", toString(TYPE), "'"); \
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
template<typename T>
|
| 27 |
+
void masked_multihead_attention(const Masked_multihead_attention_params<T>& params,
|
| 28 |
+
const cudaStream_t& stream);
|
| 29 |
+
|
| 30 |
+
template<typename T>
|
| 31 |
+
void cross_multihead_attention(const Masked_multihead_attention_params<T>& params,
|
| 32 |
+
const cudaStream_t& stream);
|
| 33 |
+
|
| 34 |
+
template<typename T>
|
| 35 |
+
struct SATypeConverter {
|
| 36 |
+
using Type = T;
|
| 37 |
+
};
|
| 38 |
+
|
| 39 |
+
template<>
|
| 40 |
+
struct SATypeConverter<at::Half> {
|
| 41 |
+
using Type = uint16_t;
|
| 42 |
+
};
|
| 43 |
+
|
| 44 |
+
template<>
|
| 45 |
+
struct SATypeConverter<at::BFloat16> {
|
| 46 |
+
using Type = __nv_bfloat16;
|
| 47 |
+
};
|
| 48 |
+
|
| 49 |
+
template <typename T>
|
| 50 |
+
void set_params(Masked_multihead_attention_params<T> ¶ms,
|
| 51 |
+
const size_t batch_size,
|
| 52 |
+
const size_t nheads,
|
| 53 |
+
const size_t nheads_kv,
|
| 54 |
+
const size_t memory_max_seqlen,
|
| 55 |
+
const size_t headdim,
|
| 56 |
+
const int timestep,
|
| 57 |
+
const int rotary_embedding_dim,
|
| 58 |
+
const float rotary_base,
|
| 59 |
+
const bool neox_rotary_style,
|
| 60 |
+
const int q_batch_stride,
|
| 61 |
+
const int k_batch_stride,
|
| 62 |
+
const int v_batch_stride,
|
| 63 |
+
const int nnz_heads,
|
| 64 |
+
T *q_ptr,
|
| 65 |
+
T *k_ptr,
|
| 66 |
+
T *v_ptr,
|
| 67 |
+
T *k_cache_ptr,
|
| 68 |
+
T *v_cache_ptr,
|
| 69 |
+
int *length_per_sample,
|
| 70 |
+
T *rotary_cos,
|
| 71 |
+
T *rotary_sin,
|
| 72 |
+
T *out_ptr,
|
| 73 |
+
int *nnz_head_idx) {
|
| 74 |
+
// Reset the parameters
|
| 75 |
+
memset(¶ms, 0, sizeof(params));
|
| 76 |
+
params.q = q_ptr;
|
| 77 |
+
params.k = k_ptr;
|
| 78 |
+
params.v = v_ptr;
|
| 79 |
+
params.q_bias = nullptr;
|
| 80 |
+
params.k_bias = nullptr;
|
| 81 |
+
params.v_bias = nullptr;
|
| 82 |
+
params.k_cache = k_cache_ptr;
|
| 83 |
+
params.v_cache = v_cache_ptr;
|
| 84 |
+
params.out = out_ptr;
|
| 85 |
+
params.cache_indir = nullptr;
|
| 86 |
+
params.stride_q = q_batch_stride;
|
| 87 |
+
params.stride_k = k_batch_stride;
|
| 88 |
+
params.stride_v = v_batch_stride;
|
| 89 |
+
params.batch_size = batch_size;
|
| 90 |
+
params.beam_width = 1;
|
| 91 |
+
params.memory_max_len = memory_max_seqlen;
|
| 92 |
+
params.num_heads = nheads;
|
| 93 |
+
params.num_heads_kv = nheads_kv;
|
| 94 |
+
params.num_heads_q_kv_ratio = nheads / nheads_kv;
|
| 95 |
+
params.nnz_heads = nnz_heads;
|
| 96 |
+
params.hidden_size_per_head = headdim;
|
| 97 |
+
params.rotary_embedding_dim = rotary_embedding_dim;
|
| 98 |
+
params.rotary_base = rotary_base;
|
| 99 |
+
params.neox_rotary_style = neox_rotary_style;
|
| 100 |
+
params.timestep = timestep;
|
| 101 |
+
params.inv_sqrt_dh = 1.f / sqrt(float(headdim));
|
| 102 |
+
params.total_padding_tokens = nullptr;
|
| 103 |
+
params.masked_tokens = nullptr;
