Upload 2 files
Browse files
complete_example_use_selective_fine_tuning.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This script exemplify a selective fine-tuning method based on the condition number using freely available data and LLM
|
| 2 |
+
# Author: Oswaldo Ludwig (now with AI support)
|
| 3 |
+
# Date: 03/07/2025
|
| 4 |
+
# In case of publication using this script or ideas in this script, cite:
|
| 5 |
+
# Ludwig, Oswaldo. "The Condition Number as a Scale-Invariant Proxy for Information Encoding in Neural Units." arXiv preprint arXiv:2506.16289 (2025).
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.optim as optim
|
| 10 |
+
from torch.utils.data import Dataset, DataLoader
|
| 11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 12 |
+
from datasets import load_dataset
|
| 13 |
+
from selective_fine_tuning import SelectiveFineTuningOptimizer
|
| 14 |
+
|
| 15 |
+
# Dataset using AG News
|
| 16 |
+
class RealTextDataset(Dataset):
|
| 17 |
+
def __init__(self, tokenizer, split='train', max_samples=200, seq_len=64):
|
| 18 |
+
dataset = load_dataset("ag_news", split=split)
|
| 19 |
+
self.samples = dataset.select(range(max_samples))
|
| 20 |
+
self.tokenizer = tokenizer
|
| 21 |
+
self.seq_len = seq_len
|
| 22 |
+
|
| 23 |
+
def __len__(self):
|
| 24 |
+
return len(self.samples)
|
| 25 |
+
|
| 26 |
+
def __getitem__(self, idx):
|
| 27 |
+
text = self.samples[idx]['text']
|
| 28 |
+
encoding = self.tokenizer(text, truncation=True, padding='max_length', max_length=self.seq_len, return_tensors='pt')
|
| 29 |
+
input_ids = encoding['input_ids'].squeeze(0)
|
| 30 |
+
return input_ids, input_ids.clone()
|
| 31 |
+
|
| 32 |
+
# Training loop
|
| 33 |
+
def train():
|
| 34 |
+
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 37 |
+
print("Tokenizer and LLM loaded", flush=True)
|
| 38 |
+
|
| 39 |
+
dataset = RealTextDataset(tokenizer=tokenizer, max_samples=200, seq_len=64)
|
| 40 |
+
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
|
| 41 |
+
print("Data loader and dataset loaded", flush=True)
|
| 42 |
+
|
| 43 |
+
criterion = nn.CrossEntropyLoss()
|
| 44 |
+
|
| 45 |
+
optimizer_wrapper = SelectiveFineTuningOptimizer(
|
| 46 |
+
model=model,
|
| 47 |
+
base_optimizer_cls=optim.AdamW,
|
| 48 |
+
optimizer_args={'lr': 5e-5},
|
| 49 |
+
condition_file='condition_numbers.json',
|
| 50 |
+
num_tensors_to_finetune=20,
|
| 51 |
+
recompute=True
|
| 52 |
+
)
|
| 53 |
+
print("Optimizer instantiated", flush=True)
|
| 54 |
+
|
| 55 |
+
model.train()
|
| 56 |
+
for epoch in range(3):
|
| 57 |
+
total_loss = 0
|
| 58 |
+
for inputs, targets in dataloader:
|
| 59 |
+
optimizer_wrapper.zero_grad()
|
| 60 |
+
outputs = model(inputs, labels=targets)
|
| 61 |
+
loss = outputs.loss
|
| 62 |
+
loss.backward()
|
| 63 |
+
optimizer_wrapper.step()
|
| 64 |
+
total_loss += loss.item()
|
| 65 |
+
print(f"Epoch {epoch+1}, Loss: {total_loss/len(dataloader):.4f}")
|
| 66 |
+
|
| 67 |
+
if __name__ == '__main__':
|
| 68 |
+
train()
|
selective_fine_tuning.py
ADDED
|
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# The class in this script implements a selective fine-tuning method based on the condition number
|
| 2 |
+
# Author: Oswaldo Ludwig (now with AI support)
|
| 3 |
+
# Date: 03/07/2025
|
| 4 |
+
# In case of publication using this script or ideas in this script, cite:
|
| 5 |
+
# Ludwig, Oswaldo. "The Condition Number as a Scale-Invariant Proxy for Information Encoding in Neural Units." arXiv preprint arXiv:2506.16289 (2025).
