guox18 commited on
Commit
2ba13f5
·
verified ·
1 Parent(s): 2ff5aaa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -3
README.md CHANGED
@@ -1,3 +1,71 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
+ ---
6
+
7
+ # IFDECORATOR: Wrapping Instruction Following Reinforcement Learning with Verifiable Rewards
8
+
9
+ This repository contains the `Qwen2.5-32B-Instruct-IFDecorator` model, presented in the paper [IFDECORATOR: Wrapping Instruction Following Reinforcement Learning with Verifiable Rewards](https://huggingface.co/papers/2508.04632).
10
+
11
+ IFDecorator introduces a novel framework that significantly improves the efficiency and robustness of Reinforcement Learning with Verifiable Rewards (RLVR) for instruction following in Large Language Models (LLMs). It addresses issues of training inefficiency and over-optimization common in previous RLVR approaches.
12
+
13
+ **Key Innovations:**
14
+ - **Cooperative-Adversarial Data Flywheel:** Co-evolves instructions and hybrid verifications to generate progressively more challenging instruction-verification pairs.
15
+ - **IntentCheck Module:** A bypass mechanism designed to enforce alignment with the actual intent of user instructions.
16
+ - **Trip Wires:** A diagnostic tool that detects and captures reward hacking behaviors through trap instructions.
17
+
18
+ **Performance Highlights:**
19
+ `Qwen2.5-32B-Instruct-IFDecorator` achieves **87.43% accuracy on IFEval**, outperforming larger proprietary models such as GPT-4o. It also demonstrates substantial improvements on FollowBench while preserving general capabilities and significantly reducing reward hacking rates.
20
+
21
+ ## Links
22
+
23
+ * **Paper:** [https://huggingface.co/papers/2508.04632](https://huggingface.co/papers/2508.04632)
24
+ * **Project Page:** [https://tianyilt.github.io/ifdecorator](https://tianyilt.github.io/ifdecorator)
25
+ * **Code:** [https://github.com/guox18/IFDecorator](https://github.com/guox18/IFDecorator)
26
+
27
+ ## Usage
28
+
29
+ You can use this model with the Hugging Face `transformers` library. Below is a basic example for text generation using the model's chat template:
30
+
31
+ ```python
32
+ from transformers import AutoModelForCausalLM, AutoTokenizer
33
+ import torch
34
+
35
+ model_id = "your_model_id_here" # Replace with the actual model ID (e.g., "author/Qwen2.5-32B-Instruct-IFDecorator")
36
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
37
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
38
+
39
+ messages = [
40
+ {"role": "user", "content": "Explain what Instruction Following Reinforcement Learning with Verifiable Rewards (RLVR) is."},
41
+ ]
42
+
43
+ text = tokenizer.apply_chat_template(
44
+ messages,
45
+ tokenize=False,
46
+ add_generation_prompt=True
47
+ )
48
+
49
+ model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
50
+
51
+ generated_ids = model.generate(
52
+ model_inputs.input_ids,
53
+ max_new_tokens=512
54
+ )
55
+
56
+ response = tokenizer.decode(generated_ids[0][model_inputs.input_ids.shape[-1]:], skip_special_tokens=True)
57
+ print(response)
58
+ ```
59
+
60
+ ## Citation
61
+
62
+ If you find this work useful, please cite the paper:
63
+
64
+ ```bibtex
65
+ @article{li2025ifdecorator,
66
+ title={IFDECORATOR: Wrapping Instruction Following Reinforcement Learning with Verifiable Rewards},
67
+ author={Li, Tianyi and Xu, Peng and Huang, Wenhao and Huang, Songlin and Zhou, Chuanxiao and He, Kun and Peng, Shiqi and Gao, Jing and Huang, Jin and Gao, Kai},
68
+ journal={arXiv preprint arXiv:2508.04632},
69
+ year={2025}
70
+ }
71
+ ```