|
| 104 |
+
params.prefix_prompt_lengths = nullptr;
|
| 105 |
+
params.max_prefix_prompt_length = 0;
|
| 106 |
+
params.relative_attention_bias = nullptr;
|
| 107 |
+
params.relative_attention_bias_stride = 0;
|
| 108 |
+
params.cross_attention_out = nullptr;
|
| 109 |
+
params.max_decoder_seq_len = 0;
|
| 110 |
+
params.is_return_cross_attentions = false;
|
| 111 |
+
params.finished = nullptr;
|
| 112 |
+
params.memory_length_per_sample = nullptr;
|
| 113 |
+
params.length_per_sample = length_per_sample;
|
| 114 |
+
params.rotary_cos = rotary_cos;
|
| 115 |
+
params.rotary_sin = rotary_sin;
|
| 116 |
+
params.nnz_head_idx = nnz_head_idx;
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
torch::Tensor single_query_attention(const torch::Tensor q,
|
| 120 |
+
const torch::Tensor k,
|
| 121 |
+
const torch::Tensor v,
|
| 122 |
+
torch::Tensor k_cache,
|
| 123 |
+
torch::Tensor v_cache,
|
| 124 |
+
c10::optional<const torch::Tensor> length_per_sample_,
|
| 125 |
+
c10::optional<const torch::Tensor> rotary_cos_,
|
| 126 |
+
c10::optional<const torch::Tensor> rotary_sin_,
|
| 127 |
+
c10::optional<const torch::Tensor> nnz_head_idx_,
|
| 128 |
+
const int timestep,
|
| 129 |
+
int rotary_embedding_dim = 0,
|
| 130 |
+
const float rotary_base = 10000.0f,
|
| 131 |
+
const bool neox_rotary_style=true) {
|
| 132 |
+
CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v); CHECK_DEVICE(k_cache); CHECK_DEVICE(v_cache);
|
| 133 |
+
int batch_size = v_cache.size(0);
|
| 134 |
+
int nheads = q.size(1);
|
| 135 |
+
int nheads_kv = v_cache.size(1);
|
| 136 |
+
int memory_max_seqlen = v_cache.size(2);
|
| 137 |
+
int headdim = v_cache.size(3);
|
| 138 |
+
auto input_type = q.scalar_type();
|
| 139 |
+
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
|
| 140 |
+
|
| 141 |
+
CHECK_SHAPE(q, batch_size, nheads, headdim);
|
| 142 |
+
CHECK_SHAPE(k, batch_size, nheads_kv, headdim);
|
| 143 |
+
CHECK_SHAPE(v, batch_size, nheads_kv, headdim);
|
| 144 |
+
CHECK_SHAPE(v_cache, batch_size, nheads_kv, memory_max_seqlen, headdim);
|
| 145 |
+
// k_cache shape: [B, H, Dh/x, L, x] where x=8 for fp16 and x=4 for fp32
|
| 146 |
+
int packsize = k_cache.dtype() == torch::kFloat32 ? 4 : 8;
|
| 147 |
+
CHECK_SHAPE(k_cache, batch_size, nheads_kv, headdim / packsize, memory_max_seqlen, packsize);
|
| 148 |
+
TORCH_CHECK(q.stride(2) == 1 && q.stride(1) == headdim);
|
| 149 |
+
TORCH_CHECK(k.stride(2) == 1 && k.stride(1) == headdim);
|
| 150 |
+
TORCH_CHECK(v.stride(2) == 1 && v.stride(1) == headdim);
|
| 151 |
+
CHECK_CONTIGUOUS(v_cache); CHECK_CONTIGUOUS(k_cache);
|
| 152 |
+
|
| 153 |
+
TORCH_CHECK(q.scalar_type() == input_type);
|
| 154 |
+
TORCH_CHECK(k.scalar_type() == input_type);
|
| 155 |
+
TORCH_CHECK(v.scalar_type() == input_type);
|
| 156 |
+
TORCH_CHECK(k_cache.scalar_type() == input_type);
|
| 157 |
+
TORCH_CHECK(v_cache.scalar_type() == input_type);
|
| 158 |
+
|
| 159 |
+
