new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Agentic Reasoning and Tool Integration for LLMs via Reinforcement Learning

Large language models (LLMs) have achieved remarkable progress in complex reasoning tasks, yet they remain fundamentally limited by their reliance on static internal knowledge and text-only reasoning. Real-world problem solving often demands dynamic, multi-step reasoning, adaptive decision making, and the ability to interact with external tools and environments. In this work, we introduce ARTIST (Agentic Reasoning and Tool Integration in Self-improving Transformers), a unified framework that tightly couples agentic reasoning, reinforcement learning, and tool integration for LLMs. ARTIST enables models to autonomously decide when, how, and which tools to invoke within multi-turn reasoning chains, leveraging outcome-based RL to learn robust strategies for tool use and environment interaction without requiring step-level supervision. Extensive experiments on mathematical reasoning and multi-turn function calling benchmarks show that ARTIST consistently outperforms state-of-the-art baselines, with up to 22% absolute improvement over base models and strong gains on the most challenging tasks. Detailed studies and metric analyses reveal that agentic RL training leads to deeper reasoning, more effective tool use, and higher-quality solutions. Our results establish agentic RL with tool integration as a powerful new frontier for robust, interpretable, and generalizable problem-solving in LLMs.

  • 4 authors
·
Apr 28 2

Demystifying Reinforcement Learning in Agentic Reasoning

Recently, the emergence of agentic RL has showcased that RL could also effectively improve the agentic reasoning ability of LLMs, yet the key design principles and optimal practices remain unclear. In this work, we conduct a comprehensive and systematic investigation to demystify reinforcement learning in agentic reasoning from three key perspectives: data, algorithm, and reasoning mode. We highlight our key insights: (i) Replacing stitched synthetic trajectories with real end-to-end tool-use trajectories yields a far stronger SFT initialization; high-diversity, model-aware datasets sustain exploration and markedly improve RL performance. (ii) Exploration-friendly techniques are crucial for agentic RL, such as clip higher, overlong reward shaping, and maintaining adequate policy entropy could improve the training efficiency. (iii) A deliberative strategy with fewer tool calls outperforms frequent tool calls or verbose self-reasoning, improving tool efficiency and final accuracy. Together, these simple practices consistently enhance agentic reasoning and training efficiency, achieving strong results on challenging benchmarks with smaller models, and establishing a practical baseline for future agentic RL research. Beyond these empirical insights, we further contribute a high-quality, real end-to-end agentic SFT dataset along with a high-quality RL dataset, and demonstrate the effectiveness of our insights in boosting the agentic reasoning ability of LLMs across four challenging benchmarks, including AIME2024/AIME2025, GPQA-Diamond, and LiveCodeBench-v6. With our recipes, 4B-sized models could also achieve superior agentic reasoning performance compared to 32B-sized models. Code and models: https://github.com/Gen-Verse/Open-AgentRL

  • 5 authors
·
Oct 13 2

Beneficial Reasoning Behaviors in Agentic Search and Effective Post-training to Obtain Them

Agentic search leverages LLMs to solve complex user information needs by executing a multi-step process of planning, searching, and synthesizing information to provide answers. This paradigm introduces unique challenges for LLMs' agentic reasoning capabilities when interacting with search systems. In this paper, we propose an LLM-based pipeline to study effective reasoning behavior patterns in agentic search by analyzing agentic search trajectories. Using this pipeline, we identify four beneficial reasoning behaviors: Information Verification, Authority Evaluation, Adaptive Search, and Error Recovery. Based on these findings, we propose a technique called Behavior Priming to train agentic search models. It synthesizes trajectories that exhibit these four behaviors and integrates them into the agentic search model through SFT, followed by standard reinforcement learning. Experiments on Qwen3-1.7B and Llama3.2-3B-Instruct across three web benchmarks and seven multi-hop QA benchmarks demonstrate that behavior priming 1) yields significant performance gains compared to training with direct RL, and 2) outperforms other SFT-then-RL baselines, such as those SFT on randomly selected trajectories or on trajectories with merely correct outcomes. Crucially, we demonstrate that the reasoning behaviors, rather than the correctness of the final answer, is the critical factor for achieving strong performance in RL: SFT on trajectories with reasoning behaviors but incorrect answers leads to comparable performance with SFT on those with reasoning behaviors and correct answers. Our analysis further reveals that the introduced reasoning behaviors endow models with more effective exploration (higher pass@k and entropy) and test-time scaling (longer trajectories) capabilities, providing a strong foundation for RL. Our code are avalible at https://github.com/cxcscmu/Behavior_Priming_For_Agentic_Search.

  • 3 authors
·
Oct 7

rStar2-Agent: Agentic Reasoning Technical Report

We introduce rStar2-Agent, a 14B math reasoning model trained with agentic reinforcement learning to achieve frontier-level performance. Beyond current long CoT, the model demonstrates advanced cognitive behaviors, such as thinking carefully before using Python coding tools and reflecting on code execution feedback to autonomously explore, verify, and refine intermediate steps in complex problem-solving. This capability is enabled through three key innovations that makes agentic RL effective at scale: (i) an efficient RL infrastructure with a reliable Python code environment that supports high-throughput execution and mitigates the high rollout costs, enabling training on limited GPU resources (64 MI300X GPUs); (ii) GRPO-RoC, an agentic RL algorithm with a Resample-on-Correct rollout strategy that addresses the inherent environment noises from coding tools, allowing the model to reason more effectively in a code environment; (iii) An efficient agent training recipe that starts with non-reasoning SFT and progresses through multi-RL stages, yielding advanced cognitive abilities with minimal compute cost. To this end, rStar2-Agent boosts a pre-trained 14B model to state of the art in only 510 RL steps within one week, achieving average pass@1 scores of 80.6% on AIME24 and 69.8% on AIME25, surpassing DeepSeek-R1 (671B) with significantly shorter responses. Beyond mathematics, rStar2-Agent-14B also demonstrates strong generalization to alignment, scientific reasoning, and agentic tool-use tasks. Code and training recipes are available at https://github.com/microsoft/rStar.

  • 15 authors
·
Aug 28 7

GeoVista: Web-Augmented Agentic Visual Reasoning for Geolocalization

Current research on agentic visual reasoning enables deep multimodal understanding but primarily focuses on image manipulation tools, leaving a gap toward more general-purpose agentic models. In this work, we revisit the geolocalization task, which requires not only nuanced visual grounding but also web search to confirm or refine hypotheses during reasoning. Since existing geolocalization benchmarks fail to meet the need for high-resolution imagery and the localization challenge for deep agentic reasoning, we curate GeoBench, a benchmark that includes photos and panoramas from around the world, along with a subset of satellite images of different cities to rigorously evaluate the geolocalization ability of agentic models. We also propose GeoVista, an agentic model that seamlessly integrates tool invocation within the reasoning loop, including an image-zoom-in tool to magnify regions of interest and a web-search tool to retrieve related web information. We develop a complete training pipeline for it, including a cold-start supervised fine-tuning (SFT) stage to learn reasoning patterns and tool-use priors, followed by a reinforcement learning (RL) stage to further enhance reasoning ability. We adopt a hierarchical reward to leverage multi-level geographical information and improve overall geolocalization performance. Experimental results show that GeoVista surpasses other open-source agentic models on the geolocalization task greatly and achieves performance comparable to closed-source models such as Gemini-2.5-flash and GPT-5 on most metrics.

PaperArena: An Evaluation Benchmark for Tool-Augmented Agentic Reasoning on Scientific Literature

Understanding and reasoning on the web-scale scientific literature is a crucial touchstone for large language model (LLM) based agents designed to support complex knowledge-intensive tasks. However, existing works are mainly restricted to tool-free tasks within isolated papers, largely due to the lack of a benchmark for cross-paper reasoning and multi-tool orchestration in real research scenarios. In this work, we propose PaperArena, an evaluation benchmark for agents to address real-world research questions that typically require integrating information across multiple papers with the assistance of external tools. Given a research question, agents should integrate diverse formats across multiple papers through reasoning and interacting with appropriate tools, thereby producing a well-grounded answer. To support standardized evaluation, we provide a modular and extensible platform for agent execution, offering tools such as multimodal parsing, context retrieval, and programmatic computation. Experimental results reveal that even the most advanced LLM powering a well-established agent system achieves merely 38.78% average accuracy. On the hard subset, accuracy drops to only 18.47%, highlighting great potential for improvement. We also present several empirical findings, including that all agents tested exhibit inefficient tool usage, often invoking more tools than necessary to solve a task. We invite the community to adopt PaperArena to develop and evaluate more capable agents for scientific discovery. Our code and data are available https://github.com/Melmaphother/PaperArena.

