Upload config_finetuning.yaml
Browse files- config_finetuning.yaml +483 -0
config_finetuning.yaml
ADDED
|
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
data:
|
| 2 |
+
format: zarr
|
| 3 |
+
resolution: n320
|
| 4 |
+
frequency: 6h
|
| 5 |
+
timestep: 6h
|
| 6 |
+
forcing:
|
| 7 |
+
- cos_latitude
|
| 8 |
+
- cos_longitude
|
| 9 |
+
- sin_latitude
|
| 10 |
+
- sin_longitude
|
| 11 |
+
- cos_julian_day
|
| 12 |
+
- cos_local_time
|
| 13 |
+
- sin_julian_day
|
| 14 |
+
- sin_local_time
|
| 15 |
+
- insolation
|
| 16 |
+
- lsm
|
| 17 |
+
- sdor
|
| 18 |
+
- slor
|
| 19 |
+
- z
|
| 20 |
+
diagnostic:
|
| 21 |
+
- tp
|
| 22 |
+
- cp
|
| 23 |
+
- sf
|
| 24 |
+
- tcc
|
| 25 |
+
- hcc
|
| 26 |
+
- lcc
|
| 27 |
+
- mcc
|
| 28 |
+
- ro
|
| 29 |
+
- ssrd
|
| 30 |
+
- strd
|
| 31 |
+
- 100u
|
| 32 |
+
- 100v
|
| 33 |
+
remapped: null
|
| 34 |
+
normalizer:
|
| 35 |
+
default: mean-std
|
| 36 |
+
remap:
|
| 37 |
+
cp: tp
|
| 38 |
+
sf: tp
|
| 39 |
+
std:
|
| 40 |
+
- tp
|
| 41 |
+
- cp
|
| 42 |
+
- sf
|
| 43 |
+
- ro
|
| 44 |
+
- tcw
|
| 45 |
+
- ssrd
|
| 46 |
+
- q_50
|
| 47 |
+
- q_100
|
| 48 |
+
- q_150
|
| 49 |
+
- q_200
|
| 50 |
+
- q_250
|
| 51 |
+
- q_300
|
| 52 |
+
- q_400
|
| 53 |
+
- q_500
|
| 54 |
+
- q_600
|
| 55 |
+
- q_700
|
| 56 |
+
- q_850
|
| 57 |
+
- q_925
|
| 58 |
+
- q_1000
|
| 59 |
+
min-max: null
|
| 60 |
+
max:
|
| 61 |
+
- sdor
|
| 62 |
+
- slor
|
| 63 |
+
- z
|
| 64 |
+
none:
|
| 65 |
+
- cos_latitude
|
| 66 |
+
- cos_longitude
|
| 67 |
+
- sin_latitude
|
| 68 |
+
- sin_longitude
|
| 69 |
+
- cos_julian_day
|
| 70 |
+
- cos_local_time
|
| 71 |
+
- sin_julian_day
|
| 72 |
+
- sin_local_time
|
| 73 |
+
- insolation
|
| 74 |
+
- lsm
|
| 75 |
+
- tcc
|
| 76 |
+
- mcc
|
| 77 |
+
- hcc
|
| 78 |
+
- lcc
|
| 79 |
+
- swvl1
|
| 80 |
+
- swvl2
|
| 81 |
+
imputer:
|
| 82 |
+
default: none
|
| 83 |
+
remapper:
|
| 84 |
+
default: none
|
| 85 |
+
processors:
|
| 86 |
+
normalizer:
|
| 87 |
+
_target_: anemoi.models.preprocessing.normalizer.InputNormalizer
|
| 88 |
+
_convert_: all
|
| 89 |
+
config:
|
| 90 |
+
default: mean-std
|
| 91 |
+
remap:
|
| 92 |
+
cp: tp
|
| 93 |
+
sf: tp
|
| 94 |
+
std:
|
| 95 |
+
- tp
|
| 96 |
+
- cp
|
| 97 |
+
- sf
|
| 98 |
+
- ro
|
| 99 |
+
- tcw
|
| 100 |
+
- ssrd
|
| 101 |
+
- q_50
|
| 102 |
+
- q_100
|
| 103 |
+
- q_150
|
| 104 |
+
