f20180301 commited on
Commit
9ba2b24
·
verified ·
1 Parent(s): 2fdfd4a

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +91 -30
README.md CHANGED
@@ -1,32 +1,93 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: context
5
- dtype: string
6
- - name: question
7
- dtype: string
8
- - name: answer_prefix
9
- dtype: string
10
- - name: answers
11
- list: string
12
- - name: task
13
- dtype: string
14
- - name: max_new_tokens
15
- dtype: int64
16
- splits:
17
- - name: dev
18
- num_bytes: 4836398
19
- num_examples: 10
20
- - name: test
21
- num_bytes: 48364231
22
- num_examples: 100
23
- download_size: 633596
24
- dataset_size: 53200629
25
- configs:
26
- - config_name: default
27
- data_files:
28
- - split: dev
29
- path: data/dev-*
30
- - split: test
31
- path: data/test-*
32
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - question-answering
5
+ - text-generation
6
+ language:
7
+ - en
8
+ tags:
9
+ - long-context
10
+ - rag
11
+ - retrieval-augmented-generation
12
+ - loft
13
+ size_categories:
14
+ - 1K<n<10K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
+
17
+ # LOFT RAG - Quest (128k)
18
+
19
+ ## Dataset Description
20
+
21
+ This dataset is part of the LOFT (Long-context Open Foundation Tasks) benchmark, specifically the RAG (Retrieval-Augmented Generation) task.
22
+
23
+ - **Dataset**: Quest
24
+ - **Context Length**: 128k
25
+ - **Task Type**: RAG (Retrieval-Augmented Generation)
26
+ - **Language**: English
27
+ - **Source**: LOFT Benchmark (Google DeepMind)
28
+
29
+ ## Dataset Structure
30
+
31
+ ### Data Fields
32
+
33
+ - `context` (string): Full prompt context including corpus documents and few-shot examples
34
+ - `question` (string): Query separator + query format + query text
35
+ - `answer_prefix` (string): Prefix for answer generation ("Final Answer: ")
36
+ - `answers` (list[string]): Ground truth answers
37
+ - `task` (string): Task identifier (e.g., "quest_128k")
38
+ - `max_new_tokens` (int64): Maximum tokens for generation (256)
39
+
40
+ ### Data Splits
41
+
42
+ - `dev`: Development set (10 examples)
43
+ - `test`: Test set (100 examples)
44
+
45
+ ## Usage
46
+
47
+ ```python
48
+ from datasets import load_dataset
49
+
50
+ # Load the dataset
51
+ dataset = load_dataset("loft-rag-quest-128k")
52
+
53
+ # Access splits
54
+ dev_data = dataset["dev"]
55
+ df_dev = dev_data.to_pandas()
56
+ test_data = dataset["test"]
57
+ df_test = test_data.to_pandas()
58
+
59
+ # Example usage
60
+ sample = dataset["dev"][0] if "dev" in dataset else dataset["test"][0]
61
+ context = sample["context"]
62
+ question = sample["question"]
63
+ answers = sample["answers"]
64
+ ```
65
+
66
+ ## Dataset Creation
67
+
68
+ This dataset was converted from LOFT's original format to HuggingFace format using exact LOFT prompt construction to ensure 100% fidelity.
69
+
70
+ - **Prompt Construction**: Uses LOFT's `PromptRegistry` and `concatenate_chunks()` for exact prompt matching
71
+ - **Few-shot Examples**: Preserved exactly as in LOFT (5 examples)
72
+ - **Corpus Documents**: Full corpus included in context (corpus-in-context approach)
73
+ - **Verification**: All prompts verified to match LOFT originals exactly
74
+
75
+ ## Related Datasets
76
+
77
+ All LOFT RAG datasets are available under the `loft-rag-*` namespace:
78
+ - [Main Index](https://huggingface.co/datasets/loft/rag) - Overview of all datasets
79
+
80
+ ## Citation
81
+
82
+ ```bibtex
83
+ @article{{loft2024,
84
+ title={{LOFT: Long-context Open Foundation Tasks}},
85
+ author={{Google DeepMind}},
86
+ year={{2024}},
87
+ url={{https://github.com/google-deepmind/loft}}
88
+ }}
89
+ ```
90
+
91
+ ## License
92
+
93
+ Apache 2.0