if (length_per_sample_.has_value()) {
|
| 160 |
+
auto length_per_sample = length_per_sample_.value();
|
| 161 |
+
CHECK_DEVICE(length_per_sample);
|
| 162 |
+
CHECK_SHAPE(length_per_sample, batch_size);
|
| 163 |
+
CHECK_CONTIGUOUS(length_per_sample);
|
| 164 |
+
TORCH_CHECK(length_per_sample.dtype() == torch::kInt32);
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
if (rotary_cos_.has_value()) {
|
| 168 |
+
auto rotary_cos = rotary_cos_.value();
|
| 169 |
+
CHECK_DEVICE(rotary_cos);
|
| 170 |
+
rotary_embedding_dim = rotary_cos.size(-1) * 2;
|
| 171 |
+
CHECK_SHAPE(rotary_cos, batch_size, rotary_embedding_dim / 2);
|
| 172 |
+
CHECK_CONTIGUOUS(rotary_cos);
|
| 173 |
+
TORCH_CHECK(rotary_cos.scalar_type() == input_type);
|
| 174 |
+
|
| 175 |
+
TORCH_CHECK(rotary_sin_.has_value());
|
| 176 |
+
auto rotary_sin = rotary_sin_.value();
|
| 177 |
+
CHECK_DEVICE(rotary_sin);
|
| 178 |
+
CHECK_SHAPE(rotary_sin, batch_size, rotary_embedding_dim / 2);
|
| 179 |
+
CHECK_CONTIGUOUS(rotary_sin);
|
| 180 |
+
TORCH_CHECK(rotary_sin.scalar_type() == input_type);
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
if (nnz_head_idx_.has_value()) {
|
| 184 |
+
auto nnz_head_idx = nnz_head_idx_.value();
|
| 185 |
+
CHECK_DEVICE(nnz_head_idx);
|
| 186 |
+
int nnz_heads = nnz_head_idx.size(0);
|
| 187 |
+
CHECK_SHAPE(nnz_head_idx, nnz_heads);
|
| 188 |
+
CHECK_CONTIGUOUS(nnz_head_idx);
|
| 189 |
+
TORCH_CHECK(nnz_head_idx.dtype() == torch::kInt32);
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
| 193 |
+
// Cast to char to avoid compiler warning about narrowing
|
| 194 |
+
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
|
| 195 |
+
|
| 196 |
+
torch::Tensor out = torch::empty_like(q);
|
| 197 |
+
|
| 198 |
+
DISPATCH_FLOAT_AND_HALF_AND_BF16(q.scalar_type(), "single_query_attention", [&] {
|
| 199 |
+
using DataType = typename SATypeConverter<scalar_t>::Type;
|
| 200 |
+
Masked_multihead_attention_params<DataType> params;
|
| 201 |
+
set_params(params, batch_size, nheads, nheads_kv, memory_max_seqlen, headdim, timestep,
|
| 202 |
+
rotary_embedding_dim, rotary_base, neox_rotary_style,
|
| 203 |
+
q.stride(0), k.stride(0), v.stride(0),
|
| 204 |
+
nnz_head_idx_.has_value() ? nnz_head_idx_.value().size(0) : 0,
|
| 205 |
+
reinterpret_cast<DataType*>(q.data_ptr()),
|
| 206 |
+
reinterpret_cast<DataType*>(k.data_ptr()),
|
| 207 |
+
reinterpret_cast<DataType*>(v.data_ptr()),
|
| 208 |
+
reinterpret_cast<DataType*>(k_cache.data_ptr()),
|
| 209 |
+
reinterpret_cast<DataType*>(v_cache.data_ptr()),
|
| 210 |
+
length_per_sample_.has_value()
|
| 211 |
+
? length_per_sample_.value().data_ptr<int>() : nullptr,
|
| 212 |
+
rotary_cos_.has_value()
|
| 213 |
+
? reinterpret_cast<DataType*>(rotary_cos_.value().data_ptr()) : nullptr,
|
| 214 |
+
rotary_sin_.has_value()
|
| 215 |
+
? reinterpret_cast<DataType*>(rotary_sin_.value().data_ptr()) : nullptr,
|
| 216 |
+
reinterpret_cast<DataType*>(out.data_ptr()),
|