- q_200
|
| 105 |
+
- q_250
|
| 106 |
+
- q_300
|
| 107 |
+
- q_400
|
| 108 |
+
- q_500
|
| 109 |
+
- q_600
|
| 110 |
+
- q_700
|
| 111 |
+
- q_850
|
| 112 |
+
- q_925
|
| 113 |
+
- q_1000
|
| 114 |
+
min-max: null
|
| 115 |
+
max:
|
| 116 |
+
- sdor
|
| 117 |
+
- slor
|
| 118 |
+
- z
|
| 119 |
+
none:
|
| 120 |
+
- cos_latitude
|
| 121 |
+
- cos_longitude
|
| 122 |
+
- sin_latitude
|
| 123 |
+
- sin_longitude
|
| 124 |
+
- cos_julian_day
|
| 125 |
+
- cos_local_time
|
| 126 |
+
- sin_julian_day
|
| 127 |
+
- sin_local_time
|
| 128 |
+
- insolation
|
| 129 |
+
- lsm
|
| 130 |
+
- tcc
|
| 131 |
+
- mcc
|
| 132 |
+
- hcc
|
| 133 |
+
- lcc
|
| 134 |
+
- swvl1
|
| 135 |
+
- swvl2
|
| 136 |
+
num_features: 115
|
| 137 |
+
|
| 138 |
+
dataloader:
|
| 139 |
+
prefetch_factor: 2
|
| 140 |
+
pin_memory: True
|
| 141 |
+
read_group_size: 4
|
| 142 |
+
num_workers:
|
| 143 |
+
training: 8
|
| 144 |
+
validation: 8
|
| 145 |
+
test: 8
|
| 146 |
+
predict: 8
|
| 147 |
+
batch_size:
|
| 148 |
+
training: 1
|
| 149 |
+
validation: 1
|
| 150 |
+
test: 4
|
| 151 |
+
predict: 4
|
| 152 |
+
limit_batches:
|
| 153 |
+
training: 1000
|
| 154 |
+
validation: 10
|
| 155 |
+
test: 20
|
| 156 |
+
predict: 20
|
| 157 |
+
dataset: ${hardware.paths.data}/${hardware.files.dataset}
|
| 158 |
+
land_dataset: ${hardware.paths.data}/${hardware.files.dataset_land}
|
| 159 |
+
land_variables: [100u, 100v, swvl1, swvl2, stl1, stl2, tcc, lcc, mcc, hcc, sf, ro, strd, ssrd]
|
| 160 |
+
training:
|
| 161 |
+
dataset:
|
| 162 |
+
- dataset: ${dataloader.dataset}
|
| 163 |
+
start: null
|
| 164 |
+
end: 2022
|
| 165 |
+
frequency: ${data.frequency}
|
| 166 |
+
drop: []
|
| 167 |
+
- dataset: ${dataloader.land_dataset}
|
| 168 |
+
start: null
|
| 169 |
+
end: 2022
|
| 170 |
+
frequency: ${data.frequency}
|
| 171 |
+
select: ${dataloader.land_variables}
|
| 172 |
+
start: null
|
| 173 |
+
end: 2022
|
| 174 |
+
drop: []
|
| 175 |
+
validation:
|
| 176 |
+
dataset:
|
| 177 |
+
- dataset: ${dataloader.dataset}
|
| 178 |
+
start: 2022
|
| 179 |
+
end: 2022
|
| 180 |
+
frequency: ${data.frequency}
|
| 181 |
+
drop: []
|
| 182 |
+
- dataset: ${dataloader.land_dataset}
|
| 183 |
+
start: 2022
|
| 184 |
+
end: 2022
|
| 185 |
+
frequency: ${data.frequency}
|
| 186 |
+
select: ${dataloader.land_variables}
|
| 187 |
+
start: 2022
|