  • 6 authors
·
Oct 12

Alita: Generalist Agent Enabling Scalable Agentic Reasoning with Minimal Predefinition and Maximal Self-Evolution

Recent advances in large language models (LLMs) have enabled agents to autonomously perform complex, open-ended tasks. However, many existing frameworks depend heavily on manually predefined tools and workflows, which hinder their adaptability, scalability, and generalization across domains. In this work, we introduce Alita--a generalist agent designed with the principle of "Simplicity is the ultimate sophistication," enabling scalable agentic reasoning through minimal predefinition and maximal self-evolution. For minimal predefinition, Alita is equipped with only one component for direct problem-solving, making it much simpler and neater than previous approaches that relied heavily on hand-crafted, elaborate tools and workflows. This clean design enhances its potential to generalize to challenging questions, without being limited by tools. For Maximal self-evolution, we enable the creativity of Alita by providing a suite of general-purpose components to autonomously construct, refine, and reuse external capabilities by generating task-related model context protocols (MCPs) from open source, which contributes to scalable agentic reasoning. Notably, Alita achieves 75.15% pass@1 and 87.27% pass@3 accuracy, which is top-ranking among general-purpose agents, on the GAIA benchmark validation dataset, 74.00% and 52.00% pass@1, respectively, on Mathvista and PathVQA, outperforming many agent systems with far greater complexity. More details will be updated at https://github.com/CharlesQ9/Alita{https://github.com/CharlesQ9/Alita}.

  • 18 authors
·
May 26 4

Agent-X: Evaluating Deep Multimodal Reasoning in Vision-Centric Agentic Tasks

Deep reasoning is fundamental for solving complex tasks, especially in vision-centric scenarios that demand sequential, multimodal understanding. However, existing benchmarks typically evaluate agents with fully synthetic, single-turn queries, limited visual modalities, and lack a framework to assess reasoning quality over multiple steps as required in real-world settings. To address this, we introduce Agent-X, a large-scale benchmark for evaluating vision-centric agents multi-step and deep reasoning capabilities in real-world, multimodal settings. Agent- X features 828 agentic tasks with authentic visual contexts, including images, multi-image comparisons, videos, and instructional text. These tasks span six major agentic environments: general visual reasoning, web browsing, security and surveillance, autonomous driving, sports, and math reasoning. Our benchmark requires agents to integrate tool use with explicit, stepwise decision-making in these diverse settings. In addition, we propose a fine-grained, step-level evaluation framework that assesses the correctness and logical coherence of each reasoning step and the effectiveness of tool usage throughout the task. Our results reveal that even the best-performing models, including GPT, Gemini, and Qwen families, struggle to solve multi-step vision tasks, achieving less than 50% full-chain success. These findings highlight key bottlenecks in current LMM reasoning and tool-use capabilities and identify future research directions in vision-centric agentic reasoning models. Our data and code are publicly available at https://github.com/mbzuai-oryx/Agent-X

  • 14 authors
·
May 30

ARAG: Agentic Retrieval Augmented Generation for Personalized Recommendation

Retrieval-Augmented Generation (RAG) has shown promise in enhancing recommendation systems by incorporating external context into large language model prompts. However, existing RAG-based approaches often rely on static retrieval heuristics and fail to capture nuanced user preferences in dynamic recommendation scenarios. In this work, we introduce ARAG, an Agentic Retrieval-Augmented Generation framework for Personalized Recommendation, which integrates a multi-agent collaboration mechanism into the RAG pipeline. To better understand the long-term and session behavior of the user, ARAG leverages four specialized LLM-based agents: a User Understanding Agent that summarizes user preferences from long-term and session contexts, a Natural Language Inference (NLI) Agent that evaluates semantic alignment between candidate items retrieved by RAG and inferred intent, a context summary agent that summarizes the findings of NLI agent, and an Item Ranker Agent that generates a ranked list of recommendations based on contextual fit. We evaluate ARAG accross three datasets. Experimental results demonstrate that ARAG significantly outperforms standard RAG and recency-based baselines, achieving up to 42.1% improvement in NDCG@5 and 35.5% in Hit@5. We also, conduct an ablation study to analyse the effect by different components of ARAG. Our findings highlight the effectiveness of integrating agentic reasoning into retrieval-augmented recommendation and provide new directions for LLM-based personalization.

  • 10 authors
·
Jun 27

SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model

AI agents built on large language models (LLMs) hold enormous promise, but current practice focuses on a one-task-one-agent approach, which not only falls short of scalability and generality, but also suffers from the fundamental limitations of autoregressive LLMs. On the other hand, humans are general agents who reason by mentally simulating the outcomes of their actions and plans. Moving towards a more general and powerful AI agent, we introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning. Based on a principled formulation of optimal agent in any environment, \modelname overcomes the limitations of autoregressive reasoning by introducing a world model for planning via simulation. The generalized world model is implemented using LLM, which can flexibly plan in a wide range of environments using the concept-rich latent space of natural language. Experiments on difficult web browsing tasks show that \modelname improves the success of flight search from 0\% to 32.2\%. World-model-based planning, in particular, shows consistent advantage of up to 124\% over autoregressive planning, demonstrating the advantage of world model simulation as a reasoning paradigm. We are excited about the possibility for training a single, general agent model based on LLMs that can act superintelligently in all environments. To start, we make SimuRA, a web-browsing agent built on \modelname with pretrained LLMs, available as a research demo for public testing.

  • 7 authors
·
Jul 31

ArtSeek: Deep artwork understanding via multimodal in-context reasoning and late interaction retrieval

Analyzing digitized artworks presents unique challenges, requiring not only visual interpretation but also a deep understanding of rich artistic, contextual, and historical knowledge. We introduce ArtSeek, a multimodal framework for art analysis that combines multimodal large language models with retrieval-augmented generation. Unlike prior work, our pipeline relies only on image input, enabling applicability to artworks without links to Wikidata or Wikipedia-common in most digitized collections. ArtSeek integrates three key components: an intelligent multimodal retrieval module based on late interaction retrieval, a contrastive multitask classification network for predicting artist, genre, style, media, and tags, and an agentic reasoning strategy enabled through in-context examples for complex visual question answering and artwork explanation via Qwen2.5-VL. Central to this approach is WikiFragments, a Wikipedia-scale dataset of image-text fragments curated to support knowledge-grounded multimodal reasoning. Our framework achieves state-of-the-art results on multiple benchmarks, including a +8.4% F1 improvement in style classification over GraphCLIP and a +7.1 BLEU@1 gain in captioning on ArtPedia. Qualitative analyses show that ArtSeek can interpret visual motifs, infer historical context, and retrieve relevant knowledge, even for obscure works. Though focused on visual arts, our approach generalizes to other domains requiring external knowledge, supporting scalable multimodal AI research. Both the dataset and the source code will be made publicly available at https://github.com/cilabuniba/artseek.

  • 3 authors
·
Jul 29

A Tale of LLMs and Induced Small Proxies: Scalable Agents for Knowledge Mining

At the core of Deep Research is knowledge mining, the task of extracting structured information from massive unstructured text in response to user instructions. Large language models (LLMs) excel at interpreting such instructions but are prohibitively expensive to deploy at scale, while traditional pipelines of classifiers and extractors remain efficient yet brittle and unable to generalize to new tasks. We introduce Falconer, a collaborative framework that combines the agentic reasoning of LLMs with lightweight proxy models for scalable knowledge mining. In Falconer, LLMs act as planners, decomposing user instructions into executable pipelines, and as annotators, generating supervision to train small proxies. The framework unifies classification and extraction into two atomic operations, get label and get span, enabling a single instruction-following model to replace multiple task-specific components. To evaluate the consistency between proxy models incubated by Falconer and annotations provided by humans and large models, we construct new benchmarks covering both planning and end-to-end execution. Experiments show that Falconer closely matches state-of-the-art LLMs in instruction-following accuracy while reducing inference cost by up to 90% and accelerating large-scale knowledge mining by more than 20x, offering an efficient and scalable foundation for Deep Research.