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.optim as optim
|
| 10 |
+
import os
|
| 11 |
+
import json
|
| 12 |
+
import numpy as np
|
| 13 |
+
import logging
|
| 14 |
+
from typing import Type, Dict, Any, Set, List
|
| 15 |
+
|
| 16 |
+
# Configure logging (ensure this is at the top level or configured once)
|
| 17 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 18 |
+
logger = logging.getLogger(__name__)
|
| 19 |
+
|
| 20 |
+
class SelectiveFineTuningOptimizer:
|
| 21 |
+
"""
|
| 22 |
+
A custom optimizer wrapper that selectively fine-tunes a PyTorch model
|
| 23 |
+
based on the condition numbers of its parameters. Parameters with lower
|
| 24 |
+
condition numbers are prioritized for fine-tuning.
|
| 25 |
+
"""
|
| 26 |
+
def __init__(self, model: nn.Module, base_optimizer_cls: Type[optim.Optimizer], optimizer_args: Dict[str, Any],
|
| 27 |
+
condition_file: str = 'condition_numbers.json',
|
| 28 |
+
num_tensors_to_finetune: int = 100,
|
| 29 |
+
recompute: bool = False,
|
| 30 |
+
max_dim_size_to_analyze: int = None): # New parameter for filtering
|
| 31 |
+
"""
|
| 32 |
+
Initializes the SelectiveFineTuningOptimizer.
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
model (nn.Module): The PyTorch model to be fine-tuned.
|
| 36 |
+
base_optimizer_cls (Type[optim.Optimizer]): The class of the base optimizer (e.g., torch.optim.Adam).
|
| 37 |
+
optimizer_args (Dict[str, Any]): A dictionary of arguments to pass to the base optimizer constructor.
|
| 38 |
+
condition_file (str): Path to the JSON file for storing/loading condition numbers.
|
| 39 |
+
num_tensors_to_finetune (int): The number of top tensors (based on condition number) to fine-tune.
|
| 40 |
+
recompute (bool): If True, recompute condition numbers even if the file exists.
|
| 41 |
+
max_dim_size_to_analyze (int, optional): If provided, any parameter tensor with at least one dimension
|
| 42 |
+
larger than this value will be skipped from analysis.
|
| 43 |
+
Useful for ignoring very large embedding matrices etc.
|
| 44 |
+
"""
|
| 45 |
+
self.model = model
|
| 46 |
+
self.condition_file = condition_file
|
| 47 |
+
self.num_tensors_to_finetune = num_tensors_to_finetune
|
| 48 |
+
self.recompute = recompute
|
| 49 |
+
self.max_dim_size_to_analyze = max_dim_size_to_analyze # Store the new parameter
|
| 50 |
+
|
| 51 |
+
self.condition_numbers: Dict[str, float] = {}
|
| 52 |
+
|
| 53 |
+
if not os.path.exists(condition_file) or recompute:
|
| 54 |
+
self.condition_numbers = self._analyze_model()
|
| 55 |
+
self._save_condition_numbers()
|
| 56 |
+
else:
|
| 57 |
+
self.condition_numbers = self._load_condition_numbers()
|
| 58 |
+
|
| 59 |
+
self.trainable_param_names: Set[str] = self._select_trainable_parameters()
|
| 60 |
+
self._unfreeze_selected_parameters()
|
| 61 |
+
|
| 62 |
+
# Initialize the base optimizer with selected parameters
|
| 63 |
+
params_to_optimize = [p for n, p in model.named_parameters() if n in self.trainable_param_names]
|
| 64 |
+
if not params_to_optimize:
|
| 65 |
+
logger.warning("No parameters selected for fine-tuning based on the criteria. Optimizer will have no parameters.")
|
| 66 |
+
self.optimizer = base_optimizer_cls(params_to_optimize, **optimizer_args)
|
| 67 |
+
logger.info(f"Optimizer initialized with {len(params_to_optimize)} trainable parameters.")
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def _analyze_model(self) -> Dict[str, float]:
|
| 71 |
+
"""
|
| 72 |
+
Analyzes the singular values of model parameters to compute their condition numbers.
|
| 73 |
+
Parameters with less than 2 dimensions or having any dimension
|
| 74 |
+
larger than `max_dim_size_to_analyze` are ignored.
|
| 75 |
+
SVD is performed on the GPU if the tensor is on CUDA, otherwise on CPU.
|
| 76 |
+
|
| 77 |
+
Returns:
|
| 78 |
+
Dict[str, float]: A dictionary mapping parameter names to their condition numbers.
|
| 79 |
+
"""
|
| 80 |
+
condition_numbers = {}
|
| 81 |
+
logger.info("Analyzing the model tensors...")
|
| 82 |
+
|
| 83 |
+
initial_requires_grad_state = {}
|
| 84 |
+
for name, param in self.model.named_parameters():
|
| 85 |
+
initial_requires_grad_state[name] = param.requires_grad
|
| 86 |
+
param.requires_grad = False # Temporarily disable for analysis
|
| 87 |
+
|
| 88 |
+
analyzed_count = 0
|
| 89 |
+
skipped_ndim_count = 0
|
| 90 |
+
skipped_dim_size_count = 0 # New counter
|
| 91 |
+
skipped_svd_error_count = 0
|
| 92 |
+
total_params_in_model = 0
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
+
for name, param in self.model.named_parameters():
|
| 96 |
+
total_params_in_model += 1
|
| 97 |
+
# Filter 1: Skip by number of dimensions
|
| 98 |
+
if param.ndim < 2:
|
| 99 |
+
logger.debug(f"Skipping {name} due to less than 2 dimensions (ndim={param.ndim}).")
|
| 100 |
+
skipped_ndim_count += 1
|
| 101 |
+
continue
|
| 102 |
+
# Filter 2: Skip by any dimension size exceeding threshold
|
| 103 |
+
if self.max_dim_size_to_analyze is not None:
|
| 104 |
+
if any(dim_size > self.max_dim_size_to_analyze for dim_size in param.shape):
|
| 105 |
+
logger.debug(f"Skipping {name} due to a dimension larger than {self.max_dim_size_to_analyze} (shape={param.shape}).")