| 188 |
+
end: 2022
|
| 189 |
+
drop: []
|
| 190 |
+
validation_rollout: 1
|
| 191 |
+
|
| 192 |
+
diagnostics:
|
| 193 |
+
plot:
|
| 194 |
+
asynchronous: False
|
| 195 |
+
datashader: True
|
| 196 |
+
frequency:
|
| 197 |
+
batch: 750
|
| 198 |
+
epoch: 10
|
| 199 |
+
parameters: [tp]
|
| 200 |
+
sample_idx: 0
|
| 201 |
+
precip_and_related_fields: [tp, cp]
|
| 202 |
+
callbacks: []
|
| 203 |
+
enabled: True
|
| 204 |
+
scatter: False
|
| 205 |
+
mode: asyncio
|
| 206 |
+
callbacks: {}
|
| 207 |
+
benchmark_profiler:
|
| 208 |
+
memory:
|
| 209 |
+
enabled: True
|
| 210 |
+
steps: 5
|
| 211 |
+
warmup: 2
|
| 212 |
+
extra_plots: False
|
| 213 |
+
trace_rank0_only: False
|
| 214 |
+
time:
|
| 215 |
+
enabled: True
|
| 216 |
+
verbose: False
|
| 217 |
+
speed:
|
| 218 |
+
enabled: True
|
| 219 |
+
system:
|
| 220 |
+
enabled: True
|
| 221 |
+
model_summary:
|
| 222 |
+
enabled: True
|
| 223 |
+
snapshot:
|
| 224 |
+
enabled: True
|
| 225 |
+
steps: 4
|
| 226 |
+
warmup: 0
|
| 227 |
+
debug:
|
| 228 |
+
anomaly_detection: False
|
| 229 |
+
profiler: False
|
| 230 |
+
enable_checkpointing: True
|
| 231 |
+
checkpoint:
|
| 232 |
+
every_n_minutes:
|
| 233 |
+
save_frequency: 30
|
| 234 |
+
num_models_saved: 3
|
| 235 |
+
every_n_epochs:
|
| 236 |
+
save_frequency: 1
|
| 237 |
+
num_models_saved: 3
|
| 238 |
+
every_n_train_steps:
|
| 239 |
+
save_frequency: null
|
| 240 |
+
num_models_saved: 0
|
| 241 |
+
log:
|
| 242 |
+
wandb:
|
| 243 |
+
enabled: False
|
| 244 |
+
tensorboard:
|
| 245 |
+
enabled: False
|
| 246 |
+
mlflow:
|
| 247 |
+
enabled: False
|
| 248 |
+
interval: 100
|
| 249 |
+
enable_progress_bar: True
|
| 250 |
+
print_memory_summary: False
|
| 251 |
+
|
| 252 |
+
hardware:
|
| 253 |
+
paths:
|
| 254 |
+
data: ${oc.decode:${oc.env:DATASETS_PATH}}
|
| 255 |
+
output: ${oc.decode:${oc.env:OUTPUT_DIR}}
|
| 256 |
+
logs:
|
| 257 |
+
base: ${hardware.paths.output}/logs
|
| 258 |
+
wandb: ${hardware.paths.output}/logs/wandb
|
| 259 |
+
mlflow: ${hardware.paths.output}/logs/mlflow
|
| 260 |
+
tensorboard: ${hardware.paths.output}/logs/tensorboard
|
| 261 |
+
checkpoints: ${hardware.paths.output}/checkpoint/
|
| 262 |
+
plots: ${hardware.paths.output}/plots/
|
| 263 |
+
profiler: ${hardware.paths.output}/profiler/
|
| 264 |
+
graph: ${hardware.paths.output}/graphs/
|
| 265 |
