algoplexity commited on
Commit
d4fd27a
·
verified ·
1 Parent(s): e18111e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -3
README.md CHANGED
@@ -1,3 +1,111 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: mit
4
+ task_categories:
5
+ - time-series-forecasting
6
+ - tabular-classification
7
+ - other
8
+ pretty_name: Financial Structural Breaks & Regime Detection Benchmark
9
+ tags:
10
+ - finance
11
+ - econophysics
12
+ - algorithmic-information-theory
13
+ - structural-breaks
14
+ - time-series
15
+ - anomaly-detection
16
+ size_categories:
17
+ - 1M<n<10M
18
+ ---
19
+
20
+ # Financial Structural Breaks & Regime Detection Benchmark
21
+
22
+ **Maintainer:** [Algoplexity](https://github.com/algoplexity)
23
+ **Primary Repositories:**
24
+ 1. **The Coherence Meter:** [GitHub Repo](https://github.com/algoplexity/Coherence-Meter) (Horizon 0)
25
+ 2. **The Computational Phase Transition:** [GitHub Repo](https://github.com/algoplexity/computational-phase-transitions) (Horizon 1)
26
+
27
+ ## 1. Overview
28
+ This repository serves as the **immutable data artifact** for the Algoplexity research program into **Algorithmic Information Dynamics (AID)** in financial markets.
29
+
30
+ It contains a large-scale collection of non-stationary, continuous financial time series, specifically curated to benchmark methods for **Structural Break Detection** and **Market Regime Diagnosis**. This data underpins the validation of two distinct methodologies:
31
+ * **The Coherence Meter:** A statistical, falsification-driven framework comparing "Stethoscope" (univariate) vs. "Microscope" (multivariate) approaches.
32
+ * **The AIT Physicist:** A transformer-based diagnostic tool that maps market dynamics to **Wolfram Complexity Classes** (e.g., Rule 54 vs. Rule 60) to detect "Computational Phase Transitions."
33
+
34
+ ## 2. Dataset Utility
35
+ This dataset allows researchers to reproduce key findings from the associated papers, including:
36
+ * The **"Cost of Complexity"** curve (MDL analysis).
37
+ * The **-27.07% Early Warning** signal in algorithmic entropy.
38
+ * The distinct topological signatures of **Systemic** vs. **Exogenous** crashes.
39
+
40
+ ## 3. Dataset Structure
41
+ The data is stored in highly compressed **Parquet** format, optimized for scientific computing and cloud-based ingestion.
42
+
43
+ ### Files
44
+ * **`X_train.parquet`**: The primary feature set containing thousands of continuous financial time series.
45
+ * **`y_train.parquet`**: The ground-truth labels indicating the precise timestamp of structural breaks.
46
+ * **`X/Y_test.parquet`**: Out-of-sample series (derived from the Falcon forecasting challenge) used for generalization testing.
47
+
48
+ ### Schema
49
+ **Features (`X_train.parquet`)**:
50
+ * `id` (string): Unique identifier for the time series.
51
+ * `period` (int): Sequential time step.
52
+ * `value` (float): The continuous signal (price/return).
53
+
54
+ **Labels (`y_train.parquet`)**:
55
+ * `id` (string): Unique identifier.
56
+ * `structural_breakpoint` (int): The time step where the regime shift formally occurs.
57
+ * `label` (int): Class identifier (0 = No Break, 1 = Break).
58
+
59
+ ## 4. Provenance
60
+ * **Source:** Derived from the **CrunchDAO** research competitions (Structural Break & Falcon).
61
+ * **Preprocessing:** Data has been anonymized, standardized, and formatted for both statistical analysis (rolling variance) and algorithmic encoding (quantile binning).
62
+
63
+ ## 5. Universal Loading (Python)
64
+ This dataset is designed to be ingested directly from the cloud, removing dependencies on local storage or Google Drive.
65
+
66
+ ```python
67
+ from huggingface_hub import hf_hub_download
68
+ import pandas as pd
69
+
70
+ def load_benchmark_data(filename):
71
+ """
72
+ Fetches data from the Algoplexity Benchmark Repository.
73
+ Uses local caching for offline capability.
74
+ """
75
+ repo_id = "algoplexity/computational-phase-transitions-data"
76
+ print(f"--- Fetching {filename} from Scientific Repository ---")
77
+
78
+ local_path = hf_hub_download(
79
+ repo_id=repo_id,
80
+ filename=filename,
81
+ repo_type="dataset"
82
+ )
83
+ return pd.read_parquet(local_path)
84
+
85
+ # Usage
86
+ df_features = load_benchmark_data("X_train.parquet")
87
+ df_labels = load_benchmark_data("y_train.parquet")
88
+ ```
89
+
90
+ ## 6. Citation
91
+ If you use this data in your research, please cite the associated Algoplexity repositories:
92
+
93
+ ```bibtex
94
+ @misc{ait_physicist_2025,
95
+ author = {Mak, Yeu Wen},
96
+ title = {The Computational Phase Transition: Quantifying the Algorithmic Information Dynamics of Financial Crises},
97
+ year = {2025},
98
+ publisher = {GitHub},
99
+ journal = {GitHub repository},
100
+ howpublished = {\url{https://github.com/algoplexity/computational-phase-transitions}}
101
+ }
102
+
103
+ @misc{coherence_meter_2025,
104
+ author = {Mak, Yeu Wen},
105
+ title = {The Coherence Meter: A Hybrid AIT-MDL Framework for Early-Warning Structural Break Detection},
106
+ year = {2025},
107
+ publisher = {GitHub},
108
+ journal = {GitHub repository},
109
+ howpublished = {\url{https://github.com/algoplexity/Coherence-Meter}}
110
+ }
111
+ ```