| 217 |
+
nnz_head_idx_.has_value() ? nnz_head_idx_.value().data_ptr<int>() : nullptr
|
| 218 |
+
);
|
| 219 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
| 220 |
+
masked_multihead_attention(params, stream);
|
| 221 |
+
});
|
| 222 |
+
return out;
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
| 226 |
+
m.def("single_query_attention", &single_query_attention, "Attention with a single query",
|
| 227 |
+
py::arg("q"), py::arg("k"), py::arg("v"), py::arg("k_cache"), py::arg("v_cache"),
|
| 228 |
+
py::arg("length_per_sample_"), py::arg("rotary_cos_"),
|
| 229 |
+
py::arg("rotary_sin_"), py::arg("nnz_head_idx_"),
|
| 230 |
+
py::arg("timestep"), py::arg("rotary_embedding_dim")=0,
|
| 231 |
+
py::arg("rotary_base")=10000.0f, py::arg("neox_rotary_style")=true);
|
| 232 |
+
}
|
flash-attention/csrc/ft_attention/setup.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
|
| 2 |
+
import sys
|
| 3 |
+
import warnings
|
| 4 |
+
import os
|
| 5 |
+
from packaging.version import parse, Version
|
| 6 |
+
|
| 7 |
+
from setuptools import setup, find_packages
|
| 8 |
+
import subprocess
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# ninja build does not work unless include_dirs are abs path
|
| 15 |
+
this_dir = os.path.dirname(os.path.abspath(__file__))
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def get_cuda_bare_metal_version(cuda_dir):
|
| 19 |
+
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
|
| 20 |
+
output = raw_output.split()
|
| 21 |
+
release_idx = output.index("release") + 1
|
| 22 |
+
bare_metal_version = parse(output[release_idx].split(",")[0])
|
| 23 |
+
|
| 24 |
+
return raw_output, bare_metal_version
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
|
| 28 |
+
raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir)
|
| 29 |
+
torch_binary_version = parse(torch.version.cuda)
|
| 30 |
+
|
| 31 |
+
print("\nCompiling cuda extensions with")
|
| 32 |
+
print(raw_output + "from " + cuda_dir + "/bin\n")
|
| 33 |
+
|
| 34 |
+
if (bare_metal_version != torch_binary_version):
|
| 35 |
+
raise RuntimeError(
|
| 36 |
+
"Cuda extensions are being compiled with a version of Cuda that does "
|
| 37 |
+
"not match the version used to compile Pytorch binaries. "
|
| 38 |
+
"Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
|
| 39 |
+
+ "In some cases, a minor-version mismatch will not cause later errors: "
|
| 40 |
+
"https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. "
|
| 41 |
+
"You can try commenting out this check (at your own risk)."
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def raise_if_cuda_home_none(global_option: str) -> None:
|
| 46 |
+
if CUDA_HOME is not None:
|
| 47 |
+
return
|
| 48 |
+
raise RuntimeError(
|
| 49 |
+
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
|
| 50 |
+
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
|
| 51 |
+
"only images whose names contain 'devel' will provide nvcc."