MedAgent-Pro: Towards Multi-modal Evidence-based Medical Diagnosis via Reasoning Agentic Workflow

Developing reliable AI systems to assist human clinicians in multi-modal medical diagnosis has long been a key objective for researchers. Recently, Multi-modal Large Language Models (MLLMs) have gained significant attention and achieved success across various domains. With strong reasoning capabilities and the ability to perform diverse tasks based on user instructions, they hold great potential for enhancing medical diagnosis. However, directly applying MLLMs to the medical domain still presents challenges. They lack detailed perception of visual inputs, limiting their ability to perform quantitative image analysis, which is crucial for medical diagnostics. Additionally, MLLMs often exhibit hallucinations and inconsistencies in reasoning, whereas clinical diagnoses must adhere strictly to established criteria. To address these challenges, we propose MedAgent-Pro, an evidence-based reasoning agentic system designed to achieve reliable, explainable, and precise medical diagnoses. This is accomplished through a hierarchical workflow: at the task level, knowledge-based reasoning generate reliable diagnostic plans for specific diseases following retrieved clinical criteria. While at the case level, multiple tool agents process multi-modal inputs, analyze different indicators according to the plan, and provide a final diagnosis based on both quantitative and qualitative evidence. Comprehensive experiments on both 2D and 3D medical diagnosis tasks demonstrate the superiority and effectiveness of MedAgent-Pro, while case studies further highlight its reliability and interpretability. The code is available at https://github.com/jinlab-imvr/MedAgent-Pro.

  • 4 authors
·
Mar 21 2

Thinking With Videos: Multimodal Tool-Augmented Reinforcement Learning for Long Video Reasoning

The video reasoning ability of multimodal large language models (MLLMs) is crucial for downstream tasks like video question answering and temporal grounding. While recent approaches have explored text-based chain-of-thought (CoT) reasoning for MLLMs, these methods often suffer from limited cross-modal interaction and increased hallucination, especially with longer videos or reasoning chains. To address these challenges, we propose Video Intelligence via Tool-Augmented Learning (VITAL), a novel end-to-end agentic video reasoning framework. With a visual toolbox, the model can densely sample new video frames on demand and generate multimodal CoT for precise long video reasoning. We observe that temporal grounding and question answering are mutually beneficial for video understanding tasks. Therefore, we construct two high-quality multi-task video reasoning datasets MTVR-CoT-72k for supervised fine-tuning and MTVR-RL-110k for reinforcement learning. Moreover, we propose a Difficulty-aware Group Relative Policy Optimization algorithm (DGRPO) to mitigate difficulty imbalance in multi-task reinforcement learning. Extensive experiments on 11 challenging video understanding benchmarks demonstrate the advanced reasoning ability of VITAL, outperforming existing methods in video question answering and temporal grounding tasks, especially in long video scenarios. All code, data and model weight will be made publicly available.

  • 10 authors
·
Aug 6

CodeV: Code with Images for Faithful Visual Reasoning via Tool-Aware Policy Optimization

Agentic vision-language models are increasingly trained to "think with images" by calling image operations. However, we show that high final-answer accuracy often hides unfaithful visual reasoning: models may invoke tools on irrelevant regions or ignore tool outputs entirely, yet still guess the correct answer. In this work, we first propose a faithfulness evaluation protocol that measures whether intermediate visual tool outputs (e.g., crops) actually contain the queried evidence. This reveals that recent visual agents achieve high final-answer accuracy but exhibit low rates of faithful tool-use on visual search benchmarks. We then introduce CodeV, a code-based visual agent trained with Tool-Aware Policy Optimization (TAPO). TAPO is a process-level RL framework that augments GRPO with dense rewards defined directly on visual tool inputs and outputs, rather than on chain-of-thought tokens, making supervision easier to verify and less susceptible to reward hacking. CodeV represents visual tools as executable Python code, and TAPO assigns step-wise rewards based solely on the question and tool output, encouraging both necessary and evidence-consistent tool use. In a two-stage SFT+RL pipeline, CodeV achieves competitive or superior accuracy while substantially increasing faithful tool-use rates on related visual search benchmarks. Beyond visual search, CodeV attains strong performance on a range of multimodal reasoning and math benchmarks, suggesting that explicitly supervising intermediate tool behavior is crucial for building trustworthy, agentic visual reasoning systems.

A$^2$FM: An Adaptive Agent Foundation Model for Tool-Aware Hybrid Reasoning

Large language models split into two families: reasoning-centric LLMs, which strengthen internal chain-of-thought reasoning but cannot invoke external tools, and agentic LLMs, which learn to interact with environments and leverage tools but often lag in deep reasoning. This divide arises from fundamentally different training objectives, leading to mismatched strengths and inefficiency on simple queries, where both families tend to overthink or over-call tools. In this work, we present Adaptive Agent Foundation Model (A^2FM), a unified framework that follows a route-then-align principle: the model first learns task-aware routing and then aligns mode-specific trajectories under a shared backbone. To address the inefficiency gap, we introduce a third mode-instant-that handles simple queries directly, preventing unnecessary reasoning or tool calls while complementing the agentic and reasoning modes. To jointly enhance accuracy and efficiency, we propose Adaptive Policy Optimization (APO), which enforces adaptive sampling across modes and applies a cost-regularized reward. On the 32B scale, A^2FM achieves 13.4% on BrowseComp, 70.4% on AIME25, and 16.7% on HLE, setting new SOTA among comparable models and performing competitively with frontier LLMs across agentic, reasoning, and general benchmarks. Notably, the adaptive execution achieves a cost of pass of only $0.00487 per correct answer-cutting cost by 45.2% relative to reasoning and 33.5% relative to agentic, thus delivering substantially higher cost efficiency while maintaining comparable accuracy.

OPPOer OPPO
·
Oct 13 3

Agentic Deep Graph Reasoning Yields Self-Organizing Knowledge Networks

We present an agentic, autonomous graph expansion framework that iteratively structures and refines knowledge in situ. Unlike conventional knowledge graph construction methods relying on static extraction or single-pass learning, our approach couples a reasoning-native large language model with a continually updated graph representation. At each step, the system actively generates new concepts and relationships, merges them into a global graph, and formulates subsequent prompts based on its evolving structure. Through this feedback-driven loop, the model organizes information into a scale-free network characterized by hub formation, stable modularity, and bridging nodes that link disparate knowledge clusters. Over hundreds of iterations, new nodes and edges continue to appear without saturating, while centrality measures and shortest path distributions evolve to yield increasingly distributed connectivity. Our analysis reveals emergent patterns, such as the rise of highly connected 'hub' concepts and the shifting influence of 'bridge' nodes, indicating that agentic, self-reinforcing graph construction can yield open-ended, coherent knowledge structures. Applied to materials design problems, we present compositional reasoning experiments by extracting node-specific and synergy-level principles to foster genuinely novel knowledge synthesis, yielding cross-domain ideas that transcend rote summarization and strengthen the framework's potential for open-ended scientific discovery. We discuss other applications in scientific discovery and outline future directions for enhancing scalability and interpretability.

  • 1 authors
·
Feb 18

A Survey of Reasoning and Agentic Systems in Time Series with Large Language Models

Time series reasoning treats time as a first-class axis and incorporates intermediate evidence directly into the answer. This survey defines the problem and organizes the literature by reasoning topology with three families: direct reasoning in one step, linear chain reasoning with explicit intermediates, and branch-structured reasoning that explores, revises, and aggregates. The topology is crossed with the main objectives of the field, including traditional time series analysis, explanation and understanding, causal inference and decision making, and time series generation, while a compact tag set spans these axes and captures decomposition and verification, ensembling, tool use, knowledge access, multimodality, agent loops, and LLM alignment regimes. Methods and systems are reviewed across domains, showing what each topology enables and where it breaks down in faithfulness or robustness, along with curated datasets, benchmarks, and resources that support study and deployment (https://github.com/blacksnail789521/Time-Series-Reasoning-Survey). Evaluation practices that keep evidence visible and temporally aligned are highlighted, and guidance is distilled on matching topology to uncertainty, grounding with observable artifacts, planning for shift and streaming, and treating cost and latency as design budgets. We emphasize that reasoning structures must balance capacity for grounding and self-correction against computational cost and reproducibility, while future progress will likely depend on benchmarks that tie reasoning quality to utility and on closed-loop testbeds that trade off cost and risk under shift-aware, streaming, and long-horizon settings. Taken together, these directions mark a shift from narrow accuracy toward reliability at scale, enabling systems that not only analyze but also understand, explain, and act on dynamic worlds with traceable evidence and credible outcomes.

  • 11 authors
·
Sep 15

PRefLexOR: Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning and Agentic Thinking

PRefLexOR (Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning) combines preference optimization with concepts from Reinforcement Learning to enable models to self-teach through iterative reasoning improvements. We propose a recursive learning approach that engages the model in multi-step reasoning, revisiting, and refining intermediate steps before producing a final output in training and inference phases. Through multiple training stages, the model first learns to align its reasoning with accurate decision paths by optimizing the log odds between preferred and non-preferred responses. During this process, PRefLexOR builds a dynamic knowledge graph by generating questions from random text chunks and retrieval-augmentation to contextualize relevant details from the entire training corpus. In the second stage, preference optimization enhances model performance by using rejection sampling to fine-tune reasoning quality by continually producing in-situ training data while masking the reasoning steps. Recursive optimization within a thinking token framework introduces iterative feedback loops, where the model refines reasoning, achieving deeper coherence, consistency, and adaptability. Implemented in small language models with only 3 billion parameters, we should that even tiny models can iteratively teach themselves to reason with greater depth and reflectivity. Our implementation is straightforward and can be incorporated into any existing pretrained LLM. We focus our examples on applications in biological materials science and demonstrate the method in a variety of case studies that range from in-domain to cross-domain applications. Using reasoning strategies that include thinking and reflection modalities we build a multi-agent recursive self-improving inference approach to successively improve responses via repeated sampling in inference time.

  • 1 authors
·
Oct 16, 2024

DeepSport: A Multimodal Large Language Model for Comprehensive Sports Video Reasoning via Agentic Reinforcement Learning

Sports video understanding presents unique challenges, requiring models to perceive high-speed dynamics, comprehend complex rules, and reason over long temporal contexts. While Multimodal Large Language Models (MLLMs) have shown promise in genral domains, the current state of research in sports remains narrowly focused: existing approaches are either single-sport centric, limited to specific tasks, or rely on training-free paradigms that lack robust, learned reasoning process. To address this gap, we introduce DeepSport, the first end-to-end trained MLLM framework designed for multi-task, multi-sport video understanding. DeepSport shifts the paradigm from passive frame processing to active, iterative reasoning, empowering the model to ``think with videos'' by dynamically interrogating content via a specialized frame-extraction tool. To enable this, we propose a data distillation pipeline that synthesizes high-quality Chain-of-Thought (CoT) trajectories from 10 diverse data source, creating a unified resource of 78k training data. We then employ a two-stage training strategy, Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL) with a novel gated tool-use reward, to optimize the model's reasoning process. Extensive experiments on the testing benchmark of 6.7k questions demonstrate that DeepSport achieves state-of-the-art performance, significantly outperforming baselines of both proprietary model and open-source models. Our work establishes a new foundation for domain-specific video reasoning to address the complexities of diverse sports.

  • 8 authors
·
Nov 16

Haystack Engineering: Context Engineering for Heterogeneous and Agentic Long-Context Evaluation

Modern long-context large language models (LLMs) perform well on synthetic "needle-in-a-haystack" (NIAH) benchmarks, but such tests overlook how noisy contexts arise from biased retrieval and agentic workflows. We argue that haystack engineering is necessary to construct noisy long contexts that faithfully capture key real-world factors -- distraction from heterogeneous biased retrievers and cascading errors in agentic workflows -- to test models' long-context robustness. We instantiate it through HaystackCraft, a new NIAH benchmark built on the full English Wikipedia hyperlink network with multi-hop questions. HaystackCraft evaluates how heterogeneous retrieval strategies (e.g., sparse, dense, hybrid, and graph-based) affect distractor composition, haystack ordering, and downstream LLM performance. HaystackCraft further extends NIAH to dynamic, LLM-dependent settings that simulate agentic operations, where models refine queries, reflect on their past reasonings, and decide when to stop. Experiments with 15 long-context models show that (1) while stronger dense retrievers can introduce more challenging distractors, graph-based reranking simultaneously improves retrieval effectiveness and mitigates more harmful distractors; (2) in agentic tests, even advanced models like Gemini 2.5 Pro and GPT-5 suffer cascading failures from self-generated distractors or struggle to perform early stops. These results highlight persistent challenges in agentic long-context reasoning and establish HaystackCraft as a valuable testbed for future progress.

Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents

Large Language Models (LLMs) have shown remarkable capabilities in natural language tasks requiring complex reasoning, yet their application in agentic, multi-step reasoning within interactive environments remains a difficult challenge. Traditional supervised pre-training on static datasets falls short in enabling autonomous agent capabilities needed to perform complex decision-making in dynamic settings like web navigation. Previous attempts to bridge this ga-through supervised fine-tuning on curated expert demonstrations-often suffer from compounding errors and limited exploration data, resulting in sub-optimal policy outcomes. To overcome these challenges, we propose a framework that combines guided Monte Carlo Tree Search (MCTS) search with a self-critique mechanism and iterative fine-tuning on agent interactions using an off-policy variant of the Direct Preference Optimization (DPO) algorithm. Our method allows LLM agents to learn effectively from both successful and unsuccessful trajectories, thereby improving their generalization in complex, multi-step reasoning tasks. We validate our approach in the WebShop environment-a simulated e-commerce platform where it consistently outperforms behavior cloning and reinforced fine-tuning baseline, and beats average human performance when equipped with the capability to do online search. In real-world booking scenarios, our methodology boosts Llama-3 70B model's zero-shot performance from 18.6% to 81.7% success rate (a 340% relative increase) after a single day of data collection and further to 95.4% with online search. We believe this represents a substantial leap forward in the capabilities of autonomous agents, paving the way for more sophisticated and reliable decision-making in real-world settings.

  • 7 authors
·
Aug 13, 2024

Towards Safety Reasoning in LLMs: AI-agentic Deliberation for Policy-embedded CoT Data Creation

Safety reasoning is a recent paradigm where LLMs reason over safety policies before generating responses, thereby mitigating limitations in existing safety measures such as over-refusal and jailbreak vulnerabilities. However, implementing this paradigm is challenging due to the resource-intensive process of creating high-quality policy-embedded chain-of-thought (CoT) datasets while ensuring reasoning remains accurate and free from hallucinations or policy conflicts. To tackle this, we propose AIDSAFE: Agentic Iterative Deliberation for Safety Reasoning, a novel data generation recipe that leverages multi-agent deliberation to iteratively expand reasoning on safety policies. A data refiner stage in AIDSAFE ensures high-quality outputs by eliminating repetitive, redundant, and deceptive thoughts. AIDSAFE-generated CoTs provide a strong foundation for supervised fine-tuning (SFT)-based safety training. Additionally, to address the need of preference data in alignment stages, such as DPO training, we introduce a supplemental recipe that uses belief augmentation to create distinct selected and rejected CoT samples. Our evaluations demonstrate that AIDSAFE-generated CoTs achieve superior policy adherence and reasoning quality. Consequently, we show that fine-tuning open-source LLMs on these CoTs can significantly improve safety generalization and jailbreak robustness while maintaining acceptable utility and over-refusal accuracy. AIDSAFE-generated CoT datasets can be found here: https://huggingface.co/datasets/AmazonScience/AIDSAFE

  • 9 authors
·
May 27 2

Agentic Jigsaw Interaction Learning for Enhancing Visual Perception and Reasoning in Vision-Language Models

Although current large Vision-Language Models (VLMs) have advanced in multimodal understanding and reasoning, their fundamental perceptual and reasoning abilities remain limited. Specifically, even on simple jigsaw tasks, existing VLMs perform near randomly, revealing deficiencies in core perception and reasoning capabilities. While high-quality vision-language data can enhance these capabilities, its scarcity and limited scalability impose significant constraints. To address this, we propose AGILE, an Agentic jiGsaw Interaction Learning for Enhancing visual perception and reasoning in VLMs. AGILE formulates jigsaw solving as an interactive process, enabling the model to progressively engage with the environment. At each step, the model generates executable code to perform an action based on the current state, while the environment provides fine-grained visual feedback to guide task completion. Through this iterative cycle of observation and interaction, the model incrementally improves its perceptual and reasoning capabilities via exploration and feedback. Experimental results show that AGILE not only substantially boosts performance on jigsaw tasks of varying complexity (e.g., increasing accuracy from 9.5% to 82.8% under the 2 times 2 setting) but also demonstrates strong generalization across 9 general vision tasks, achieving an average improvement of 3.1%. These results indicate notable enhancements in both perceptual and reasoning abilities. This work opens a new avenue for advancing reasoning and generalization in multimodal models and provides an efficient, scalable solution to the scarcity of multimodal reinforcement learning data. The code and datasets is available at https://github.com/yuzeng0-0/AGILE .

An Agentic System for Rare Disease Diagnosis with Traceable Reasoning

Rare diseases collectively affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains a pervasive challenge. This is largely due to their clinical heterogeneity, low individual prevalence, and the limited familiarity most clinicians have with rare conditions. Here, we introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM), capable of processing heterogeneous clinical inputs. The system generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning that links intermediate analytic steps to verifiable medical evidence. DeepRare comprises three key components: a central host with a long-term memory module; specialized agent servers responsible for domain-specific analytical tasks integrating over 40 specialized tools and web-scale, up-to-date medical knowledge sources, ensuring access to the most current clinical information. This modular and scalable design enables complex diagnostic reasoning while maintaining traceability and adaptability. We evaluate DeepRare on eight datasets. The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases. In HPO-based evaluations, DeepRare significantly outperforms other 15 methods, like traditional bioinformatics diagnostic tools, LLMs, and other agentic systems, achieving an average Recall@1 score of 57.18% and surpassing the second-best method (Reasoning LLM) by a substantial margin of 23.79 percentage points. For multi-modal input scenarios, DeepRare achieves 70.60% at Recall@1 compared to Exomiser's 53.20% in 109 cases. Manual verification of reasoning chains by clinical experts achieves 95.40% agreements. Furthermore, the DeepRare system has been implemented as a user-friendly web application http://raredx.cn/doctor.

  • 12 authors
·
Jun 25 1

The Danger of Overthinking: Examining the Reasoning-Action Dilemma in Agentic Tasks

Large Reasoning Models (LRMs) represent a breakthrough in AI problem-solving capabilities, but their effectiveness in interactive environments can be limited. This paper introduces and analyzes overthinking in LRMs. A phenomenon where models favor extended internal reasoning chains over environmental interaction. Through experiments on software engineering tasks using SWE Bench Verified, we observe three recurring patterns: Analysis Paralysis, Rogue Actions, and Premature Disengagement. We propose a framework to study these behaviors, which correlates with human expert assessments, and analyze 4018 trajectories. We observe that higher overthinking scores correlate with decreased performance, with reasoning models exhibiting stronger tendencies toward overthinking compared to non-reasoning models. Our analysis reveals that simple efforts to mitigate overthinking in agentic environments, such as selecting the solution with the lower overthinking score, can improve model performance by almost 30% while reducing computational costs by 43%. These results suggest that mitigating overthinking has strong practical implications. We suggest that by leveraging native function-calling capabilities and selective reinforcement learning overthinking tendencies could be mitigated. We also open-source our evaluation framework and dataset to facilitate research in this direction at https://github.com/AlexCuadron/Overthinking.

  • 16 authors
·
Feb 12 2

SeeingEye: Agentic Information Flow Unlocks Multimodal Reasoning In Text-only LLMs

Recent advances in text-only large language models (LLMs), such as DeepSeek-R1, demonstrate remarkable reasoning ability. However, these models remain fragile or entirely incapable when extended to multi-modal tasks. Existing approaches largely rely on single-form captions, which lack diversity and often fail to adapt across different types of Visual Question Answering (VQA) benchmarks. As a result, they provide no principled or efficient channel for transmitting fine-grained visual information. We introduce Seeing Eye, a modular framework that unlocks multimodal reasoning in text-only LLMs through an agent-based small VLM translator. This translator acts as a perception agent: it can invoke specialized tools (e.g., OCR and crop) and iteratively distill multimodal inputs into structured intermediate representations (SIRs) tailored to the question. These SIRs are then passed to the text-only LLM, which serves as a reasoning agent. Crucially, the translator and reasoner engage in multi-round feedback and interaction, enabling the extraction of targeted visual details and yielding more confident answers. Experiments on knowledge-intensive VQA benchmarks, including MMMU and MIA-Bench, demonstrate that Seeing Eye not only reduces inference cost but also surpasses much larger end-to-end VLMs. For example, an instantiation combining a 3B-parameter vision translator with an 8B-parameter language reasoner outperforms a monolithic 32B VLM on challenging knowledge-based questions. Our results highlight that decoupling perception from reasoning via agent information flow offers a scalable and plug-and-play pathway to multimodal reasoning, allowing strong text-only LLMs to fully leverage their reasoning capabilities. Code is available at: https://github.com/ulab-uiuc/SeeingEye

  • 5 authors
·
Oct 28 1

BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games

Large Language Models (LLMs) and Vision Language Models (VLMs) possess extensive knowledge and exhibit promising reasoning abilities; however, they still struggle to perform well in complex, dynamic environments. Real-world tasks require handling intricate interactions, advanced spatial reasoning, long-term planning, and continuous exploration of new strategies-areas in which we lack effective methodologies for comprehensively evaluating these capabilities. To address this gap, we introduce BALROG, a novel benchmark designed to assess the agentic capabilities of LLMs and VLMs through a diverse set of challenging games. Our benchmark incorporates a range of existing reinforcement learning environments with varying levels of difficulty, including tasks that are solvable by non-expert humans in seconds to extremely challenging ones that may take years to master (e.g., the NetHack Learning Environment). We devise fine-grained metrics to measure performance and conduct an extensive evaluation of several popular open-source and closed-source LLMs and VLMs. Our findings indicate that while current models achieve partial success in the easier games, they struggle significantly with more challenging tasks. Notably, we observe severe deficiencies in vision-based decision-making, as models perform worse when visual representations of the environments are provided. We release BALROG as an open and user-friendly benchmark to facilitate future research and development in the agentic community.

  • 13 authors
·
Nov 20, 2024 2

End-to-End Agentic RAG System Training for Traceable Diagnostic Reasoning

Accurate diagnosis with medical large language models is hindered by knowledge gaps and hallucinations. Retrieval and tool-augmented methods help, but their impact is limited by weak use of external knowledge and poor feedback-reasoning traceability. To address these challenges, We introduce Deep-DxSearch, an agentic RAG system trained end-to-end with reinforcement learning (RL) that enables steer tracebale retrieval-augmented reasoning for medical diagnosis. In Deep-DxSearch, we first construct a large-scale medical retrieval corpus comprising patient records and reliable medical knowledge sources to support retrieval-aware reasoning across diagnostic scenarios. More crutially, we frame the LLM as the core agent and the retrieval corpus as its environment, using tailored rewards on format, retrieval, reasoning structure, and diagnostic accuracy, thereby evolving the agentic RAG policy from large-scale data through RL. Experiments demonstrate that our end-to-end agentic RL training framework consistently outperforms prompt-engineering and training-free RAG approaches across multiple data centers. After training, Deep-DxSearch achieves substantial gains in diagnostic accuracy, surpassing strong diagnostic baselines such as GPT-4o, DeepSeek-R1, and other medical-specific frameworks for both common and rare disease diagnosis under in-distribution and out-of-distribution settings. Moreover, ablation studies on reward design and retrieval corpus components confirm their critical roles, underscoring the uniqueness and effectiveness of our approach compared with traditional implementations. Finally, case studies and interpretability analyses highlight improvements in Deep-DxSearch's diagnostic policy, providing deeper insight into its performance gains and supporting clinicians in delivering more reliable and precise preliminary diagnoses. See https://github.com/MAGIC-AI4Med/Deep-DxSearch.

  • 10 authors
·
Aug 21 2

Orchestrator-Agent Trust: A Modular Agentic AI Visual Classification System with Trust-Aware Orchestration and RAG-Based Reasoning

Modern Artificial Intelligence (AI) increasingly relies on multi-agent architectures that blend visual and language understanding. Yet, a pressing challenge remains: How can we trust these agents especially in zero-shot settings with no fine-tuning? We introduce a novel modular Agentic AI visual classification framework that integrates generalist multimodal agents with a non-visual reasoning orchestrator and a Retrieval-Augmented Generation (RAG) module. Applied to apple leaf disease diagnosis, we benchmark three configurations: (I) zero-shot with confidence-based orchestration, (II) fine-tuned agents with improved performance, and (III) trust-calibrated orchestration enhanced by CLIP-based image retrieval and re-evaluation loops. Using confidence calibration metrics (ECE, OCR, CCC), the orchestrator modulates trust across agents. Our results demonstrate a 77.94\% accuracy improvement in the zero-shot setting using trust-aware orchestration and RAG, achieving 85.63\% overall. GPT-4o showed better calibration, while Qwen-2.5-VL displayed overconfidence. Furthermore, image-RAG grounded predictions with visually similar cases, enabling correction of agent overconfidence via iterative re-evaluation. The proposed system separates perception (vision agents) from meta-reasoning (orchestrator), enabling scalable and interpretable multi-agent AI. This blueprint is extensible to diagnostics, biology, and other trust-critical domains. All models, prompts, results, and system components including the complete software source code are openly released to support reproducibility, transparency, and community benchmarking at Github: https://github.com/Applied-AI-Research-Lab/Orchestrator-Agent-Trust

  • 4 authors
·
Jul 9 1

A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems

Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making. With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems from conventional models that empower chatbots. In this survey, we categorize existing methods along two orthogonal dimensions: (1) Regimes, which define the stage at which reasoning is achieved (either at inference time or through dedicated training); and (2) Architectures, which determine the components involved in the reasoning process, distinguishing between standalone LLMs and agentic compound systems that incorporate external tools, and multi-agent collaborations. Within each dimension, we analyze two key perspectives: (1) Input level, which focuses on techniques that construct high-quality prompts that the LLM condition on; and (2) Output level, which methods that refine multiple sampled candidates to enhance reasoning quality. This categorization provides a systematic understanding of the evolving landscape of LLM reasoning, highlighting emerging trends such as the shift from inference-scaling to learning-to-reason (e.g., DeepSeek-R1), and the transition to agentic workflows (e.g., OpenAI Deep Research, Manus Agent). Additionally, we cover a broad spectrum of learning algorithms, from supervised fine-tuning to reinforcement learning such as PPO and GRPO, and the training of reasoners and verifiers. We also examine key designs of agentic workflows, from established patterns like generator-evaluator and LLM debate to recent innovations. ...

  • 12 authors
·
Apr 11

ARM-Thinker: Reinforcing Multimodal Generative Reward Models with Agentic Tool Use and Visual Reasoning

Reward models are critical for aligning vision-language systems with human preferences, yet current approaches suffer from hallucination, weak visual grounding, and an inability to use tools for verification, limiting their reliability on complex multimodal reasoning tasks. We present ARM-Thinker, an A}gentic multimodal Reward Model that autonomously invokes external tools (e.g., image cropping, doc page retrieval) to ground judgments in verifiable evidence, replacing static, non-interactive reward scoring. This enables the model to verify fine-grained visual details, cross-reference multi-page evidence, and validate reasoning claims, which are capabilities absent in existing reward models. We train ARM-Thinker with multi-stage reinforcement learning, jointly optimizing tool-calling decisions and judgment accuracy. To evaluate agentic reward modeling, we introduce ARMBench-VL, comprising three benchmarks that assess fine-grained visual grounding (image-level tools), multi-page document understanding (retrieval tools), and instruction following (text-level verification). ARM-Thinker achieves +16.2% average improvement on reward modeling benchmarks, +9.6% on tool-use tasks, and outperforms baselines on multimodal math and logical reasoning benchmarks. Our results demonstrate that agentic capabilities significantly enhance both accuracy and interpretability of reward models.

ReWatch-R1: Boosting Complex Video Reasoning in Large Vision-Language Models through Agentic Data Synthesis

While Reinforcement Learning with Verifiable Reward (RLVR) significantly advances image reasoning in Large Vision-Language Models (LVLMs), its application to complex video reasoning remains underdeveloped. This gap stems primarily from a critical data bottleneck: existing datasets lack the challenging, multi-hop questions and high-quality, video-grounded Chain-of-Thought (CoT) data necessary to effectively bootstrap RLVR. To address this, we introduce ReWatch, a large-scale dataset built to foster advanced video reasoning. We propose a novel multi-stage synthesis pipeline to synthesize its three components: ReWatch-Caption, ReWatch-QA, and ReWatch-CoT. A core innovation is our Multi-Agent ReAct framework for CoT synthesis, which simulates a human-like "re-watching" process to generate video-grounded reasoning traces by explicitly modeling information retrieval and verification. Building on this dataset, we develop ReWatch-R1 by post-training a strong baseline LVLM with Supervised Fine-Tuning (SFT) and our RLVR framework. This framework incorporates a novel Observation \& Reasoning (O\&R) reward mechanism that evaluates both the final answer's correctness and the reasoning's alignment with video content, directly penalizing hallucination. Our experiments show that ReWatch-R1 achieves state-of-the-art average performance on five challenging video reasoning benchmarks. Project Page: https://rewatch-r1.github.io

  • 8 authors
·
Sep 28

Agentic Reinforced Policy Optimization

Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks. In realistic reasoning scenarios, LLMs can often utilize external tools to assist in task-solving processes. However, current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions. To bridge this gap, we propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents. Through preliminary experiments, we observe that LLMs tend to exhibit highly uncertain behavior, characterized by an increase in the entropy distribution of generated tokens, immediately following interactions with external tools. Motivated by this observation, ARPO incorporates an entropy-based adaptive rollout mechanism, dynamically balancing global trajectory sampling and step-level sampling, thereby promoting exploration at steps with high uncertainty after tool usage. By integrating an advantage attribution estimation, ARPO enables LLMs to internalize advantage differences in stepwise tool-use interactions. Our experiments across 13 challenging benchmarks in computational reasoning, knowledge reasoning, and deep search domains demonstrate ARPO's superiority over trajectory-level RL algorithms. Remarkably, ARPO achieves improved performance using only half of the tool-use budget required by existing methods, offering a scalable solution for aligning LLM-based agents with real-time dynamic environments. Our code and datasets are released at https://github.com/dongguanting/ARPO

  • 14 authors
·
Jul 26 8

Agentic Learner with Grow-and-Refine Multimodal Semantic Memory

MLLMs exhibit strong reasoning on isolated queries, yet they operate de novo -- solving each problem independently and often repeating the same mistakes. Existing memory-augmented agents mainly store past trajectories for reuse. However, trajectory-based memory suffers from brevity bias, gradually losing essential domain knowledge. More critically, even in truly multimodal problem-solving settings, it records only a single-modality trace of past behavior, failing to preserve how visual attention and logical reasoning jointly contributed to the solution. This is fundamentally misaligned with human cognition: semantic memory is both multimodal and integrated, preserving visual and abstract knowledge through coordinated but distinct representational streams. We thus introduce ViLoMem, a dual-stream memory framework that constructs compact, schema-based memory. It separately encodes visual distraction patterns and logical reasoning errors, enabling MLLMs to learn from their successful and failed experiences. Following a grow-and-refine principle, the system incrementally accumulates and updates multimodal semantic knowledge -- preserving stable, generalizable strategies while avoiding catastrophic forgetting. Across six multimodal benchmarks, ViLoMem consistently improves pass@1 accuracy and substantially reduces repeated visual and logical errors. Ablations confirm the necessity of dual-stream memory with explicit distraction--hallucination separation, demonstrating the value of error-aware multimodal memory for lifelong and cross-domain agentic learning. Our project page will be available at https://weihao-bo.github.io/ViLoMeo-page.

  • 12 authors
·
Nov 26 2

Proactive Reasoning-with-Retrieval Framework for Medical Multimodal Large Language Models

Incentivizing the reasoning ability of Multimodal Large Language Models (MLLMs) is essential for medical applications to transparently analyze medical scans and provide reliable diagnosis. However, existing medical MLLMs rely solely on internal knowledge during reasoning, leading to hallucinated reasoning and factual inaccuracies when encountering cases beyond their training scope. Although recent Agentic Retrieval-Augmented Generation (RAG) methods elicit the medical model's proactive retrieval ability during reasoning, they are confined to unimodal LLMs, neglecting the crucial visual information during reasoning and retrieval. Consequently, we propose the first Multimodal Medical Reasoning-with-Retrieval framework, Med-RwR, which actively retrieves external knowledge by querying observed symptoms or domain-specific medical concepts during reasoning. Specifically, we design a two-stage reinforcement learning strategy with tailored rewards that stimulate the model to leverage both visual diagnostic findings and textual clinical information for effective retrieval. Building on this foundation, we further propose a Confidence-Driven Image Re-retrieval (CDIR) method for test-time scaling when low prediction confidence is detected. Evaluation on various public medical benchmarks demonstrates Med-RwR's significant improvements over baseline models, proving the effectiveness of enhancing reasoning capabilities with external knowledge integration. Furthermore, Med-RwR demonstrates remarkable generalizability to unfamiliar domains, evidenced by 8.8% performance gain on our proposed EchoCardiography Benchmark (ECBench), despite the scarcity of echocardiography data in the training corpus. Our data, model, and codes will be made publicly available at https://github.com/xmed-lab/Med-RwR.

  • 4 authors
·
Oct 21

Visual Agentic Reinforcement Fine-Tuning

A key trend in Large Reasoning Models (e.g., OpenAI's o3) is the native agentic ability to use external tools such as web browsers for searching and writing/executing code for image manipulation to think with images. In the open-source research community, while significant progress has been made in language-only agentic abilities such as function calling and tool integration, the development of multi-modal agentic capabilities that involve truly thinking with images, and their corresponding benchmarks, are still less explored. This work highlights the effectiveness of Visual Agentic Reinforcement Fine-Tuning (Visual-ARFT) for enabling flexible and adaptive reasoning abilities for Large Vision-Language Models (LVLMs). With Visual-ARFT, open-source LVLMs gain the ability to browse websites for real-time information updates and write code to manipulate and analyze input images through cropping, rotation, and other image processing techniques. We also present a Multi-modal Agentic Tool Bench (MAT) with two settings (MAT-Search and MAT-Coding) designed to evaluate LVLMs' agentic search and coding abilities. Our experimental results demonstrate that Visual-ARFT outperforms its baseline by +18.6% F1 / +13.0% EM on MAT-Coding and +10.3% F1 / +8.7% EM on MAT-Search, ultimately surpassing GPT-4o. Visual-ARFT also achieves +29.3 F1% / +25.9% EM gains on existing multi-hop QA benchmarks such as 2Wiki and HotpotQA, demonstrating strong generalization capabilities. Our findings suggest that Visual-ARFT offers a promising path toward building robust and generalizable multimodal agents.

  • 9 authors
·
May 20 2

SpaceTools: Tool-Augmented Spatial Reasoning via Double Interactive RL

Vision Language Models (VLMs) demonstrate strong qualitative visual understanding, but struggle with metrically precise spatial reasoning required for embodied applications. The agentic paradigm promises that VLMs can use a wide variety of tools that could augment these capabilities, such as depth estimators, segmentation models, and pose estimators. Yet it remains an open challenge how to realize this vision without solely relying on handcrafted prompting strategies or enforcing fixed, predefined tool pipelines that limit VLMs' ability to discover optimal tool-use patterns. Reinforcement Learning could overcome this gap, but has so far been limited to reasoning with a single visual tool due to the large search space in multi-tool reasoning. We introduce Double Interactive Reinforcement Learning (DIRL), a two-phase training framework where VLMs learn to coordinate multiple tools through interactive exploration and feedback. In the teaching phase, we combine demonstrations from a single tool specialist trained via interactive RL with traces from a frontier model using all tools. In the exploration phase, the model further refines multi-tool coordination through continued RL. Our model, SpaceTools, with tool-augmented spatial reasoning ability, achieves state-of-the-art performance on spatial understanding benchmarks (RoboSpatial-Home, BLINK, BOP-ASK) and demonstrates reliable real-world manipulation using a 7-DOF robot as a tool. DIRL provides substantial improvements over the vanilla SFT (+12% on RoboSpatial) and RL (+16% on RoboSpatial) baselines. Project page: https://spacetools.github.io/.

nvidia NVIDIA
·
Dec 3 2

Active Video Perception: Iterative Evidence Seeking for Agentic Long Video Understanding

Long video understanding (LVU) is challenging because answering real-world queries often depends on sparse, temporally dispersed cues buried in hours of mostly redundant and irrelevant content. While agentic pipelines improve video reasoning capabilities, prevailing frameworks rely on a query-agnostic captioner to perceive video information, which wastes computation on irrelevant content and blurs fine-grained temporal and spatial information. Motivated by active perception theory, we argue that LVU agents should actively decide what, when, and where to observe, and continuously assess whether the current observation is sufficient to answer the query. We present Active Video Perception (AVP), an evidence-seeking framework that treats the video as an interactive environment and acquires compact, queryrelevant evidence directly from pixels. Concretely, AVP runs an iterative plan-observe-reflect process with MLLM agents. In each round, a planner proposes targeted video interactions, an observer executes them to extract time-stamped evidence, and a reflector evaluates the sufficiency of the evidence for the query, either halting with an answer or triggering further observation. Across five LVU benchmarks, AVP achieves highest performance with significant improvements. Notably, AVP outperforms the best agentic method by 5.7% in average accuracy while only requires 18.4% inference time and 12.4% input tokens.

Embeddings to Diagnosis: Latent Fragility under Agentic Perturbations in Clinical LLMs

LLMs for clinical decision support often fail under small but clinically meaningful input shifts such as masking a symptom or negating a finding, despite high performance on static benchmarks. These reasoning failures frequently go undetected by standard NLP metrics, which are insensitive to latent representation shifts that drive diagnosis instability. We propose a geometry-aware evaluation framework, LAPD (Latent Agentic Perturbation Diagnostics), which systematically probes the latent robustness of clinical LLMs under structured adversarial edits. Within this framework, we introduce Latent Diagnosis Flip Rate (LDFR), a model-agnostic diagnostic signal that captures representational instability when embeddings cross decision boundaries in PCA-reduced latent space. Clinical notes are generated using a structured prompting pipeline grounded in diagnostic reasoning, then perturbed along four axes: masking, negation, synonym replacement, and numeric variation to simulate common ambiguities and omissions. We compute LDFR across both foundation and clinical LLMs, finding that latent fragility emerges even under minimal surface-level changes. Finally, we validate our findings on 90 real clinical notes from the DiReCT benchmark (MIMIC-IV), confirming the generalizability of LDFR beyond synthetic settings. Our results reveal a persistent gap between surface robustness and semantic stability, underscoring the importance of geometry-aware auditing in safety-critical clinical AI.

  • 1 authors
·
Jul 27

Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models

Large language model (LLM) applications such as agents and domain-specific reasoning increasingly rely on context adaptation -- modifying inputs with instructions, strategies, or evidence, rather than weight updates. Prior approaches improve usability but often suffer from brevity bias, which drops domain insights for concise summaries, and from context collapse, where iterative rewriting erodes details over time. Building on the adaptive memory introduced by Dynamic Cheatsheet, we introduce ACE (Agentic Context Engineering), a framework that treats contexts as evolving playbooks that accumulate, refine, and organize strategies through a modular process of generation, reflection, and curation. ACE prevents collapse with structured, incremental updates that preserve detailed knowledge and scale with long-context models. Across agent and domain-specific benchmarks, ACE optimizes contexts both offline (e.g., system prompts) and online (e.g., agent memory), consistently outperforming strong baselines: +10.6% on agents and +8.6% on finance, while significantly reducing adaptation latency and rollout cost. Notably, ACE could adapt effectively without labeled supervision and instead by leveraging natural execution feedback. On the AppWorld leaderboard, ACE matches the top-ranked production-level agent on the overall average and surpasses it on the harder test-challenge split, despite using a smaller open-source model. These results show that comprehensive, evolving contexts enable scalable, efficient, and self-improving LLM systems with low overhead.

