"""Multilingual TTS Dataset in LJSpeech Format""" import csv import json import os import zipfile from pathlib import Path import datasets from datasets import Features, Value, Audio _CITATION = """@dataset{multilingual_tts_ljspeech, title={Multilingual TTS Dataset in LJSpeech Format}, year={2024}, note={English: LibriTTS-R (CC BY 4.0), Chinese: AISHELL-3 (Apache 2.0)} } """ _DESCRIPTION = """A high-quality multilingual Text-to-Speech dataset in LJSpeech format, containing English and Chinese speech data suitable for commercial use. This dataset combines: - English: LibriTTS-R (~49 hours, 247 speakers, 32K utterances) - Chinese: AISHELL-3 (~49 hours, 174 speakers, 63K utterances) Total: ~97 hours, 421 speakers, 95K utterances All audio normalized to 22050Hz, 16-bit, mono WAV format. """ _HOMEPAGE = "https://huggingface.co/datasets/ayousanz/multi-dataset-v2" _LICENSE = "Mixed: CC BY 4.0 (English), Apache 2.0 (Chinese)" class MultilingualTTSLJSpeech(datasets.GeneratorBasedBuilder): """Multilingual TTS Dataset in LJSpeech Format""" VERSION = datasets.Version("1.0.0") def _info(self): features = Features({ "audio_id": Value("string"), "audio": Audio(sampling_rate=22050), "transcription": Value("string"), "normalized_text": Value("string"), "speaker_id": Value("string"), "language": Value("string"), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # Download files with clean structure files_to_download = { # Metadata files "train_csv": "metadata/train.csv", "validation_csv": "metadata/validation.csv", "test_csv": "metadata/test.csv", # Audio ZIP files "train_en_zip": "audio/train_english.zip", "train_zh_zip": "audio/train_chinese.zip", "validation_en_zip": "audio/validation_english.zip", "validation_zh_zip": "audio/validation_chinese.zip", "test_en_zip": "audio/test_english.zip", "test_zh_zip": "audio/test_chinese.zip", } downloaded_files = dl_manager.download(files_to_download) # Extract audio ZIP files extracted_dirs = {} for split in ["train", "validation", "test"]: for lang in ["en", "zh"]: lang_name = "english" if lang == "en" else "chinese" key = f"{split}_{lang}_zip" if key in downloaded_files: extracted_dirs[f"{split}_{lang}"] = dl_manager.extract(downloaded_files[key]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "metadata_path": downloaded_files["train_csv"], "extracted_dirs": extracted_dirs, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "metadata_path": downloaded_files["validation_csv"], "extracted_dirs": extracted_dirs, "split": "validation", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "metadata_path": downloaded_files["test_csv"], "extracted_dirs": extracted_dirs, "split": "test", }, ), ] def _generate_examples(self, metadata_path, extracted_dirs, split): """Yields examples.""" with open(metadata_path, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="|") for idx, row in enumerate(reader): audio_id = row["audio_id"] language = row["language"] # Find the audio file in extracted directories audio_dir_key = f"{split}_{language}" if audio_dir_key in extracted_dirs: audio_path = Path(extracted_dirs[audio_dir_key]) / split / language / "wavs" / f"{audio_id}.wav" if audio_path.exists(): yield idx, { "audio_id": audio_id, "audio": str(audio_path), "transcription": row["transcription"], "normalized_text": row["normalized_text"], "speaker_id": row["speaker_id"], "language": language, }