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def append_nvcc_threads(nvcc_extra_args):
|
| 56 |
+
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
|
| 57 |
+
if bare_metal_version >= Version("11.2"):
|
| 58 |
+
nvcc_threads = os.getenv("NVCC_THREADS") or "4"
|
| 59 |
+
return nvcc_extra_args + ["--threads", nvcc_threads]
|
| 60 |
+
return nvcc_extra_args
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
if not torch.cuda.is_available():
|
| 64 |
+
# https://github.com/NVIDIA/apex/issues/486
|
| 65 |
+
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
|
| 66 |
+
# which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
|
| 67 |
+
print(
|
| 68 |
+
"\nWarning: Torch did not find available GPUs on this system.\n",
|
| 69 |
+
"If your intention is to cross-compile, this is not an error.\n"
|
| 70 |
+
"By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
|
| 71 |
+
"Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
|
| 72 |
+
"and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
|
| 73 |
+
"If you wish to cross-compile for a single specific architecture,\n"
|
| 74 |
+
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
|
| 75 |
+
)
|
| 76 |
+
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None:
|
| 77 |
+
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
|
| 78 |
+
if bare_metal_version >= Version("11.8"):
|
| 79 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0"
|
| 80 |
+
elif bare_metal_version >= Version("11.1"):
|
| 81 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
|
| 82 |
+
elif bare_metal_version == Version("11.0"):
|
| 83 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
|
| 84 |
+
else:
|
| 85 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
|
| 89 |
+
TORCH_MAJOR = int(torch.__version__.split(".")[0])
|
| 90 |
+
TORCH_MINOR = int(torch.__version__.split(".")[1])
|
| 91 |
+
|
| 92 |
+
cmdclass = {}
|
| 93 |
+
ext_modules = []
|
| 94 |
+
|
| 95 |
+
# Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
|
| 96 |
+
# See https://github.com/pytorch/pytorch/pull/70650
|
| 97 |
+
generator_flag = []
|
| 98 |
+
torch_dir = torch.__path__[0]
|
| 99 |
+
if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
|
| 100 |
+
generator_flag = ["-DOLD_GENERATOR_PATH"]
|
| 101 |
+
|
| 102 |
+
raise_if_cuda_home_none("--ft_attention")
|
| 103 |
+
# Check, if CUDA11 is installed for compute capability 8.0
|
| 104 |
+
cc_flag = []
|
| 105 |
+
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
|
| 106 |
+
if bare_metal_version < Version("11.0"):
|
| 107 |
+
raise RuntimeError("ft_attention is only supported on CUDA 11 and above")
|
| 108 |
+
cc_flag.append("-gencode")
|
| 109 |
+
cc_flag.append("arch=compute_70,code=sm_70")
|
| 110 |
+
cc_flag.append("-gencode")
|
| 111 |
+
cc_flag.append("arch=compute_80,code=sm_80")
|
| 112 |
+
if bare_metal_version >= Version("11.8"):
|
| 113 |
+
cc_flag.append("-gencode")
|
| 114 |
+
cc_flag.append("arch=compute_90,code=sm_90")
|
| 115 |
+
|
| 116 |
+
ext_modules.append(
|
| 117 |
+
CUDAExtension(
|
| 118 |
+
name="ft_attention",
|
| 119 |
+
sources=[
|
| 120 |
+
"ft_attention.cpp",
|
| 121 |
+
"decoder_masked_multihead_attention.cu",
|
| 122 |
+
],
|
| 123 |
+
extra_compile_args={
|
| 124 |
+
"cxx": ["-O3", "-DENABLE_BF16"] + generator_flag,
|
| 125 |
+
"nvcc": append_nvcc_threads(
|
| 126 |
+
[
|
| 127 |
+
"-DENABLE_BF16", # TODO
|
| 128 |
+
"-O3",
|
| 129 |
+
"-U__CUDA_NO_HALF_OPERATORS__",
|
| 130 |
+
"-U__CUDA_NO_HALF_CONVERSIONS__",
|
| 131 |
+
"-U__CUDA_NO_BFLOAT16_OPERATORS__",
|
| 132 |
+
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
|
| 133 |
+
"-U__CUDA_NO_BFLOAT162_OPERATORS__",
|
| 134 |
+
"-U__CUDA_NO_BFLOAT162_CONVERSIONS__",
|
| 135 |
+
"--expt-relaxed-constexpr",
|
| 136 |
+
"--expt-extended-lambda",
|
| 137 |
+
"--use_fast_math",
|
| 138 |
+
]
|
| 139 |
+
+ generator_flag
|
| 140 |
+
+ cc_flag
|
| 141 |
+
),
|
| 142 |
+
},
|
| 143 |
+
include_dirs=[this_dir],
|
| 144 |
+
)
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
setup(
|
| 148 |
+
name="ft_attention",
|
| 149 |
+
version="0.1",
|
| 150 |
+
description="Attention for single query from FasterTransformer",
|
| 151 |
+
ext_modules=ext_modules,
|
| 152 |
+
cmdclass={"build_ext": BuildExtension} if ext_modules else {},
|
| 153 |
+
)
|