|
| 106 |
+
skipped_dim_size_count += 1
|
| 107 |
+
continue
|
| 108 |
+
|
| 109 |
+
try:
|
| 110 |
+
data = param.detach() # Keep on GPU if already there
|
| 111 |
+
if data.is_cuda:
|
| 112 |
+
# Perform SVD on GPU
|
| 113 |
+
u, s, v = torch.linalg.svd(data, full_matrices=False)
|
| 114 |
+
else:
|
| 115 |
+
# Fallback to CPU if not on CUDA
|
| 116 |
+
u, s, v = torch.linalg.svd(data.cpu(), full_matrices=False)
|
| 117 |
+
|
| 118 |
+
cond_number = (s[0] / s[-1]).item() if s[-1] > 0 else float('inf')
|
| 119 |
+
condition_numbers[name] = cond_number
|
| 120 |
+
analyzed_count += 1
|
| 121 |
+
logger.debug(f"Analyzed {name}: condition_number={cond_number:.4f}")
|
| 122 |
+
except torch.linalg.LinAlgError as e:
|
| 123 |
+
logger.warning(f"Skipping {name} due to SVD Linear Algebra error: {e}")
|
| 124 |
+
skipped_svd_error_count += 1
|
| 125 |
+
except Exception as e:
|
| 126 |
+
logger.error(f"Skipping {name} due to unexpected error during SVD: {e}")
|
| 127 |
+
skipped_svd_error_count += 1
|
| 128 |
+
finally:
|
| 129 |
+
# Restore initial requires_grad state (though _unfreeze_selected_parameters will override this)
|
| 130 |
+
for name, param in self.model.named_parameters():
|
| 131 |
+
param.requires_grad = initial_requires_grad_state[name]
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
logger.info(f"Done analyzing model tensors. Total parameters in model: {total_params_in_model}")
|
| 135 |
+
logger.info(f"Parameters analyzed for condition numbers: {analyzed_count}")
|
| 136 |
+
logger.info(f"Skipped due to ndim < 2: {skipped_ndim_count}")
|
| 137 |
+
logger.info(f"Skipped due to dimension size > {self.max_dim_size_to_analyze}: {skipped_dim_size_count}") # New log
|
| 138 |
+
logger.info(f"Skipped due to SVD errors: {skipped_svd_error_count}")
|
| 139 |
+
return condition_numbers
|
| 140 |
+
|
| 141 |
+
def _save_condition_numbers(self):
|
| 142 |
+
"""
|
| 143 |
+
Saves the computed condition numbers to a JSON file.
|
| 144 |
+
"""
|
| 145 |
+
try:
|
| 146 |
+
with open(self.condition_file, 'w') as f:
|
| 147 |
+
json.dump(self.condition_numbers, f, indent=2)
|
| 148 |
+
logger.info(f"Condition numbers saved to {self.condition_file}")
|
| 149 |
+
except IOError as e:
|
| 150 |
+
logger.error(f"Failed to save condition numbers to {self.condition_file}: {e}")
|
| 151 |
+
|
| 152 |
+
def _load_condition_numbers(self) -> Dict[str, float]:
|
| 153 |
+
"""
|
| 154 |
+
Loads condition numbers from a JSON file. If the file is corrupted,
|
| 155 |
+
it triggers a recomputation.
|
| 156 |
+
|
| 157 |
+
Returns:
|
| 158 |
+
Dict[str, float]: The loaded condition numbers.
|
| 159 |
+
"""
|
| 160 |
+
try:
|
| 161 |
+
with open(self.condition_file, 'r') as f:
|
| 162 |
+
data = json.load(f)
|
| 163 |
+
logger.info(f"Condition numbers loaded from {self.condition_file}")
|
| 164 |
+
return data
|
| 165 |
+
except json.JSONDecodeError as e:
|
| 166 |
+
logger.warning(f"Condition file '{self.condition_file}' is corrupted or invalid. Error: {e}. Recomputing.")
|
| 167 |
+
if os.path.exists(self.condition_file):
|
| 168 |
+
try:
|
| 169 |
+
os.remove(self.condition_file) # Remove corrupted file
|
| 170 |
+
logger.info(f"Removed corrupted condition file: {self.condition_file}")
|
| 171 |
+
except OSError as err:
|
| 172 |
+
logger.error(f"Error removing corrupted file {self.condition_file}: {err}")
|
| 173 |
+
return self._analyze_model() # Recompute if loading fails
|
| 174 |
+
except IOError as e:
|
| 175 |
+
logger.error(f"Failed to load condition numbers from {self.condition_file}: {e}. Recomputing.")
|
| 176 |
+
return self._analyze_model() # Recompute if file not found or other IO error
|
| 177 |
+
|
| 178 |
+
def _select_trainable_parameters(self) -> Set[str]:
|
| 179 |
+
"""
|
| 180 |
+
Selects the top `num_tensors_to_finetune` parameters based on their condition numbers
|
| 181 |
+
(lower condition number is better).
