stckmn commited on
Commit
e9dba62
·
verified ·
1 Parent(s): 25af3e5

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +81 -27
README.md CHANGED
@@ -1,29 +1,83 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: image
5
- dtype: image
6
- - name: page_num
7
- dtype: int64
8
- - name: source_file
9
- dtype: string
10
- - name: source_path
11
- dtype: string
12
- - name: total_pages
13
- dtype: int64
14
- - name: rolmocr_text
15
- dtype: string
16
- - name: inference_info
17
- dtype: string
18
- splits:
19
- - name: train
20
- num_bytes: 235659213
21
- num_examples: 21
22
- download_size: 16686725
23
- dataset_size: 235659213
24
- configs:
25
- - config_name: default
26
- data_files:
27
- - split: train
28
- path: data/train-*
29
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ viewer: false
3
+ tags:
4
+ - ocr
5
+ - text-extraction
6
+ - rolmocr
7
+ - uv-script
8
+ - generated
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
+
11
+ # OCR Text Extraction using RolmOCR
12
+
13
+ This dataset contains extracted text from images in [stckmn/ocr-input-Directive017-1761353484](https://huggingface.co/datasets/stckmn/ocr-input-Directive017-1761353484) using RolmOCR.
14
+
15
+ ## Processing Details
16
+
17
+ - **Source Dataset**: [stckmn/ocr-input-Directive017-1761353484](https://huggingface.co/datasets/stckmn/ocr-input-Directive017-1761353484)
18
+ - **Model**: [reducto/RolmOCR](https://huggingface.co/reducto/RolmOCR)
19
+ - **Number of Samples**: 21
20
+ - **Processing Time**: 2.2 minutes
21
+ - **Processing Date**: 2025-10-25 00:54 UTC
22
+
23
+ ### Configuration
24
+
25
+ - **Image Column**: `image`
26
+ - **Output Column**: `rolmocr_text`
27
+ - **Dataset Split**: `train`
28
+ - **Batch Size**: 16
29
+ - **Max Model Length**: 16,384 tokens
30
+ - **Max Output Tokens**: 8,192
31
+ - **GPU Memory Utilization**: 80.0%
32
+
33
+ ## Model Information
34
+
35
+ RolmOCR is a fast, general-purpose OCR model based on Qwen2.5-VL-7B architecture. It extracts plain text from document images with high accuracy and efficiency.
36
+
37
+ ## Dataset Structure
38
+
39
+ The dataset contains all original columns plus:
40
+ - `rolmocr_text`: The extracted text from each image
41
+ - `inference_info`: JSON list tracking all OCR models applied to this dataset
42
+
43
+ ## Usage
44
+
45
+ ```python
46
+ from datasets import load_dataset
47
+ import json
48
+
49
+ # Load the dataset
50
+ dataset = load_dataset("{output_dataset_id}", split="train")
51
+
52
+ # Access the extracted text
53
+ for example in dataset:
54
+ print(example["rolmocr_text"])
55
+ break
56
+
57
+ # View all OCR models applied to this dataset
58
+ inference_info = json.loads(dataset[0]["inference_info"])
59
+ for info in inference_info:
60
+ print(f"Column: {info['column_name']} - Model: {info['model_id']}")
61
+ ```
62
+
63
+ ## Reproduction
64
+
65
+ This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) RolmOCR script:
66
+
67
+ ```bash
68
+ uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/rolm-ocr.py \
69
+ stckmn/ocr-input-Directive017-1761353484 \
70
+ <output-dataset> \
71
+ --image-column image \
72
+ --batch-size 16 \
73
+ --max-model-len 16384 \
74
+ --max-tokens 8192 \
75
+ --gpu-memory-utilization 0.8
76
+ ```
77
+
78
+ ## Performance
79
+
80
+ - **Processing Speed**: ~0.2 images/second
81
+ - **GPU Configuration**: vLLM with 80% GPU memory utilization
82
+
83
+ Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts)