new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

Activity-aware Human Mobility Prediction with Hierarchical Graph Attention Recurrent Network

Human mobility prediction is a fundamental task essential for various applications in urban planning, location-based services and intelligent transportation systems. Existing methods often ignore activity information crucial for reasoning human preferences and routines, or adopt a simplified representation of the dependencies between time, activities and locations. To address these issues, we present Hierarchical Graph Attention Recurrent Network (HGARN) for human mobility prediction. Specifically, we construct a hierarchical graph based on past mobility records and employ a Hierarchical Graph Attention Module to capture complex time-activity-location dependencies. This way, HGARN can learn representations with rich human travel semantics to model user preferences at the global level. We also propose a model-agnostic history-enhanced confidence (MAHEC) label to incorporate each user's individual-level preferences. Finally, we introduce a Temporal Module, which employs recurrent structures to jointly predict users' next activities and their associated locations, with the former used as an auxiliary task to enhance the latter prediction. For model evaluation, we test the performance of HGARN against existing state-of-the-art methods in both the recurring (i.e., returning to a previously visited location) and explorative (i.e., visiting a new location) settings. Overall, HGARN outperforms other baselines significantly in all settings based on two real-world human mobility data benchmarks. These findings confirm the important role that human activities play in determining mobility decisions, illustrating the need to develop activity-aware intelligent transportation systems. Source codes of this study are available at https://github.com/YihongT/HGARN.

  • 3 authors
·
Oct 14, 2022

When Heterophily Meets Heterogeneity: New Graph Benchmarks and Effective Methods

Many real-world graphs frequently present challenges for graph learning due to the presence of both heterophily and heterogeneity. However, existing benchmarks for graph learning often focus on heterogeneous graphs with homophily or homogeneous graphs with heterophily, leaving a gap in understanding how methods perform on graphs that are both heterogeneous and heterophilic. To bridge this gap, we introduce H2GB, a novel graph benchmark that brings together the complexities of both the heterophily and heterogeneity properties of graphs. Our benchmark encompasses 9 diverse real-world datasets across 5 domains, 28 baseline model implementations, and 26 benchmark results. In addition, we present a modular graph transformer framework UnifiedGT and a new model variant, H2G-former, that excels at this challenging benchmark. By integrating masked label embeddings, cross-type heterogeneous attention, and type-specific FFNs, H2G-former effectively tackles graph heterophily and heterogeneity. Extensive experiments across 26 baselines on H2GB reveal inadequacies of current models on heterogeneous heterophilic graph learning, and demonstrate the superiority of our H2G-former over existing solutions. Both the benchmark and the framework are available on GitHub (https://github.com/junhongmit/H2GB) and PyPI (https://pypi.org/project/H2GB), and documentation can be found at https://junhongmit.github.io/H2GB/.

  • 6 authors
·
Jul 15, 2024

Graph Transformers for Large Graphs

Transformers have recently emerged as powerful neural networks for graph learning, showcasing state-of-the-art performance on several graph property prediction tasks. However, these results have been limited to small-scale graphs, where the computational feasibility of the global attention mechanism is possible. The next goal is to scale up these architectures to handle very large graphs on the scale of millions or even billions of nodes. With large-scale graphs, global attention learning is proven impractical due to its quadratic complexity w.r.t. the number of nodes. On the other hand, neighborhood sampling techniques become essential to manage large graph sizes, yet finding the optimal trade-off between speed and accuracy with sampling techniques remains challenging. This work advances representation learning on single large-scale graphs with a focus on identifying model characteristics and critical design constraints for developing scalable graph transformer (GT) architectures. We argue such GT requires layers that can adeptly learn both local and global graph representations while swiftly sampling the graph topology. As such, a key innovation of this work lies in the creation of a fast neighborhood sampling technique coupled with a local attention mechanism that encompasses a 4-hop reception field, but achieved through just 2-hop operations. This local node embedding is then integrated with a global node embedding, acquired via another self-attention layer with an approximate global codebook, before finally sent through a downstream layer for node predictions. The proposed GT framework, named LargeGT, overcomes previous computational bottlenecks and is validated on three large-scale node classification benchmarks. We report a 3x speedup and 16.8% performance gain on ogbn-products and snap-patents, while we also scale LargeGT on ogbn-papers100M with a 5.9% performance improvement.

  • 6 authors
·
Dec 18, 2023

LightHGNN: Distilling Hypergraph Neural Networks into MLPs for 100times Faster Inference

Hypergraph Neural Networks (HGNNs) have recently attracted much attention and exhibited satisfactory performance due to their superiority in high-order correlation modeling. However, it is noticed that the high-order modeling capability of hypergraph also brings increased computation complexity, which hinders its practical industrial deployment. In practice, we find that one key barrier to the efficient deployment of HGNNs is the high-order structural dependencies during inference. In this paper, we propose to bridge the gap between the HGNNs and inference-efficient Multi-Layer Perceptron (MLPs) to eliminate the hypergraph dependency of HGNNs and thus reduce computational complexity as well as improve inference speed. Specifically, we introduce LightHGNN and LightHGNN^+ for fast inference with low complexity. LightHGNN directly distills the knowledge from teacher HGNNs to student MLPs via soft labels, and LightHGNN^+ further explicitly injects reliable high-order correlations into the student MLPs to achieve topology-aware distillation and resistance to over-smoothing. Experiments on eight hypergraph datasets demonstrate that even without hypergraph dependency, the proposed LightHGNNs can still achieve competitive or even better performance than HGNNs and outperform vanilla MLPs by 16.3 on average. Extensive experiments on three graph datasets further show the average best performance of our LightHGNNs compared with all other methods. Experiments on synthetic hypergraphs with 5.5w vertices indicate LightHGNNs can run 100times faster than HGNNs, showcasing their ability for latency-sensitive deployments.

  • 4 authors
·
Feb 6, 2024

HiGPT: Heterogeneous Graph Language Model

Heterogeneous graph learning aims to capture complex relationships and diverse relational semantics among entities in a heterogeneous graph to obtain meaningful representations for nodes and edges. Recent advancements in heterogeneous graph neural networks (HGNNs) have achieved state-of-the-art performance by considering relation heterogeneity and using specialized message functions and aggregation rules. However, existing frameworks for heterogeneous graph learning have limitations in generalizing across diverse heterogeneous graph datasets. Most of these frameworks follow the "pre-train" and "fine-tune" paradigm on the same dataset, which restricts their capacity to adapt to new and unseen data. This raises the question: "Can we generalize heterogeneous graph models to be well-adapted to diverse downstream learning tasks with distribution shifts in both node token sets and relation type heterogeneity?'' To tackle those challenges, we propose HiGPT, a general large graph model with Heterogeneous graph instruction-tuning paradigm. Our framework enables learning from arbitrary heterogeneous graphs without the need for any fine-tuning process from downstream datasets. To handle distribution shifts in heterogeneity, we introduce an in-context heterogeneous graph tokenizer that captures semantic relationships in different heterogeneous graphs, facilitating model adaptation. We incorporate a large corpus of heterogeneity-aware graph instructions into our HiGPT, enabling the model to effectively comprehend complex relation heterogeneity and distinguish between various types of graph tokens. Furthermore, we introduce the Mixture-of-Thought (MoT) instruction augmentation paradigm to mitigate data scarcity by generating diverse and informative instructions. Through comprehensive evaluations, our proposed framework demonstrates exceptional performance in terms of generalization performance.

  • 7 authors
·
Feb 25, 2024

SoftHGNN: Soft Hypergraph Neural Networks for General Visual Recognition

Visual recognition relies on understanding both the semantics of image tokens and the complex interactions among them. Mainstream self-attention methods, while effective at modeling global pair-wise relations, fail to capture high-order associations inherent in real-world scenes and often suffer from redundant computation. Hypergraphs extend conventional graphs by modeling high-order interactions and offer a promising framework for addressing these limitations. However, existing hypergraph neural networks typically rely on static and hard hyperedge assignments, leading to excessive and redundant hyperedges with hard binary vertex memberships that overlook the continuity of visual semantics. To overcome these issues, we present Soft Hypergraph Neural Networks (SoftHGNNs), which extend the methodology of hypergraph computation, to make it truly efficient and versatile in visual recognition tasks. Our framework introduces the concept of soft hyperedges, where each vertex is associated with hyperedges via continuous participation weights rather than hard binary assignments. This dynamic and differentiable association is achieved by using the learnable hyperedge prototype. Through similarity measurements between token features and the prototype, the model generates semantically rich soft hyperedges. SoftHGNN then aggregates messages over soft hyperedges to capture high-order semantics. To further enhance efficiency when scaling up the number of soft hyperedges, we incorporate a sparse hyperedge selection mechanism that activates only the top-k important hyperedges, along with a load-balancing regularizer to ensure balanced hyperedge utilization. Experimental results across three tasks on five datasets demonstrate that SoftHGNN efficiently captures high-order associations in visual scenes, achieving significant performance improvements.

  • 7 authors
·
May 21

H4G: Unlocking Faithful Inference for Zero-Shot Graph Learning in Hyperbolic Space

Text-attributed graphs are widely used across domains, offering rich opportunities for zero-shot learning via graph-text alignment. However, existing methods struggle with tasks requiring fine-grained pattern recognition, particularly on heterophilic graphs. Through empirical and theoretical analysis, we identify an over-abstraction problem: current approaches operate at excessively large hyperbolic radii, compressing multi-scale structural information into uniform high-level abstractions. This abstraction-induced information loss obscures critical local patterns essential for accurate predictions. By analyzing embeddings in hyperbolic space, we demonstrate that optimal graph learning requires faithful preservation of fine-grained structural details, better retained by representations positioned closer to the origin. To address this, we propose H4G, a framework that systematically reduces embedding radii using learnable block-diagonal scaling matrices and M\"obius matrix multiplication. This approach restores access to fine-grained patterns while maintaining global receptive ability with minimal computational overhead. Experiments show H4G achieves state-of-the-art zero-shot performance with 12.8\% improvement on heterophilic graphs and 8.4\% on homophilic graphs, confirming that radius reduction enables faithful multi-scale representation for advancing zero-shot graph learning.

  • 9 authors
·
Oct 13

Long-Context Modeling with Dynamic Hierarchical Sparse Attention for On-Device LLMs

The quadratic cost of attention hinders the scalability of long-context LLMs, especially in resource-constrained settings. Existing static sparse methods such as sliding windows or global tokens utilizes the sparsity of attention to reduce the cost of attention, but poorly adapts to the content-dependent variations in attention due to their staticity. While previous work has proposed several dynamic approaches to improve flexibility, they still depend on predefined templates or heuristic mechanisms. Such strategies reduce generality and prune tokens that remain contextually important, limiting their accuracy across diverse tasks. To tackle these bottlenecks of existing methods for long-context modeling, we introduce Dynamic Hierarchical Sparse Attention (DHSA), a data-driven framework that dynamically predicts attention sparsity online without retraining. Our proposed DHSA adaptively segments sequences into variable-length chunks, then computes chunk representations by aggregating the token embeddings within each chunk. To avoid the bias introduced by varying chunk lengths, we apply length-normalized aggregation that scales the averaged embeddings by the square root of the chunk size. Finally, DHSA upsamples the chunk-level similarity scores to token level similarities to calculate importance scores that determine which token-level interactions should be preserved. Our experiments on Gemma2 with Needle-in-a-Haystack Test and LongBench show that DHSA matches dense attention in accuracy, while reducing prefill latency by 20-60% and peak memory usage by 35%. Compared to other representative baselines such as block sparse attention, DHSA achieves consistently higher accuracy (6-18% relative gains) with comparable or lower cost, offering an efficient and adaptable solution for long-context on-device LLMs.

  • 4 authors
·
Oct 28

Heterogeneous Directed Hypergraph Neural Network over abstract syntax tree (AST) for Code Classification

Code classification is a difficult issue in program understanding and automatic coding. Due to the elusive syntax and complicated semantics in programs, most existing studies use techniques based on abstract syntax tree (AST) and graph neural network (GNN) to create code representations for code classification. These techniques utilize the structure and semantic information of the code, but they only take into account pairwise associations and neglect the high-order correlations that already exist between nodes in the AST, which may result in the loss of code structural information. On the other hand, while a general hypergraph can encode high-order data correlations, it is homogeneous and undirected which will result in a lack of semantic and structural information such as node types, edge types, and directions between child nodes and parent nodes when modeling AST. In this study, we propose to represent AST as a heterogeneous directed hypergraph (HDHG) and process the graph by heterogeneous directed hypergraph neural network (HDHGN) for code classification. Our method improves code understanding and can represent high-order data correlations beyond paired interactions. We assess heterogeneous directed hypergraph neural network (HDHGN) on public datasets of Python and Java programs. Our method outperforms previous AST-based and GNN-based methods, which demonstrates the capability of our model.

  • 3 authors
·
May 7, 2023

Exploring Sparsity in Graph Transformers

Graph Transformers (GTs) have achieved impressive results on various graph-related tasks. However, the huge computational cost of GTs hinders their deployment and application, especially in resource-constrained environments. Therefore, in this paper, we explore the feasibility of sparsifying GTs, a significant yet under-explored topic. We first discuss the redundancy of GTs based on the characteristics of existing GT models, and then propose a comprehensive Graph Transformer SParsification (GTSP) framework that helps to reduce the computational complexity of GTs from four dimensions: the input graph data, attention heads, model layers, and model weights. Specifically, GTSP designs differentiable masks for each individual compressible component, enabling effective end-to-end pruning. We examine our GTSP through extensive experiments on prominent GTs, including GraphTrans, Graphormer, and GraphGPS. The experimental results substantiate that GTSP effectively cuts computational costs, accompanied by only marginal decreases in accuracy or, in some cases, even improvements. For instance, GTSP yields a reduction of 30\% in Floating Point Operations while contributing to a 1.8\% increase in Area Under the Curve accuracy on OGBG-HIV dataset. Furthermore, we provide several insights on the characteristics of attention heads and the behavior of attention mechanisms, all of which have immense potential to inspire future research endeavors in this domain.

  • 8 authors
·
Dec 9, 2023

Data-independent Module-aware Pruning for Hierarchical Vision Transformers

Hierarchical vision transformers (ViTs) have two advantages over conventional ViTs. First, hierarchical ViTs achieve linear computational complexity with respect to image size by local self-attention. Second, hierarchical ViTs create hierarchical feature maps by merging image patches in deeper layers for dense prediction. However, existing pruning methods ignore the unique properties of hierarchical ViTs and use the magnitude value as the weight importance. This approach leads to two main drawbacks. First, the "local" attention weights are compared at a "global" level, which may cause some "locally" important weights to be pruned due to their relatively small magnitude "globally". The second issue with magnitude pruning is that it fails to consider the distinct weight distributions of the network, which are essential for extracting coarse to fine-grained features at various hierarchical levels. To solve the aforementioned issues, we have developed a Data-independent Module-Aware Pruning method (DIMAP) to compress hierarchical ViTs. To ensure that "local" attention weights at different hierarchical levels are compared fairly in terms of their contribution, we treat them as a module and examine their contribution by analyzing their information distortion. Furthermore, we introduce a novel weight metric that is solely based on weights and does not require input images, thereby eliminating the dependence on the patch merging process. Our method validates its usefulness and strengths on Swin Transformers of different sizes on ImageNet-1k classification. Notably, the top-5 accuracy drop is only 0.07% when we remove 52.5% FLOPs and 52.7% parameters of Swin-B. When we reduce 33.2% FLOPs and 33.2% parameters of Swin-S, we can even achieve a 0.8% higher relative top-5 accuracy than the original model. Code is available at: https://github.com/he-y/Data-independent-Module-Aware-Pruning

  • 2 authors
·
Apr 21, 2024

Perturbation Ontology based Graph Attention Networks

In recent years, graph representation learning has undergone a paradigm shift, driven by the emergence and proliferation of graph neural networks (GNNs) and their heterogeneous counterparts. Heterogeneous GNNs have shown remarkable success in extracting low-dimensional embeddings from complex graphs that encompass diverse entity types and relationships. While meta-path-based techniques have long been recognized for their ability to capture semantic affinities among nodes, their dependence on manual specification poses a significant limitation. In contrast, matrix-focused methods accelerate processing by utilizing structural cues but often overlook contextual richness. In this paper, we challenge the current paradigm by introducing ontology as a fundamental semantic primitive within complex graphs. Our goal is to integrate the strengths of both matrix-centric and meta-path-based approaches into a unified framework. We propose perturbation Ontology-based Graph Attention Networks (POGAT), a novel methodology that combines ontology subgraphs with an advanced self-supervised learning paradigm to achieve a deep contextual understanding. The core innovation of POGAT lies in our enhanced homogeneous perturbing scheme designed to generate rigorous negative samples, encouraging the model to explore minimal contextual features more thoroughly. Through extensive empirical evaluations, we demonstrate that POGAT significantly outperforms state-of-the-art baselines, achieving a groundbreaking improvement of up to 10.78\% in F1-score for the critical task of link prediction and 12.01\% in Micro-F1 for the critical task of node classification.

  • 6 authors
·
Nov 27, 2024

The Underappreciated Power of Vision Models for Graph Structural Understanding

Graph Neural Networks operate through bottom-up message-passing, fundamentally differing from human visual perception, which intuitively captures global structures first. We investigate the underappreciated potential of vision models for graph understanding, finding they achieve performance comparable to GNNs on established benchmarks while exhibiting distinctly different learning patterns. These divergent behaviors, combined with limitations of existing benchmarks that conflate domain features with topological understanding, motivate our introduction of GraphAbstract. This benchmark evaluates models' ability to perceive global graph properties as humans do: recognizing organizational archetypes, detecting symmetry, sensing connectivity strength, and identifying critical elements. Our results reveal that vision models significantly outperform GNNs on tasks requiring holistic structural understanding and maintain generalizability across varying graph scales, while GNNs struggle with global pattern abstraction and degrade with increasing graph size. This work demonstrates that vision models possess remarkable yet underutilized capabilities for graph structural understanding, particularly for problems requiring global topological awareness and scale-invariant reasoning. These findings open new avenues to leverage this underappreciated potential for developing more effective graph foundation models for tasks dominated by holistic pattern recognition.

  • 9 authors
·
Oct 27 5

HiPrune: Training-Free Visual Token Pruning via Hierarchical Attention in Vision-Language Models

Vision-Language Models (VLMs) encode images into lengthy sequences of visual tokens, leading to excessive computational overhead and limited inference efficiency. While prior efforts prune or merge tokens to address this issue, they often rely on special tokens (e.g., CLS) or require task-specific training, hindering scalability across architectures. In this paper, we propose HiPrune, a training-free and model-agnostic token Pruning framework that exploits the Hierarchical attention structure within vision encoders. We identify that middle layers attend to object-centric regions, while deep layers capture global contextual features. Based on this observation, HiPrune selects three types of informative tokens: (1) Anchor tokens with high attention in object-centric layers, (2) Buffer tokens adjacent to anchors for spatial continuity, and (3) Register tokens with strong attention in deep layers for global summarization. Our method requires no retraining and integrates seamlessly with any ViT-based VLM. Extensive experiments on LLaVA-1.5, LLaVA-NeXT, and Qwen2.5-VL demonstrate that HiPrune achieves state-of-the-art pruning performance, preserving up to 99.3% task accuracy with only 33.3% tokens, and maintaining 99.5% accuracy with just 11.1% tokens. Meanwhile, it reduces inference FLOPs and latency by up to 9times, showcasing strong generalization across models and tasks. Code is available at https://github.com/Danielement321/HiPrune.

  • 6 authors
·
Aug 1

Scalable Graph Attention-based Instance Selection via Mini-Batch Sampling and Hierarchical Hashing

Instance selection (IS) is important in machine learning for reducing dataset size while keeping key characteristics. Current IS methods often struggle with capturing complex relationships in high-dimensional spaces and scale with large datasets. This paper introduces a graph attention-based instance selection (GAIS) method that uses attention mechanisms to identify informative instances through their structural relationships in graph representations. We present two approaches for scalable graph construction: a distance-based mini-batch sampling technique that reduces computation through strategic batch processing, and a hierarchical hashing approach that allows for efficient similarity computation through random projections. The mini-batch approach keeps class distributions through stratified sampling, while the hierarchical hashing method captures relationships at multiple granularities through single-level, multi-level, and multi-view variants. Experiments across 39 datasets show that GAIS achieves reduction rates above 96\% while maintaining or improving model performance relative to state-of-the-art IS methods. The findings shows that the distance-based mini-batch approach offers an optimal balance of efficiency and effectiveness for large-scale datasets, while multi-view variants provide superior performance for complex, high-dimensional data, demonstrating that attention-based importance scoring can effectively identify instances crucial for maintaining decision boundaries without requiring exhaustive pairwise comparisons.

  • 3 authors
·
Feb 27

Modeling Edge-Specific Node Features through Co-Representation Neural Hypergraph Diffusion

Hypergraphs are widely being employed to represent complex higher-order relations in real-world applications. Most existing research on hypergraph learning focuses on node-level or edge-level tasks. A practically relevant and more challenging task, edge-dependent node classification (ENC), is still under-explored. In ENC, a node can have different labels across different hyperedges, which requires the modeling of node features unique to each hyperedge. The state-of-the-art ENC solution, WHATsNet, only outputs single node and edge representations, leading to the limitations of entangled edge-specific features and non-adaptive representation sizes when applied to ENC. Additionally, WHATsNet suffers from the common oversmoothing issue in most HGNNs. To address these limitations, we propose CoNHD, a novel HGNN architecture specifically designed to model edge-specific features for ENC. Instead of learning separate representations for nodes and edges, CoNHD reformulates within-edge and within-node interactions as a hypergraph diffusion process over node-edge co-representations. We develop a neural implementation of the proposed diffusion process, leveraging equivariant networks as diffusion operators to effectively learn the diffusion dynamics from data. Extensive experiments demonstrate that CoNHD achieves the best performance across all benchmark ENC datasets and several downstream tasks without sacrificing efficiency. Our implementation is available at https://github.com/zhengyijia/CoNHD.

  • 2 authors
·
May 23, 2024

Emotion Classification from Multi-Channel EEG Signals Using HiSTN: A Hierarchical Graph-based Spatial-Temporal Approach

This study introduces a parameter-efficient Hierarchical Spatial Temporal Network (HiSTN) specifically designed for the task of emotion classification using multi-channel electroencephalogram data. The network incorporates a graph hierarchy constructed from bottom-up at various abstraction levels, offering the dual advantages of enhanced task-relevant deep feature extraction and a lightweight design. The model's effectiveness is further amplified when used in conjunction with a proposed unique label smoothing method. Comprehensive benchmark experiments reveal that this combined approach yields high, balanced performance in terms of both quantitative and qualitative predictions. HiSTN, which has approximately 1,000 parameters, achieves mean F1 scores of 96.82% (valence) and 95.62% (arousal) in subject-dependent tests on the rarely-utilized 5-classification task problem from the DREAMER dataset. In the subject-independent settings, the same model yields mean F1 scores of 78.34% for valence and 81.59% for arousal. The adoption of the Sequential Top-2 Hit Rate (Seq2HR) metric highlights the significant enhancements in terms of the balance between model's quantitative and qualitative for predictions achieved through our approach when compared to training with regular one-hot labels. These improvements surpass 50% in subject-dependent tasks and 30% in subject-independent tasks. The study also includes relevant ablation studies and case explorations to further elucidate the workings of the proposed model and enhance its interpretability.

  • 3 authors
·
Aug 9, 2024

p-Laplacian Adaptation for Generative Pre-trained Vision-Language Models

Vision-Language models (VLMs) pre-trained on large corpora have demonstrated notable success across a range of downstream tasks. In light of the rapidly increasing size of pre-trained VLMs, parameter-efficient transfer learning (PETL) has garnered attention as a viable alternative to full fine-tuning. One such approach is the adapter, which introduces a few trainable parameters into the pre-trained models while preserving the original parameters during adaptation. In this paper, we present a novel modeling framework that recasts adapter tuning after attention as a graph message passing process on attention graphs, where the projected query and value features and attention matrix constitute the node features and the graph adjacency matrix, respectively. Within this framework, tuning adapters in VLMs necessitates handling heterophilic graphs, owing to the disparity between the projected query and value space. To address this challenge, we propose a new adapter architecture, p-adapter, which employs p-Laplacian message passing in Graph Neural Networks (GNNs). Specifically, the attention weights are re-normalized based on the features, and the features are then aggregated using the calibrated attention matrix, enabling the dynamic exploitation of information with varying frequencies in the heterophilic attention graphs. We conduct extensive experiments on different pre-trained VLMs and multi-modal tasks, including visual question answering, visual entailment, and image captioning. The experimental results validate our method's significant superiority over other PETL methods.