|
| 182 |
+
|
| 183 |
+
Returns:
|
| 184 |
+
Set[str]: A set of names of the parameters chosen for fine-tuning.
|
| 185 |
+
"""
|
| 186 |
+
if not self.condition_numbers:
|
| 187 |
+
logger.warning("No condition numbers available to select trainable parameters.")
|
| 188 |
+
return set()
|
| 189 |
+
|
| 190 |
+
sorted_params = sorted(self.condition_numbers.items(), key=lambda x: x[1])
|
| 191 |
+
selected = [name for name, _ in sorted_params[:self.num_tensors_to_finetune]]
|
| 192 |
+
logger.info(f"Selected {len(selected)} parameters for fine-tuning out of {len(self.condition_numbers)} analyzed.")
|
| 193 |
+
logger.debug(f"Selected parameters: {selected}")
|
| 194 |
+
return set(selected)
|
| 195 |
+
|
| 196 |
+
def _unfreeze_selected_parameters(self):
|
| 197 |
+
"""
|
| 198 |
+
Sets `requires_grad=True` for the selected trainable parameters
|
| 199 |
+
and `requires_grad=False` for all other parameters in the model.
|
| 200 |
+
"""
|
| 201 |
+
total_params = 0
|
| 202 |
+
frozen_params_count = 0
|
| 203 |
+
unfrozen_params_count = 0
|
| 204 |
+
|
| 205 |
+
for name, param in self.model.named_parameters():
|
| 206 |
+
total_params += 1
|
| 207 |
+
if name in self.trainable_param_names:
|
| 208 |
+
if not param.requires_grad: # Only change if it's different
|
| 209 |
+
param.requires_grad = True
|
| 210 |
+
unfrozen_params_count += 1
|
| 211 |
+
logger.debug(f"Parameter '{name}' set to requires_grad=True.")
|
| 212 |
+
else:
|
| 213 |
+
if param.requires_grad: # Only change if it's different
|
| 214 |
+
param.requires_grad = False
|
| 215 |
+
frozen_params_count += 1
|
| 216 |
+
logger.debug(f"Parameter '{name}' set to requires_grad=False.")
|
| 217 |
+
|
| 218 |
+
logger.info(f"Model parameters configured: {unfrozen_params_count} unfrozen, {frozen_params_count} frozen (out of {total_params} total).")
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def step(self):
|
| 222 |
+
"""
|
| 223 |
+
Performs a single optimization step (parameter update).
|
| 224 |
+
Delegates to the base optimizer's step method.
|
| 225 |
+
"""
|
| 226 |
+
self.optimizer.step()
|
| 227 |
+
|
| 228 |
+
def zero_grad(self):
|
| 229 |
+
"""
|
| 230 |
+
Clears the gradients of all optimized parameters.
|
| 231 |
+
Delegates to the base optimizer's zero_grad method.
|
| 232 |
+
"""
|
| 233 |
+
self.optimizer.zero_grad()
|
| 234 |
+
|
| 235 |
+
def state_dict(self) -> Dict[str, Any]:
|
| 236 |
+
"""
|
| 237 |
+
Returns a serializable dictionary containing the current state of the optimizer.
|
| 238 |
+
Delegates to the base optimizer's state_dict method.
|
| 239 |
+
"""
|
| 240 |
+
return self.optimizer.state_dict()
|
| 241 |
+
|
| 242 |
+
def load_state_dict(self, state_dict: Dict[str, Any]):
|
| 243 |
+
"""
|
| 244 |
+
Loads the optimizer's state from a state_dict.
|
| 245 |
+
Delegates to the base optimizer's load_state_dict method.
|
| 246 |
+
|
| 247 |
+
Args:
|
| 248 |
+
state_dict (Dict[str, Any]): A dictionary containing the optimizer's state.
|
| 249 |
+
"""
|
| 250 |
+
self.optimizer.load_state_dict(state_dict)
|
| 251 |
+
|