File size: 1,689 Bytes
b84cfbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---

license: mit
task_categories:
- image-classification
- multi-label-classification
tags:
- food-recognition
- multi-label
- computer-vision
- food-classification
size_categories:
- 10K<n<100K
---


# Multi-Label Food Recognition Dataset


This is a multi-label food recognition dataset generated from single-class food images.
Each image contains 2-5 different food items composited together using natural composition methods.


## Dataset Details

- **Total Images**: 13,000
- **Training Images**: 10,400 (80%)
- **Validation Images**: 2,600 (20%)
- **Number of Classes**: 90
- **Labels per Image**: 2-5 labels
- **Image Format**: RGB, 512x512 pixels
- **File Format**: Parquet

## Dataset Structure

Each sample contains:
- `image`: PIL Image (RGB, 512x512)
- `labels`: List of integer label IDs (multi-hot encoded)
- `label_names`: List of string class names
- `num_labels`: Number of labels in the image (2-5)

## Usage

```python

from datasets import load_dataset



# Load dataset

dataset = load_dataset("ibrahimdaud/multi-label-food-recognition")



# Access splits

train_data = dataset['train']

val_data = dataset['validation']



# Example: Get first training sample

sample = train_data[0]

print(f"Image: {sample['image']}")

print(f"Labels: {sample['label_names']}")

print(f"Label IDs: {sample['labels']}")

```

## Citation

If you use this dataset, please cite:

```bibtex

@dataset{multi_label_food_recognition,

  title={Multi-Label Food Recognition Dataset},

  author={Your Name},

  year={2024},

  url={https://huggingface.co/datasets/ibrahimdaud/multi-label-food-recognition}

}

```

## License

MIT License