  • 6 authors
·
Dec 17, 2023

Domain-Hierarchy Adaptation via Chain of Iterative Reasoning for Few-shot Hierarchical Text Classification

Recently, various pre-trained language models (PLMs) have been proposed to prove their impressive performances on a wide range of few-shot tasks. However, limited by the unstructured prior knowledge in PLMs, it is difficult to maintain consistent performance on complex structured scenarios, such as hierarchical text classification (HTC), especially when the downstream data is extremely scarce. The main challenge is how to transfer the unstructured semantic space in PLMs to the downstream domain hierarchy. Unlike previous work on HTC which directly performs multi-label classification or uses graph neural network (GNN) to inject label hierarchy, in this work, we study the HTC problem under a few-shot setting to adapt knowledge in PLMs from an unstructured manner to the downstream hierarchy. Technically, we design a simple yet effective method named Hierarchical Iterative Conditional Random Field (HierICRF) to search the most domain-challenging directions and exquisitely crafts domain-hierarchy adaptation as a hierarchical iterative language modeling problem, and then it encourages the model to make hierarchical consistency self-correction during the inference, thereby achieving knowledge transfer with hierarchical consistency preservation. We perform HierICRF on various architectures, and extensive experiments on two popular HTC datasets demonstrate that prompt with HierICRF significantly boosts the few-shot HTC performance with an average Micro-F1 by 28.80% to 1.50% and Macro-F1 by 36.29% to 1.5% over the previous state-of-the-art (SOTA) baselines under few-shot settings, while remaining SOTA hierarchical consistency performance.

  • 7 authors
·
Jul 11, 2024

HiP Attention: Sparse Sub-Quadratic Attention with Hierarchical Attention Pruning

In modern large language models (LLMs), increasing sequence lengths is a crucial challenge for enhancing their comprehension and coherence in handling complex tasks such as multi-modal question answering. However, handling long context sequences with LLMs is prohibitively costly due to the conventional attention mechanism's quadratic time and space complexity, and the context window size is limited by the GPU memory. Although recent works have proposed linear and sparse attention mechanisms to address this issue, their real-world applicability is often limited by the need to re-train pre-trained models. In response, we propose a novel approach, Hierarchically Pruned Attention (HiP), which simultaneously reduces the training and inference time complexity from O(T^2) to O(T log T) and the space complexity from O(T^2) to O(T). To this end, we devise a dynamic sparse attention mechanism that generates an attention mask through a novel tree-search-like algorithm for a given query on the fly. HiP is training-free as it only utilizes the pre-trained attention scores to spot the positions of the top-k most significant elements for each query. Moreover, it ensures that no token is overlooked, unlike the sliding window-based sub-quadratic attention methods, such as StreamingLLM. Extensive experiments on diverse real-world benchmarks demonstrate that HiP significantly reduces prompt (i.e., prefill) and decoding latency and memory usage while maintaining high generation performance with little or no degradation. As HiP allows pretrained LLMs to scale to millions of tokens on commodity GPUs with no additional engineering due to its easy plug-and-play deployment, we believe that our work will have a large practical impact, opening up the possibility to many long-context LLM applications previously infeasible.

  • 7 authors
·
Jun 14, 2024

Hierarchical Verbalizer for Few-Shot Hierarchical Text Classification

Due to the complex label hierarchy and intensive labeling cost in practice, the hierarchical text classification (HTC) suffers a poor performance especially when low-resource or few-shot settings are considered. Recently, there is a growing trend of applying prompts on pre-trained language models (PLMs), which has exhibited effectiveness in the few-shot flat text classification tasks. However, limited work has studied the paradigm of prompt-based learning in the HTC problem when the training data is extremely scarce. In this work, we define a path-based few-shot setting and establish a strict path-based evaluation metric to further explore few-shot HTC tasks. To address the issue, we propose the hierarchical verbalizer ("HierVerb"), a multi-verbalizer framework treating HTC as a single- or multi-label classification problem at multiple layers and learning vectors as verbalizers constrained by hierarchical structure and hierarchical contrastive learning. In this manner, HierVerb fuses label hierarchy knowledge into verbalizers and remarkably outperforms those who inject hierarchy through graph encoders, maximizing the benefits of PLMs. Extensive experiments on three popular HTC datasets under the few-shot settings demonstrate that prompt with HierVerb significantly boosts the HTC performance, meanwhile indicating an elegant way to bridge the gap between the large pre-trained model and downstream hierarchical classification tasks. Our code and few-shot dataset are publicly available at https://github.com/1KE-JI/HierVerb.

  • 4 authors
·
May 26, 2023

Layer-stacked Attention for Heterogeneous Network Embedding

The heterogeneous network is a robust data abstraction that can model entities of different types interacting in various ways. Such heterogeneity brings rich semantic information but presents nontrivial challenges in aggregating the heterogeneous relationships between objects - especially those of higher-order indirect relations. Recent graph neural network approaches for representation learning on heterogeneous networks typically employ the attention mechanism, which is often only optimized for predictions based on direct links. Furthermore, even though most deep learning methods can aggregate higher-order information by building deeper models, such a scheme can diminish the degree of interpretability. To overcome these challenges, we explore an architecture - Layer-stacked ATTention Embedding (LATTE) - that automatically decomposes higher-order meta relations at each layer to extract the relevant heterogeneous neighborhood structures for each node. Additionally, by successively stacking layer representations, the learned node embedding offers a more interpretable aggregation scheme for nodes of different types at different neighborhood ranges. We conducted experiments on several benchmark heterogeneous network datasets. In both transductive and inductive node classification tasks, LATTE can achieve state-of-the-art performance compared to existing approaches, all while offering a lightweight model. With extensive experimental analyses and visualizations, the framework can demonstrate the ability to extract informative insights on heterogeneous networks.

  • 2 authors
·
Sep 17, 2020

Hierarchical Side-Tuning for Vision Transformers

Fine-tuning pre-trained Vision Transformers (ViT) has consistently demonstrated promising performance in the realm of visual recognition. However, adapting large pre-trained models to various tasks poses a significant challenge. This challenge arises from the need for each model to undergo an independent and comprehensive fine-tuning process, leading to substantial computational and memory demands. While recent advancements in Parameter-efficient Transfer Learning (PETL) have demonstrated their ability to achieve superior performance compared to full fine-tuning with a smaller subset of parameter updates, they tend to overlook dense prediction tasks such as object detection and segmentation. In this paper, we introduce Hierarchical Side-Tuning (HST), a novel PETL approach that enables ViT transfer to various downstream tasks effectively. Diverging from existing methods that exclusively fine-tune parameters within input spaces or certain modules connected to the backbone, we tune a lightweight and hierarchical side network (HSN) that leverages intermediate activations extracted from the backbone and generates multi-scale features to make predictions. To validate HST, we conducted extensive experiments encompassing diverse visual tasks, including classification, object detection, instance segmentation, and semantic segmentation. Notably, our method achieves state-of-the-art average Top-1 accuracy of 76.0% on VTAB-1k, all while fine-tuning a mere 0.78M parameters. When applied to object detection tasks on COCO testdev benchmark, HST even surpasses full fine-tuning and obtains better performance with 49.7 box AP and 43.2 mask AP using Cascade Mask R-CNN.

  • 7 authors
·
Oct 9, 2023

A Generalization of Transformer Networks to Graphs

We propose a generalization of transformer neural network architecture for arbitrary graphs. The original transformer was designed for Natural Language Processing (NLP), which operates on fully connected graphs representing all connections between the words in a sequence. Such architecture does not leverage the graph connectivity inductive bias, and can perform poorly when the graph topology is important and has not been encoded into the node features. We introduce a graph transformer with four new properties compared to the standard model. First, the attention mechanism is a function of the neighborhood connectivity for each node in the graph. Second, the positional encoding is represented by the Laplacian eigenvectors, which naturally generalize the sinusoidal positional encodings often used in NLP. Third, the layer normalization is replaced by a batch normalization layer, which provides faster training and better generalization performance. Finally, the architecture is extended to edge feature representation, which can be critical to tasks s.a. chemistry (bond type) or link prediction (entity relationship in knowledge graphs). Numerical experiments on a graph benchmark demonstrate the performance of the proposed graph transformer architecture. This work closes the gap between the original transformer, which was designed for the limited case of line graphs, and graph neural networks, that can work with arbitrary graphs. As our architecture is simple and generic, we believe it can be used as a black box for future applications that wish to consider transformer and graphs.

  • 2 authors
·
Dec 17, 2020

LWGANet: A Lightweight Group Attention Backbone for Remote Sensing Visual Tasks

Remote sensing (RS) visual tasks have gained significant academic and practical importance. However, they encounter numerous challenges that hinder effective feature extraction, including the detection and recognition of multiple objects exhibiting substantial variations in scale within a single image. While prior dual-branch or multi-branch architectural strategies have been effective in managing these object variances, they have concurrently resulted in considerable increases in computational demands and parameter counts. Consequently, these architectures are rendered less viable for deployment on resource-constrained devices. Contemporary lightweight backbone networks, designed primarily for natural images, frequently encounter difficulties in effectively extracting features from multi-scale objects, which compromises their efficacy in RS visual tasks. This article introduces LWGANet, a specialized lightweight backbone network tailored for RS visual tasks, incorporating a novel lightweight group attention (LWGA) module designed to address these specific challenges. LWGA module, tailored for RS imagery, adeptly harnesses redundant features to extract a wide range of spatial information, from local to global scales, without introducing additional complexity or computational overhead. This facilitates precise feature extraction across multiple scales within an efficient framework.LWGANet was rigorously evaluated across twelve datasets, which span four crucial RS visual tasks: scene classification, oriented object detection, semantic segmentation, and change detection. The results confirm LWGANet's widespread applicability and its ability to maintain an optimal balance between high performance and low complexity, achieving SOTA results across diverse datasets. LWGANet emerged as a novel solution for resource-limited scenarios requiring robust RS image processing capabilities.

  • 5 authors
·
Jan 17

SceneHGN: Hierarchical Graph Networks for 3D Indoor Scene Generation with Fine-Grained Geometry

3D indoor scenes are widely used in computer graphics, with applications ranging from interior design to gaming to virtual and augmented reality. They also contain rich information, including room layout, as well as furniture type, geometry, and placement. High-quality 3D indoor scenes are highly demanded while it requires expertise and is time-consuming to design high-quality 3D indoor scenes manually. Existing research only addresses partial problems: some works learn to generate room layout, and other works focus on generating detailed structure and geometry of individual furniture objects. However, these partial steps are related and should be addressed together for optimal synthesis. We propose SCENEHGN, a hierarchical graph network for 3D indoor scenes that takes into account the full hierarchy from the room level to the object level, then finally to the object part level. Therefore for the first time, our method is able to directly generate plausible 3D room content, including furniture objects with fine-grained geometry, and their layout. To address the challenge, we introduce functional regions as intermediate proxies between the room and object levels to make learning more manageable. To ensure plausibility, our graph-based representation incorporates both vertical edges connecting child nodes with parent nodes from different levels, and horizontal edges encoding relationships between nodes at the same level. Extensive experiments demonstrate that our method produces superior generation results, even when comparing results of partial steps with alternative methods that can only achieve these. We also demonstrate that our method is effective for various applications such as part-level room editing, room interpolation, and room generation by arbitrary room boundaries.

  • 6 authors
·
Feb 16, 2023

G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering

Given a graph with textual attributes, we enable users to `chat with their graph': that is, to ask questions about the graph using a conversational interface. In response to a user's questions, our method provides textual replies and highlights the relevant parts of the graph. While existing works integrate large language models (LLMs) and graph neural networks (GNNs) in various ways, they mostly focus on either conventional graph tasks (such as node, edge, and graph classification), or on answering simple graph queries on small or synthetic graphs. In contrast, we develop a flexible question-answering framework targeting real-world textual graphs, applicable to multiple applications including scene graph understanding, common sense reasoning, and knowledge graph reasoning. Toward this goal, we first develop a Graph Question Answering (GraphQA) benchmark with data collected from different tasks. Then, we propose our G-Retriever method, introducing the first retrieval-augmented generation (RAG) approach for general textual graphs, which can be fine-tuned to enhance graph understanding via soft prompting. To resist hallucination and to allow for textual graphs that greatly exceed the LLM's context window size, G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem. Empirical evaluations show that our method outperforms baselines on textual graph tasks from multiple domains, scales well with larger graph sizes, and mitigates hallucination.~Our codes and datasets are available at: \url{https://github.com/XiaoxinHe/G-Retriever}

  • 8 authors
·
Feb 12, 2024

TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning

In the field of deep learning, Graph Neural Networks (GNNs) and Graph Transformer models, with their outstanding performance and flexible architectural designs, have become leading technologies for processing structured data, especially graph data. Traditional GNNs often face challenges in capturing information from distant vertices effectively. In contrast, Graph Transformer models are particularly adept at managing long-distance node relationships. Despite these advantages, Graph Transformer models still encounter issues with computational and storage efficiency when scaled to large graph datasets. To address these challenges, we propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component, effectively enhancing the model's ability to aggregate relevant information from both local and extended neighborhoods at each layer. This method not only improves computational efficiency but also enriches the node features, facilitating a deeper analysis of complex graph structures. Additionally, to assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field. Accordingly, we constructed a dedicated citation network, ArXivNet. In this dataset, we specifically annotated the sentiment polarity of the citations (positive, neutral, negative) to enable in-depth sentiment analysis. Our approach has shown superior performance across a variety of tasks including vertex classification, link prediction, sentiment prediction, graph regression, and visualization. It outperforms existing methods in terms of effectiveness, as demonstrated by experimental results on multiple datasets.

  • 4 authors
·
Nov 23, 2024

Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light

Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.

  • 16 authors
·
Apr 23

HopFIR: Hop-wise GraphFormer with Intragroup Joint Refinement for 3D Human Pose Estimation

2D-to-3D human pose lifting is fundamental for 3D human pose estimation (HPE), for which graph convolutional networks (GCNs) have proven inherently suitable for modeling the human skeletal topology. However, the current GCN-based 3D HPE methods update the node features by aggregating their neighbors' information without considering the interaction of joints in different joint synergies. Although some studies have proposed importing limb information to learn the movement patterns, the latent synergies among joints, such as maintaining balance are seldom investigated. We propose the Hop-wise GraphFormer with Intragroup Joint Refinement (HopFIR) architecture to tackle the 3D HPE problem. HopFIR mainly consists of a novel hop-wise GraphFormer (HGF) module and an intragroup joint refinement (IJR) module. The HGF module groups the joints by k-hop neighbors and applies a hopwise transformer-like attention mechanism to these groups to discover latent joint synergies. The IJR module leverages the prior limb information for peripheral joint refinement. Extensive experimental results show that HopFIR outperforms the SOTA methods by a large margin, with a mean per-joint position error (MPJPE) on the Human3.6M dataset of 32.67 mm. We also demonstrate that the state-of-the-art GCN-based methods can benefit from the proposed hop-wise attention mechanism with a significant improvement in performance: SemGCN and MGCN are improved by 8.9% and 4.5%, respectively.

  • 5 authors
·
Feb 28, 2023

GMAN: A Graph Multi-Attention Network for Traffic Prediction

Long-term traffic prediction is highly challenging due to the complexity of traffic systems and the constantly changing nature of many impacting factors. In this paper, we focus on the spatio-temporal factors, and propose a graph multi-attention network (GMAN) to predict traffic conditions for time steps ahead at different locations on a road network graph. GMAN adapts an encoder-decoder architecture, where both the encoder and the decoder consist of multiple spatio-temporal attention blocks to model the impact of the spatio-temporal factors on traffic conditions. The encoder encodes the input traffic features and the decoder predicts the output sequence. Between the encoder and the decoder, a transform attention layer is applied to convert the encoded traffic features to generate the sequence representations of future time steps as the input of the decoder. The transform attention mechanism models the direct relationships between historical and future time steps that helps to alleviate the error propagation problem among prediction time steps. Experimental results on two real-world traffic prediction tasks (i.e., traffic volume prediction and traffic speed prediction) demonstrate the superiority of GMAN. In particular, in the 1 hour ahead prediction, GMAN outperforms state-of-the-art methods by up to 4% improvement in MAE measure. The source code is available at https://github.com/zhengchuanpan/GMAN.

  • 4 authors
·
Nov 11, 2019

KGAT: Knowledge Graph Attention Network for Recommendation

To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.

  • 5 authors
·
May 19, 2019

UniGraph: Learning a Unified Cross-Domain Foundation Model for Text-Attributed Graphs

Foundation models like ChatGPT and GPT-4 have revolutionized artificial intelligence, exhibiting remarkable abilities to generalize across a wide array of tasks and applications beyond their initial training objectives. However, graph learning has predominantly focused on single-graph models, tailored to specific tasks or datasets, lacking the ability to transfer learned knowledge to different domains. This limitation stems from the inherent complexity and diversity of graph structures, along with the different feature and label spaces specific to graph data. In this paper, we recognize text as an effective unifying medium and employ Text-Attributed Graphs (TAGs) to leverage this potential. We present our UniGraph framework, designed to learn a foundation model for TAGs, which is capable of generalizing to unseen graphs and tasks across diverse domains. Unlike single-graph models that use pre-computed node features of varying dimensions as input, our approach leverages textual features for unifying node representations, even for graphs such as molecular graphs that do not naturally have textual features. We propose a novel cascaded architecture of Language Models (LMs) and Graph Neural Networks (GNNs) as backbone networks. Additionally, we propose the first pre-training algorithm specifically designed for large-scale self-supervised learning on TAGs, based on Masked Graph Modeling. We introduce graph instruction tuning using Large Language Models (LLMs) to enable zero-shot prediction ability. Our comprehensive experiments across various graph learning tasks and domains demonstrate the model's effectiveness in self-supervised representation learning on unseen graphs, few-shot in-context transfer, and zero-shot transfer, even surpassing or matching the performance of GNNs that have undergone supervised training on target datasets.