+
files:
|
| 266 |
+
dataset: aifs-od-an-oper-0001-mars-n320-2016-2023-6h-v6.zarr
|
| 267 |
+
dataset_land: aifs-od-an-oper-0001-mars-n320-2016-2023-6h-v1-land.zarr
|
| 268 |
+
graph: graph_enc_proc_dec_n320.pt
|
| 269 |
+
checkpoint:
|
| 270 |
+
every_n_epochs: aifs-by_epoch-epoch_{epoch:03d}-val_wmse_{val_wmse:.3e}
|
| 271 |
+
every_n_train_steps: aifs-by_step-epoch_{epoch:03d}-step_{step:06d}
|
| 272 |
+
every_n_minutes: aifs-by_time-epoch_{epoch:03d}-step_{step:06d}
|
| 273 |
+
warm_start: null
|
| 274 |
+
accelerator: auto
|
| 275 |
+
num_gpus_per_node: 4
|
| 276 |
+
num_nodes: 16
|
| 277 |
+
num_gpus_per_model: 4
|
| 278 |
+
|
| 279 |
+
graph:
|
| 280 |
+
overwrite: True
|
| 281 |
+
data: data
|
| 282 |
+
hidden: hidden
|
| 283 |
+
nodes:
|
| 284 |
+
data:
|
| 285 |
+
node_builder:
|
| 286 |
+
_target_: anemoi.graphs.nodes.ZarrDatasetNodes
|
| 287 |
+
dataset: ${dataloader.dataset}
|
| 288 |
+
attributes:
|
| 289 |
+
area_weight:
|
| 290 |
+
_target_: anemoi.graphs.nodes.attributes.AreaWeights
|
| 291 |
+
norm: unit-max
|
| 292 |
+
hidden:
|
| 293 |
+
node_builder:
|
| 294 |
+
_target_: anemoi.graphs.nodes.ReducedGaussianGridNodes
|
| 295 |
+
grid: o96
|
| 296 |
+
edges:
|
| 297 |
+
- source_name: data
|
| 298 |
+
target_name: hidden
|
| 299 |
+
edge_builder:
|
| 300 |
+
_target_: anemoi.graphs.edges.CutOffEdges
|
| 301 |
+
cutoff_factor: 0.6
|
| 302 |
+
attributes:
|
| 303 |
+
edge_length:
|
| 304 |
+
_target_: anemoi.graphs.edges.attributes.EdgeLength
|
| 305 |
+
norm: unit-std
|
| 306 |
+
edge_dirs:
|
| 307 |
+
_target_: anemoi.graphs.edges.attributes.EdgeDirection
|
| 308 |
+
norm: unit-std
|
| 309 |
+
- source_name: hidden
|
| 310 |
+
target_name: data
|
| 311 |
+
edge_builder:
|
| 312 |
+
_target_: anemoi.graphs.edges.KNNEdges
|
| 313 |
+
num_nearest_neighbours: 3
|
| 314 |
+
attributes:
|
| 315 |
+
edge_length:
|
| 316 |
+
_target_: anemoi.graphs.edges.attributes.EdgeLength
|
| 317 |
+
norm: unit-std
|
| 318 |
+
edge_dirs:
|
| 319 |
+
_target_: anemoi.graphs.edges.attributes.EdgeDirection
|
| 320 |
+
norm: unit-std
|
| 321 |
+
attributes:
|
| 322 |
+
nodes:
|
| 323 |
+
area_weight:
|
| 324 |
+
_target_: anemoi.graphs.nodes.attributes.AreaWeights
|
| 325 |
+
norm: unit-max
|
| 326 |
+
edges:
|
| 327 |
+
edge_length:
|
| 328 |
+
_target_: anemoi.graphs.edges.attributes.EdgeLength
