--- tags: - weight-space-learning - neural-network-autoencoder - autoencoder - transformer datasets: - maximuspowers/muat-fourier-5 --- # Weight-Space Autoencoder (TRANSFORMER) This model is a weight-space autoencoder trained on neural network activation weights/signatures. It includes both an encoder (compresses weights into latent representations) and a decoder (reconstructs weights from latent codes). ## Model Description - **Architecture**: Transformer encoder-decoder - **Training Dataset**: maximuspowers/muat-fourier-5 - **Input Mode**: signature - **Latent Dimension**: 256 ## Tokenization - **Granularity**: neuron - **Max Tokens**: 64 ## Training Config - **Loss Functions**: reconstruction, functional - **Optimizer**: adamw - **Learning Rate**: 0.0001 - **Batch Size**: 32 ## Performance Metrics (Test Set) - **MSE**: 0.122959 - **MAE**: 0.256139 - **RMSE**: 0.350655 - **Cosine Similarity**: 0.0575 - **R² Score**: 0.0069