  • 4 authors
·
Feb 21, 2024

Graph-Aware Isomorphic Attention for Adaptive Dynamics in Transformers

We present an approach to modifying Transformer architectures by integrating graph-aware relational reasoning into the attention mechanism, merging concepts from graph neural networks and language modeling. Building on the inherent connection between attention and graph theory, we reformulate the Transformer's attention mechanism as a graph operation and propose Graph-Aware Isomorphic Attention. This method leverages advanced graph modeling strategies, including Graph Isomorphism Networks (GIN) and Principal Neighborhood Aggregation (PNA), to enrich the representation of relational structures. Our approach captures complex dependencies and generalizes across tasks, as evidenced by a reduced generalization gap and improved learning performance. Additionally, we expand the concept of graph-aware attention to introduce Sparse GIN-Attention, a fine-tuning approach that employs sparse GINs. By interpreting attention matrices as sparse adjacency graphs, this technique enhances the adaptability of pre-trained foundational models with minimal computational overhead, endowing them with graph-aware capabilities. Sparse GIN-Attention fine-tuning achieves improved training dynamics and better generalization compared to alternative methods like low-rank adaption (LoRA). We discuss latent graph-like structures within traditional attention mechanisms, offering a new lens through which Transformers can be understood. By evolving Transformers as hierarchical GIN models for relational reasoning. This perspective suggests profound implications for foundational model development, enabling the design of architectures that dynamically adapt to both local and global dependencies. Applications in bioinformatics, materials science, language modeling, and beyond could benefit from this synthesis of relational and sequential data modeling, setting the stage for interpretable and generalizable modeling strategies.

  • 1 authors
·
Jan 4 2

Visual Dependency Transformers: Dependency Tree Emerges from Reversed Attention

Humans possess a versatile mechanism for extracting structured representations of our visual world. When looking at an image, we can decompose the scene into entities and their parts as well as obtain the dependencies between them. To mimic such capability, we propose Visual Dependency Transformers (DependencyViT) that can induce visual dependencies without any labels. We achieve that with a novel neural operator called reversed attention that can naturally capture long-range visual dependencies between image patches. Specifically, we formulate it as a dependency graph where a child token in reversed attention is trained to attend to its parent tokens and send information following a normalized probability distribution rather than gathering information in conventional self-attention. With such a design, hierarchies naturally emerge from reversed attention layers, and a dependency tree is progressively induced from leaf nodes to the root node unsupervisedly. DependencyViT offers several appealing benefits. (i) Entities and their parts in an image are represented by different subtrees, enabling part partitioning from dependencies; (ii) Dynamic visual pooling is made possible. The leaf nodes which rarely send messages can be pruned without hindering the model performance, based on which we propose the lightweight DependencyViT-Lite to reduce the computational and memory footprints; (iii) DependencyViT works well on both self- and weakly-supervised pretraining paradigms on ImageNet, and demonstrates its effectiveness on 8 datasets and 5 tasks, such as unsupervised part and saliency segmentation, recognition, and detection.

  • 8 authors
·
Apr 6, 2023

Attention Mechanisms Perspective: Exploring LLM Processing of Graph-Structured Data

Attention mechanisms are critical to the success of large language models (LLMs), driving significant advancements in multiple fields. However, for graph-structured data, which requires emphasis on topological connections, they fall short compared to message-passing mechanisms on fixed links, such as those employed by Graph Neural Networks (GNNs). This raises a question: ``Does attention fail for graphs in natural language settings?'' Motivated by these observations, we embarked on an empirical study from the perspective of attention mechanisms to explore how LLMs process graph-structured data. The goal is to gain deeper insights into the attention behavior of LLMs over graph structures. We uncovered unique phenomena regarding how LLMs apply attention to graph-structured data and analyzed these findings to improve the modeling of such data by LLMs. The primary findings of our research are: 1) While LLMs can recognize graph data and capture text-node interactions, they struggle to model inter-node relationships within graph structures due to inherent architectural constraints. 2) The attention distribution of LLMs across graph nodes does not align with ideal structural patterns, indicating a failure to adapt to graph topology nuances. 3) Neither fully connected attention nor fixed connectivity is optimal; each has specific limitations in its application scenarios. Instead, intermediate-state attention windows improve LLM training performance and seamlessly transition to fully connected windows during inference. Source code: https://github.com/millioniron/LLM_exploration{LLM4Exploration}

  • 5 authors
·
May 4 1

Dynamic Chunking for End-to-End Hierarchical Sequence Modeling

Despite incredible progress in language models (LMs) in recent years, largely resulting from moving away from specialized models designed for specific tasks to general models based on powerful architectures (e.g. the Transformer) that learn everything from raw data, pre-processing steps such as tokenization remain a barrier to true end-to-end foundation models. We introduce a collection of new techniques that enable a dynamic chunking mechanism which automatically learns content -- and context -- dependent segmentation strategies learned jointly with the rest of the model. Incorporating this into an explicit hierarchical network (H-Net) allows replacing the (implicitly hierarchical) tokenization-LM-detokenization pipeline with a single model learned fully end-to-end. When compute- and data- matched, an H-Net with one stage of hierarchy operating at the byte level outperforms a strong Transformer language model operating over BPE tokens. Iterating the hierarchy to multiple stages further increases its performance by modeling multiple levels of abstraction, demonstrating significantly better scaling with data and matching a token-based Transformer of twice its size. H-Nets pretrained on English show significantly increased character-level robustness, and qualitatively learn meaningful data-dependent chunking strategies without any heuristics or explicit supervision. Finally, the H-Net's improvement over tokenized pipelines is further increased in languages and modalities with weaker tokenization heuristics, such as Chinese and code, or DNA sequences (nearly 4x improvement in data efficiency over baselines), showing the potential of true end-to-end models that learn and scale better from unprocessed data.

  • 3 authors
·
Jul 10 4

DARTS-GT: Differentiable Architecture Search for Graph Transformers with Quantifiable Instance-Specific Interpretability Analysis

Graph Transformers (GTs) have emerged as powerful architectures for graph-structured data, yet remain constrained by rigid designs and lack quantifiable interpretability. Current state-of-the-art GTs commit to fixed GNN types across all layers, missing potential benefits of depth-specific component selection, while their complex architectures become opaque where performance gains cannot be distinguished between meaningful patterns and spurious correlations. We redesign GT attention through asymmetry, decoupling structural encoding from feature representation: queries derive from node features while keys and values come from GNN transformations. Within this framework, we use Differentiable ARchiTecture Search (DARTS) to select optimal GNN operators at each layer, enabling depth-wise heterogeneity inside transformer attention itself (DARTS-GT). To understand discovered architectures, we develop the first quantitative interpretability framework for GTs through causal ablation. Our metrics (Head-deviation, Specialization, and Focus), identify which heads and nodes drive predictions while enabling model comparison. Experiments across eight benchmarks show DARTS-GT achieves state-of-the-art on four datasets while remaining competitive on others, with discovered architectures revealing dataset-specific patterns. Our interpretability analysis reveals that visual attention salience and causal importance do not always correlate, indicating widely used visualization approaches may miss components that actually matter. Crucially, heterogeneous architectures found by DARTS-GT consistently produced more interpretable models than baselines, establishing that Graph Transformers need not choose between performance and interpretability.

  • 2 authors
·
Oct 16

Graph Adaptive Semantic Transfer for Cross-domain Sentiment Classification

Cross-domain sentiment classification (CDSC) aims to use the transferable semantics learned from the source domain to predict the sentiment of reviews in the unlabeled target domain. Existing studies in this task attach more attention to the sequence modeling of sentences while largely ignoring the rich domain-invariant semantics embedded in graph structures (i.e., the part-of-speech tags and dependency relations). As an important aspect of exploring characteristics of language comprehension, adaptive graph representations have played an essential role in recent years. To this end, in the paper, we aim to explore the possibility of learning invariant semantic features from graph-like structures in CDSC. Specifically, we present Graph Adaptive Semantic Transfer (GAST) model, an adaptive syntactic graph embedding method that is able to learn domain-invariant semantics from both word sequences and syntactic graphs. More specifically, we first raise a POS-Transformer module to extract sequential semantic features from the word sequences as well as the part-of-speech tags. Then, we design a Hybrid Graph Attention (HGAT) module to generate syntax-based semantic features by considering the transferable dependency relations. Finally, we devise an Integrated aDaptive Strategy (IDS) to guide the joint learning process of both modules. Extensive experiments on four public datasets indicate that GAST achieves comparable effectiveness to a range of state-of-the-art models.

  • 8 authors
·
May 18, 2022

Edge Representation Learning with Hypergraphs

Graph neural networks have recently achieved remarkable success in representing graph-structured data, with rapid progress in both the node embedding and graph pooling methods. Yet, they mostly focus on capturing information from the nodes considering their connectivity, and not much work has been done in representing the edges, which are essential components of a graph. However, for tasks such as graph reconstruction and generation, as well as graph classification tasks for which the edges are important for discrimination, accurately representing edges of a given graph is crucial to the success of the graph representation learning. To this end, we propose a novel edge representation learning framework based on Dual Hypergraph Transformation (DHT), which transforms the edges of a graph into the nodes of a hypergraph. This dual hypergraph construction allows us to apply message-passing techniques for node representations to edges. After obtaining edge representations from the hypergraphs, we then cluster or drop edges to obtain holistic graph-level edge representations. We validate our edge representation learning method with hypergraphs on diverse graph datasets for graph representation and generation performance, on which our method largely outperforms existing graph representation learning methods. Moreover, our edge representation learning and pooling method also largely outperforms state-of-the-art graph pooling methods on graph classification, not only because of its accurate edge representation learning, but also due to its lossless compression of the nodes and removal of irrelevant edges for effective message-passing.

  • 6 authors
·
Jun 30, 2021

Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts

Heterophilic Graph Neural Networks (HGNNs) have shown promising results for semi-supervised learning tasks on graphs. Notably, most real-world heterophilic graphs are composed of a mixture of nodes with different neighbor patterns, exhibiting local node-level homophilic and heterophilic structures. However, existing works are only devoted to designing better HGNN backbones or architectures for node classification tasks on heterophilic and homophilic graph benchmarks simultaneously, and their analyses of HGNN performance with respect to nodes are only based on the determined data distribution without exploring the effect caused by this structural difference between training and testing nodes. How to learn invariant node representations on heterophilic graphs to handle this structure difference or distribution shifts remains unexplored. In this paper, we first discuss the limitations of previous graph-based invariant learning methods from the perspective of data augmentation. Then, we propose HEI, a framework capable of generating invariant node representations through incorporating heterophily information to infer latent environments without augmentation, which are then used for invariant prediction, under heterophilic graph structure distribution shifts. We theoretically show that our proposed method can achieve guaranteed performance under heterophilic graph structure distribution shifts. Extensive experiments on various benchmarks and backbones can also demonstrate the effectiveness of our method compared with existing state-of-the-art baselines.

  • 6 authors
·
Aug 18, 2024

Enhancing Graph Representations with Neighborhood-Contextualized Message-Passing

Graph neural networks (GNNs) have become an indispensable tool for analyzing relational data. In the literature, classical GNNs may be classified into three variants: convolutional, attentional, and message-passing. While the standard message-passing variant is highly expressive, its typical pair-wise messages nevertheless only consider the features of the center node and each neighboring node individually. This design fails to incorporate the rich contextual information contained within the broader local neighborhood, potentially hindering its ability to learn complex relationships within the entire set of neighboring nodes. To address this limitation, this work first formalizes the concept of neighborhood-contextualization, rooted in a key property of the attentional variant. This then serves as the foundation for generalizing the message-passing variant to the proposed neighborhood-contextualized message-passing (NCMP) framework. To demonstrate its utility, a simple, practical, and efficient method to parametrize and operationalize NCMP is presented, leading to the development of the proposed Soft-Isomorphic Neighborhood-Contextualized Graph Convolution Network (SINC-GCN). A preliminary analysis on a synthetic binary node classification problem then underscores both the expressivity and efficiency of the proposed GNN architecture. Overall, the paper lays the foundation for the novel NCMP framework as a practical path toward further enhancing the graph representational power of classical GNNs.

  • 1 authors
·
Nov 14

MaxViT: Multi-Axis Vision Transformer

Transformers have recently gained significant attention in the computer vision community. However, the lack of scalability of self-attention mechanisms with respect to image size has limited their wide adoption in state-of-the-art vision backbones. In this paper we introduce an efficient and scalable attention model we call multi-axis attention, which consists of two aspects: blocked local and dilated global attention. These design choices allow global-local spatial interactions on arbitrary input resolutions with only linear complexity. We also present a new architectural element by effectively blending our proposed attention model with convolutions, and accordingly propose a simple hierarchical vision backbone, dubbed MaxViT, by simply repeating the basic building block over multiple stages. Notably, MaxViT is able to ''see'' globally throughout the entire network, even in earlier, high-resolution stages. We demonstrate the effectiveness of our model on a broad spectrum of vision tasks. On image classification, MaxViT achieves state-of-the-art performance under various settings: without extra data, MaxViT attains 86.5% ImageNet-1K top-1 accuracy; with ImageNet-21K pre-training, our model achieves 88.7% top-1 accuracy. For downstream tasks, MaxViT as a backbone delivers favorable performance on object detection as well as visual aesthetic assessment. We also show that our proposed model expresses strong generative modeling capability on ImageNet, demonstrating the superior potential of MaxViT blocks as a universal vision module. The source code and trained models will be available at https://github.com/google-research/maxvit.

  • 7 authors
·
Apr 4, 2022 1

Training Transformers for Mesh-Based Simulations

Simulating physics using Graph Neural Networks (GNNs) is predominantly driven by message-passing architectures, which face challenges in scaling and efficiency, particularly in handling large, complex meshes. These architectures have inspired numerous enhancements, including multigrid approaches and K-hop aggregation (using neighbours of distance K), yet they often introduce significant complexity and suffer from limited in-depth investigations. In response to these challenges, we propose a novel Graph Transformer architecture that leverages the adjacency matrix as an attention mask. The proposed approach incorporates innovative augmentations, including Dilated Sliding Windows and Global Attention, to extend receptive fields without sacrificing computational efficiency. Through extensive experimentation, we evaluate model size, adjacency matrix augmentations, positional encoding and K-hop configurations using challenging 3D computational fluid dynamics (CFD) datasets. We also train over 60 models to find a scaling law between training FLOPs and parameters. The introduced models demonstrate remarkable scalability, performing on meshes with up to 300k nodes and 3 million edges. Notably, the smallest model achieves parity with MeshGraphNet while being 7times faster and 6times smaller. The largest model surpasses the previous state-of-the-art by 38.8\% on average and outperforms MeshGraphNet by 52\% on the all-rollout RMSE, while having a similar training speed. Code and datasets are available at https://github.com/DonsetPG/graph-physics.

  • 4 authors
·
Aug 25

Sparsifiner: Learning Sparse Instance-Dependent Attention for Efficient Vision Transformers

Vision Transformers (ViT) have shown their competitive advantages performance-wise compared to convolutional neural networks (CNNs) though they often come with high computational costs. To this end, previous methods explore different attention patterns by limiting a fixed number of spatially nearby tokens to accelerate the ViT's multi-head self-attention (MHSA) operations. However, such structured attention patterns limit the token-to-token connections to their spatial relevance, which disregards learned semantic connections from a full attention mask. In this work, we propose a novel approach to learn instance-dependent attention patterns, by devising a lightweight connectivity predictor module to estimate the connectivity score of each pair of tokens. Intuitively, two tokens have high connectivity scores if the features are considered relevant either spatially or semantically. As each token only attends to a small number of other tokens, the binarized connectivity masks are often very sparse by nature and therefore provide the opportunity to accelerate the network via sparse computations. Equipped with the learned unstructured attention pattern, sparse attention ViT (Sparsifiner) produces a superior Pareto-optimal trade-off between FLOPs and top-1 accuracy on ImageNet compared to token sparsity. Our method reduces 48% to 69% FLOPs of MHSA while the accuracy drop is within 0.4%. We also show that combining attention and token sparsity reduces ViT FLOPs by over 60%.

  • 6 authors
·
Mar 23, 2023

GIMS: Image Matching System Based on Adaptive Graph Construction and Graph Neural Network

Feature-based image matching has extensive applications in computer vision. Keypoints detected in images can be naturally represented as graph structures, and Graph Neural Networks (GNNs) have been shown to outperform traditional deep learning techniques. Consequently, the paradigm of image matching via GNNs has gained significant prominence in recent academic research. In this paper, we first introduce an innovative adaptive graph construction method that utilizes a filtering mechanism based on distance and dynamic threshold similarity. This method dynamically adjusts the criteria for incorporating new vertices based on the characteristics of existing vertices, allowing for the construction of more precise and robust graph structures while avoiding redundancy. We further combine the vertex processing capabilities of GNNs with the global awareness capabilities of Transformers to enhance the model's representation of spatial and feature information within graph structures. This hybrid model provides a deeper understanding of the interrelationships between vertices and their contributions to the matching process. Additionally, we employ the Sinkhorn algorithm to iteratively solve for optimal matching results. Finally, we validate our system using extensive image datasets and conduct comprehensive comparative experiments. Experimental results demonstrate that our system achieves an average improvement of 3.8x-40.3x in overall matching performance. Additionally, the number of vertices and edges significantly impacts training efficiency and memory usage; therefore, we employ multi-GPU technology to accelerate the training process. Our code is available at https://github.com/songxf1024/GIMS.

