Update README.md
Browse files
README.md
CHANGED
|
@@ -23,12 +23,12 @@ The model determines when to execute functions, whether in parallel or serially,
|
|
| 23 |
|
| 24 |
## How to Get Started
|
| 25 |
|
| 26 |
-
We provide custom code for
|
| 27 |
|
| 28 |
```python
|
| 29 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 30 |
|
| 31 |
-
tokenizer = AutoTokenizer.from_pretrained("meetkai/functionary-small-v3.1"
|
| 32 |
model = AutoModelForCausalLM.from_pretrained("meetkai/functionary-small-v3.1", device_map="auto", trust_remote_code=True)
|
| 33 |
|
| 34 |
tools = [
|
|
@@ -53,7 +53,6 @@ tools = [
|
|
| 53 |
messages = [{"role": "user", "content": "What is the weather in Istanbul and Singapore respectively?"}]
|
| 54 |
|
| 55 |
final_prompt = tokenizer.apply_chat_template(messages, tools, add_generation_prompt=True, tokenize=False)
|
| 56 |
-
tokenizer.padding_side = "left"
|
| 57 |
inputs = tokenizer(final_prompt, return_tensors="pt").to("cuda")
|
| 58 |
pred = model.generate_tool_use(**inputs, max_new_tokens=128, tokenizer=tokenizer)
|
| 59 |
print(tokenizer.decode(pred.cpu()[0]))
|
|
@@ -61,9 +60,9 @@ print(tokenizer.decode(pred.cpu()[0]))
|
|
| 61 |
|
| 62 |
## Prompt Template
|
| 63 |
|
| 64 |
-
We convert function definitions to a similar text to
|
| 65 |
|
| 66 |
-
This formatting is also available via our vLLM server which we process the functions into definitions encapsulated in a system message
|
| 67 |
|
| 68 |
```python
|
| 69 |
from openai import OpenAI
|
|
|
|
| 23 |
|
| 24 |
## How to Get Started
|
| 25 |
|
| 26 |
+
We provide custom code for parsing raw model responses into a JSON object containing role, content and tool_calls fields. This enables the users to read the function-calling output of the model easily.
|
| 27 |
|
| 28 |
```python
|
| 29 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 30 |
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained("meetkai/functionary-small-v3.1")
|
| 32 |
model = AutoModelForCausalLM.from_pretrained("meetkai/functionary-small-v3.1", device_map="auto", trust_remote_code=True)
|
| 33 |
|
| 34 |
tools = [
|
|
|
|
| 53 |
messages = [{"role": "user", "content": "What is the weather in Istanbul and Singapore respectively?"}]
|
| 54 |
|
| 55 |
final_prompt = tokenizer.apply_chat_template(messages, tools, add_generation_prompt=True, tokenize=False)
|
|
|
|
| 56 |
inputs = tokenizer(final_prompt, return_tensors="pt").to("cuda")
|
| 57 |
pred = model.generate_tool_use(**inputs, max_new_tokens=128, tokenizer=tokenizer)
|
| 58 |
print(tokenizer.decode(pred.cpu()[0]))
|
|
|
|
| 60 |
|
| 61 |
## Prompt Template
|
| 62 |
|
| 63 |
+
We convert function definitions to a similar text to TypeScript definitions. Then we inject these definitions as system prompts. After that, we inject the default system prompt. Then we start the conversation messages.
|
| 64 |
|
| 65 |
+
This formatting is also available via our vLLM server which we process the functions into Typescript definitions encapsulated in a system message using a pre-defined Transformers Jinja chat template. This means that the lists of messages can be formatted for you with the apply_chat_template() method within our server:
|
| 66 |
|
| 67 |
```python
|
| 68 |
from openai import OpenAI
|