|
| 329 |
+
norm: unit-std
|
| 330 |
+
edge_dirs:
|
| 331 |
+
_target_: anemoi.graphs.edges.attributes.EdgeDirection
|
| 332 |
+
norm: unit-std
|
| 333 |
+
|
| 334 |
+
model:
|
| 335 |
+
activation: GELU
|
| 336 |
+
num_channels: 1024
|
| 337 |
+
model:
|
| 338 |
+
_target_: anemoi.models.models.encoder_processor_decoder.AnemoiModelEncProcDec
|
| 339 |
+
processor:
|
| 340 |
+
_target_: anemoi.models.layers.processor.TransformerProcessor
|
| 341 |
+
_convert_: all
|
| 342 |
+
activation: GELU
|
| 343 |
+
num_layers: 16
|
| 344 |
+
num_chunks: 2
|
| 345 |
+
mlp_hidden_ratio: 4
|
| 346 |
+
num_heads: 16
|
| 347 |
+
window_size: 1120
|
| 348 |
+
dropout_p: 0.0
|
| 349 |
+
encoder:
|
| 350 |
+
_target_: anemoi.models.layers.mapper.GraphTransformerForwardMapper
|
| 351 |
+
_convert_: all
|
| 352 |
+
trainable_size: 8
|
| 353 |
+
sub_graph_edge_attributes: [edge_length, edge_dirs]
|
| 354 |
+
activation: GELU
|
| 355 |
+
num_chunks: 1
|
| 356 |
+
mlp_hidden_ratio: 4
|
| 357 |
+
num_heads: 16
|
| 358 |
+
decoder:
|
| 359 |
+
_target_: anemoi.models.layers.mapper.GraphTransformerBackwardMapper
|
| 360 |
+
_convert_: all
|
| 361 |
+
trainable_size: 8
|
| 362 |
+
sub_graph_edge_attributes: [edge_length, edge_dirs]
|
| 363 |
+
activation: GELU
|
| 364 |
+
num_chunks: 1
|
| 365 |
+
mlp_hidden_ratio: 4
|
| 366 |
+
num_heads: 16
|
| 367 |
+
trainable_parameters:
|
| 368 |
+
data: 8
|
| 369 |
+
hidden: 8
|
| 370 |
+
data2hidden: 8
|
| 371 |
+
hidden2data: 8
|
| 372 |
+
attributes:
|
| 373 |
+
edges: [edge_length, edge_dirs]
|
| 374 |
+
nodes: []
|
| 375 |
+
node_loss_weight: area_weight
|
| 376 |
+
bounding:
|
| 377 |
+
- _target_: anemoi.models.layers.bounding.ReluBounding
|
| 378 |
+
variables:
|
| 379 |
+
- tp
|
| 380 |
+
- ro
|
| 381 |
+
- tcw
|
| 382 |
+
- ssrd
|
| 383 |
+
- q_50
|
| 384 |
+
- q_100
|
| 385 |
+
- q_150
|
| 386 |
+
- q_200
|
| 387 |
+
- q_250
|
| 388 |
+
- q_300
|
| 389 |
+
- q_400
|
| 390 |
+
- q_500
|
| 391 |
+
- q_600
|
| 392 |
+
- q_700
|
| 393 |
+
- q_850
|
| 394 |
+
- q_925
|
| 395 |
+
- q_1000
|
| 396 |
+
- _target_: anemoi.models.layers.bounding.HardtanhBounding
|
| 397 |
+
variables: [tcc, swvl1, swvl2]
|
| 398 |
+
min_val: 0
|
| 399 |
+
max_val: 1
|
| 400 |
+
- _target_: anemoi.models.layers.bounding.FractionBounding
|
| 401 |
+
variables: [cp, sf]
|
| 402 |
+
min_val: 0
|
| 403 |
+
max_val: 1
|
| 404 |
+
total_var: tp
|
| 405 |
+
- _target_: anemoi.models.layers.bounding.FractionBounding
|
| 406 |
+
variables: [lcc, mcc, hcc]
|
| 407 |
+
min_val: 0
|
| 408 |
+
max_val: 1
|
| 409 |
+
total_var: tcc
|
| 410 |
+
|
| 411 |
+
training:
|
| 412 |
+
run_id: ${oc.decode:${oc.env:PRETRAINING_RUN_ID}}
|
| 413 |
+
fork_run_id: ${oc.decode:${oc.env:PRETRAINING_RUN_ID}}
|
| 414 |
+
load_weights_only: True
|
| 415 |
+
deterministic: False
|
| 416 |
+
precision: 16-mixed
|
| 417 |
+
multistep_input: 2
|
| 418 |
+
accum_grad_batches: 1
|
| 419 |
+
num_sanity_val_steps: 6
|
| 420 |
+
gradient_clip:
|
| 421 |
+
val: 32.0
|
| 422 |
+
algorithm: value
|
| 423 |
+
swa:
|
| 424 |
+
enabled: False
|
| 425 |
+
lr: 0.0001
|
| 426 |
+
zero_optimizer: False
|
| 427 |
+
training_loss:
|
| 428 |
+
_target_: anemoi.training.losses.mse.WeightedMSELoss
|
| 429 |
+
scalars:
|
| 430 |
+
- variable
|
| 431 |
+
- loss_weights_mask
|
| 432 |
+
ignore_nans: False
|
| 433 |
+
loss_gradient_scaling: False
|
| 434 |
+
validation_metrics:
|
| 435 |
+
- _target_: anemoi.training.losses.mse.WeightedMSELoss
|
| 436 |
+
scalars: []
|
| 437 |
+
ignore_nans: True
|
| 438 |
+
rollout:
|
| 439 |
+
start: 1
|
| 440 |
+
epoch_increment: 1
|
| 441 |
+
max: 12
|
| 442 |
+
max_epochs: 13
|
| 443 |
+
max_steps: 150000
|
| 444 |
+
lr:
|
| 445 |
+
rate: 8.0e-7
|
| 446 |
+
iterations: 7900
|
| 447 |
+
min: 3.0e-7
|
| 448 |
+
warmup_t: 100
|
| 449 |
+
variable_loss_scaling:
|
| 450 |
+
default: 1
|
| 451 |
+
pl:
|
| 452 |
+
q: 0.6
|
| 453 |
+
t: 6
|
| 454 |
+
u: 0.8
|
| 455 |
+
v: 0.5
|
| 456 |
+
w: 0.001
|
| 457 |
+
z: 12
|
| 458 |
+
sfc:
|
| 459 |
+
sp: 10
|
| 460 |
+
10u: 0.5
|
| 461 |
+
10v: 0.5
|
| 462 |
+
100u: 0.1
|
| 463 |
+
100v: 0.1
|
| 464 |
+
2d: 0.5
|
| 465 |
+
tp: 0.025
|
| 466 |
+
cp: 0.0025
|
| 467 |
+
ro: 0.005
|
| 468 |
+
sf: 0.025
|
| 469 |
+
tcc: 0.1
|
| 470 |
+
mcc: 0.1
|
| 471 |
+
lcc: 0.1
|
| 472 |
+
hcc: 0.1
|
| 473 |
+
swvl2: 200
|
| 474 |
+
swvl1: 100
|
| 475 |
+
stl2: 10
|
| 476 |
+
stl1: 1
|
| 477 |
+
ssrd: 0.05
|
| 478 |
+
strd: 0.1
|
| 479 |
+
metrics: [z_500, t_850, u_850, v_850]
|
| 480 |
+
pressure_level_scaler:
|
| 481 |
+
_target_: anemoi.training.data.scaling.ReluPressureLevelScaler
|
| 482 |
+
minimum: 0.2
|
| 483 |
+
slope: 0.001
|