  • 4 authors
·
Dec 24, 2024 1

GraphGPT: Graph Instruction Tuning for Large Language Models

Graph Neural Networks (GNNs) have advanced graph structure understanding via recursive information exchange and aggregation among graph nodes. To improve model robustness, self-supervised learning (SSL) has emerged as a promising approach for data augmentation. However, existing methods for generating pre-trained graph embeddings often rely on fine-tuning with specific downstream task labels, which limits their usability in scenarios where labeled data is scarce or unavailable. To address this, our research focuses on advancing the generalization capabilities of graph models in challenging zero-shot learning scenarios. Inspired by the success of large language models (LLMs), we aim to develop a graph-oriented LLM that can achieve high generalization across diverse downstream datasets and tasks, even without any information available from the downstream graph data. In this work, we present the GraphGPT framework that aligns LLMs with graph structural knowledge with a graph instruction tuning paradigm. Our framework incorporates a text-graph grounding component to establish a connection between textual information and graph structures. Additionally, we propose a dual-stage instruction tuning paradigm, accompanied by a lightweight graph-text alignment projector. This paradigm explores self-supervised graph structural signals and task-specific graph instructions, to guide LLMs in understanding complex graph structures and improving their adaptability across different downstream tasks. Our framework is evaluated on supervised and zero-shot graph learning tasks, demonstrating superior generalization and outperforming state-of-the-art baselines.

  • 8 authors
·
Oct 19, 2023

HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention

Predicting the trajectories of road agents is essential for autonomous driving systems. The recent mainstream methods follow a static paradigm, which predicts the future trajectory by using a fixed duration of historical frames. These methods make the predictions independently even at adjacent time steps, which leads to potential instability and temporal inconsistency. As successive time steps have largely overlapping historical frames, their forecasting should have intrinsic correlation, such as overlapping predicted trajectories should be consistent, or be different but share the same motion goal depending on the road situation. Motivated by this, in this work, we introduce HPNet, a novel dynamic trajectory forecasting method. Aiming for stable and accurate trajectory forecasting, our method leverages not only historical frames including maps and agent states, but also historical predictions. Specifically, we newly design a Historical Prediction Attention module to automatically encode the dynamic relationship between successive predictions. Besides, it also extends the attention range beyond the currently visible window benefitting from the use of historical predictions. The proposed Historical Prediction Attention together with the Agent Attention and Mode Attention is further formulated as the Triple Factorized Attention module, serving as the core design of HPNet.Experiments on the Argoverse and INTERACTION datasets show that HPNet achieves state-of-the-art performance, and generates accurate and stable future trajectories. Our code are available at https://github.com/XiaolongTang23/HPNet.

  • 6 authors
·
Apr 9, 2024

Mixture of Weak & Strong Experts on Graphs

Realistic graphs contain both (1) rich self-features of nodes and (2) informative structures of neighborhoods, jointly handled by a Graph Neural Network (GNN) in the typical setup. We propose to decouple the two modalities by Mixture of weak and strong experts (Mowst), where the weak expert is a light-weight Multi-layer Perceptron (MLP), and the strong expert is an off-the-shelf GNN. To adapt the experts' collaboration to different target nodes, we propose a "confidence" mechanism based on the dispersion of the weak expert's prediction logits. The strong expert is conditionally activated in the low-confidence region when either the node's classification relies on neighborhood information, or the weak expert has low model quality. We reveal interesting training dynamics by analyzing the influence of the confidence function on loss: our training algorithm encourages the specialization of each expert by effectively generating soft splitting of the graph. In addition, our "confidence" design imposes a desirable bias toward the strong expert to benefit from GNN's better generalization capability. Mowst is easy to optimize and achieves strong expressive power, with a computation cost comparable to a single GNN. Empirically, Mowst on 4 backbone GNN architectures show significant accuracy improvement on 6 standard node classification benchmarks, including both homophilous and heterophilous graphs (https://github.com/facebookresearch/mowst-gnn).

  • 5 authors
·
Nov 9, 2023

HER-Seg: Holistically Efficient Segmentation for High-Resolution Medical Images

High-resolution segmentation is critical for precise disease diagnosis by extracting fine-grained morphological details. Existing hierarchical encoder-decoder frameworks have demonstrated remarkable adaptability across diverse medical segmentation tasks. While beneficial, they usually require the huge computation and memory cost when handling large-size segmentation, which limits their applications in foundation model building and real-world clinical scenarios. To address this limitation, we propose a holistically efficient framework for high-resolution medical image segmentation, called HER-Seg. Specifically, we first devise a computation-efficient image encoder (CE-Encoder) to model long-range dependencies with linear complexity while maintaining sufficient representations. In particular, we introduce the dual-gated linear attention (DLA) mechanism to perform cascaded token filtering, selectively retaining important tokens while ignoring irrelevant ones to enhance attention computation efficiency. Then, we introduce a memory-efficient mask decoder (ME-Decoder) to eliminate the demand for the hierarchical structure by leveraging cross-scale segmentation decoding. Extensive experiments reveal that HER-Seg outperforms state-of-the-arts in high-resolution medical 2D, 3D and video segmentation tasks. In particular, our HER-Seg requires only 0.59GB training GPU memory and 9.39G inference FLOPs per 1024times1024 image, demonstrating superior memory and computation efficiency. The code is available at https://github.com/xq141839/HER-Seg.

  • 9 authors
·
Apr 8

Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements

Graphs are essential data structures for modeling complex interactions in domains such as social networks, molecular structures, and biological systems. Graph-level tasks, which predict properties or classes for the entire graph, are critical for applications, such as molecular property prediction and subgraph counting. Graph Neural Networks (GNNs) have shown promise in these tasks, but their evaluations are often limited to narrow datasets, tasks, and inconsistent experimental setups, restricting their generalizability. To address these limitations, we propose a unified evaluation framework for graph-level GNNs. This framework provides a standardized setting to evaluate GNNs across diverse datasets, various graph tasks (e.g., graph classification and regression), and challenging scenarios, including noisy, imbalanced, and few-shot graphs. Additionally, we propose a novel GNN model with enhanced expressivity and generalization capabilities. Specifically, we enhance the expressivity of GNNs through a k-path rooted subgraph approach, enabling the model to effectively count subgraphs (e.g., paths and cycles). Moreover, we introduce a unified graph contrastive learning algorithm for graphs across diverse domains, which adaptively removes unimportant edges to augment graphs, thereby significantly improving generalization performance. Extensive experiments demonstrate that our model achieves superior performance against fourteen effective baselines across twenty-seven graph datasets, establishing it as a robust and generalizable model for graph-level tasks.

  • 6 authors
·
Jan 1

Causal Tracing of Object Representations in Large Vision Language Models: Mechanistic Interpretability and Hallucination Mitigation

Despite the remarkable advancements of Large Vision-Language Models (LVLMs), the mechanistic interpretability remains underexplored. Existing analyses are insufficiently comprehensive and lack examination covering visual and textual tokens, model components, and the full range of layers. This limitation restricts actionable insights to improve the faithfulness of model output and the development of downstream tasks, such as hallucination mitigation. To address this limitation, we introduce Fine-grained Cross-modal Causal Tracing (FCCT) framework, which systematically quantifies the causal effects on visual object perception. FCCT conducts fine-grained analysis covering the full range of visual and textual tokens, three core model components including multi-head self-attention (MHSA), feed-forward networks (FFNs), and hidden states, across all decoder layers. Our analysis is the first to demonstrate that MHSAs of the last token in middle layers play a critical role in aggregating cross-modal information, while FFNs exhibit a three-stage hierarchical progression for the storage and transfer of visual object representations. Building on these insights, we propose Intermediate Representation Injection (IRI), a training-free inference-time technique that reinforces visual object information flow by precisely intervening on cross-modal representations at specific components and layers, thereby enhancing perception and mitigating hallucination. Consistent improvements across five widely used benchmarks and LVLMs demonstrate IRI achieves state-of-the-art performance, while preserving inference speed and other foundational performance.

  • 6 authors
·
Nov 8