Datarus-R1: An Adaptive Multi-Step Reasoning LLM for Automated Data Analysis

We present Datarus-R1-14B, a 14 B-parameter open-weights language model fine-tuned from Qwen 2.5-14B-Instruct to act as a virtual data analyst and graduate-level problem solver. Datarus is trained not on isolated question-answer pairs but on full analytical trajectories including reasoning steps, code execution, error traces, self-corrections, and final conclusions, all captured in a ReAct-style notebook format spanning finance, medicine, numerical analysis, and other quantitative domains. Our training pipeline combines (i) a trajectory-centric synthetic data generator that yielded 144 000 tagged notebook episodes, (ii) a dual-reward framework blending a lightweight tag-based structural signal with a Hierarchical Reward Model (HRM) that scores both single-step soundness and end-to-end coherence, and (iii) a memory-optimized implementation of Group Relative Policy Optimization (GRPO) featuring KV-cache reuse, sequential generation, and reference-model sharding. A cosine curriculum smoothly shifts emphasis from structural fidelity to semantic depth, reducing the format collapse and verbosity that often plague RL-aligned LLMs. A central design choice in Datarus is it dual reasoning interface. In agentic mode the model produces ReAct-tagged steps that invoke Python tools to execute real code; in reflection mode it outputs compact Chain-of-Thought (CoT) traces delimited by <think> and <answer> tags. On demanding postgraduate-level problems, Datarus exhibits an "AHA-moment" pattern: it sketches hypotheses, revises them once or twice, and converges avoiding the circular, token-inflating loops common to contemporary systems. Across standard public benchmarks Datarus surpasses similar size models and even reaches the level of larger reasoning models such as QwQ-32B achieving up to 30% higher accuracy on AIME 2024/2025 and LiveCodeBench while emitting 18-49% fewer tokens per solution.

  • 2 authors
·
Aug 18

Agentic Robot: A Brain-Inspired Framework for Vision-Language-Action Models in Embodied Agents

Long-horizon robotic manipulation poses significant challenges for autonomous systems, requiring extended reasoning, precise execution, and robust error recovery across complex sequential tasks. Current approaches, whether based on static planning or end-to-end visuomotor policies, suffer from error accumulation and lack effective verification mechanisms during execution, limiting their reliability in real-world scenarios. We present Agentic Robot, a brain-inspired framework that addresses these limitations through Standardized Action Procedures (SAP)--a novel coordination protocol governing component interactions throughout manipulation tasks. Drawing inspiration from Standardized Operating Procedures (SOPs) in human organizations, SAP establishes structured workflows for planning, execution, and verification phases. Our architecture comprises three specialized components: (1) a large reasoning model that decomposes high-level instructions into semantically coherent subgoals, (2) a vision-language-action executor that generates continuous control commands from real-time visual inputs, and (3) a temporal verifier that enables autonomous progression and error recovery through introspective assessment. This SAP-driven closed-loop design supports dynamic self-verification without external supervision. On the LIBERO benchmark, Agentic Robot achieves state-of-the-art performance with an average success rate of 79.6\%, outperforming SpatialVLA by 6.1\% and OpenVLA by 7.4\% on long-horizon tasks. These results demonstrate that SAP-driven coordination between specialized components enhances both performance and interpretability in sequential manipulation, suggesting significant potential for reliable autonomous systems. Project Github: https://agentic-robot.github.io.

  • 11 authors
·
May 29

Atom-Searcher: Enhancing Agentic Deep Research via Fine-Grained Atomic Thought Reward

Large language models (LLMs) exhibit remarkable problem-solving abilities, but struggle with complex tasks due to static internal knowledge. Retrieval-Augmented Generation (RAG) enhances access to external information, yet remains limited in multi-hop reasoning and strategic search due to rigid workflows. Recent advancements in agentic deep research empower LLMs to autonomously reason, search, and synthesize information. However, current approaches relying on outcome-based reinforcement learning (RL) face critical issues such as conflicting gradients and reward sparsity, limiting performance gains and training efficiency. To address these, we first propose Atomic Thought, a novel LLM thinking paradigm that decomposes reasoning into fine-grained functional units. These units are supervised by Reasoning Reward Models (RRMs), which provide Atomic Thought Rewards (ATR) for fine-grained guidance. Building on this, we propose Atom-Searcher, a novel RL framework for agentic deep research that integrates Atomic Thought and ATR. Atom-Searcher uses a curriculum-inspired reward schedule, prioritizing process-level ATR early and transitioning to outcome rewards, accelerating convergence on effective reasoning paths. Experiments on seven benchmarks show consistent improvements over the state-of-the-art. Key advantages include: (1) Atom-Searcher scales computation at test-time. (2) Atomic Thought provides supervision anchors for RRMs, bridging deep research tasks and RRMs. (3) Atom-Searcher exhibits more interpretable, human-like reasoning patterns.

  • 12 authors
·
Aug 18 2

Agentic Policy Optimization via Instruction-Policy Co-Evolution

Reinforcement Learning with Verifiable Rewards (RLVR) has advanced the reasoning capability of large language models (LLMs), enabling autonomous agents that can conduct effective multi-turn and tool-integrated reasoning. While instructions serve as the primary protocol for defining agents, RLVR typically relies on static and manually designed instructions. However, those instructions may be suboptimal for the base model, and the optimal instruction may change as the agent's policy improves and explores the interaction with the environment. To bridge the gap, we introduce INSPO, a novel Instruction-Policy co-evolution framework that integrates instruction optimization as a dynamic component of the reinforcement learning (RL) loop. INSPO maintains a dynamic population of instruction candidates that are sampled with questions, where reward signals in RL loops are automatically attributed to each instruction, and low performers are periodically pruned. New instructions are generated and verified through an on-policy reflection mechanism, where an LLM-based optimizer analyzes past experience from a replay buffer and evolves more effective strategies given the current policy. We conduct extensive experiments on multi-turn retrieval and reasoning tasks, demonstrating that INSPO substantially outperforms strong baselines relying on static instructions. INSPO discovers innovative instructions that guide the agent toward more strategic reasoning paths, achieving substantial performance gains with only a marginal increase in computational overhead.

Experience-Guided Adaptation of Inference-Time Reasoning Strategies

Enabling agentic AI systems to adapt their problem-solving approaches based on post-training interactions remains a fundamental challenge. While systems that update and maintain a memory at inference time have been proposed, existing designs only steer the system by modifying textual input to a language model or agent, which means that they cannot change sampling parameters, remove tools, modify system prompts, or switch between agentic and workflow paradigms. On the other hand, systems that adapt more flexibly require offline optimization and remain static once deployed. We present Experience-Guided Reasoner (EGuR), which generates tailored strategies -- complete computational procedures involving LLM calls, tools, sampling parameters, and control logic -- dynamically at inference time based on accumulated experience. We achieve this using an LLM-based meta-strategy -- a strategy that outputs strategies -- enabling adaptation of all strategy components (prompts, sampling parameters, tool configurations, and control logic). EGuR operates through two components: a Guide generates multiple candidate strategies conditioned on the current problem and structured memory of past experiences, while a Consolidator integrates execution feedback to improve future strategy generation. This produces complete, ready-to-run strategies optimized for each problem, which can be cached, retrieved, and executed as needed without wasting resources. Across five challenging benchmarks (AIME 2025, 3-SAT, and three Big Bench Extra Hard tasks), EGuR achieves up to 14% accuracy improvements over the strongest baselines while reducing computational costs by up to 111x, with both metrics improving as the system gains experience.

When Reasoning Beats Scale: A 1.5B Reasoning Model Outranks 13B LLMs as Discriminator

Large Language Models (LLM) with reasoning capabilities offer a promising path for improving candidate evaluation in planning frameworks, but their relative performance against traditional non-reasoning models remains largely underexplored. In this study, we benchmark a distilled 1.5B parameter reasoning model (DeepSeek-R1) against several state-of-the-art non-reasoning LLMs within a generator-discriminator LLM planning framework for the text-to-SQL task. For this, we introduce a novel method for extracting soft scores from the chain-of-thought (CoT) outputs from reasoning that enables fine-grained ranking of candidates. Our central hypothesis is that reasoning models are more effective discriminators than non-reasoning LLMs. Our results show that distilled DeepSeek-R1-1.5B achieves up to 87% higher F1 and 3.7% better discrimination accuracy than CodeLlama-7B, as well as 3.7% higher execution accuracy than CodeLlama-13B, despite having significantly fewer parameters. Furthermore, we find that there is a limit to the logical capabilities of reasoning models, and only providing more context or allowing more compute budget for reasoning is not enough to improve their discrimination performance. Finally, we demonstrate that, unlike non-reasoning LLMs, reasoning models find generation more challenging than discrimination and may underperform as generators compared to smaller non-reasoning LLMs. Our work highlights the potential of reasoning models as discriminators in agentic frameworks, far outweighing their capabilities as generators, offering insights into their optimal role within LLM planning infrastructures.

  • 1 authors
·
Apr 30

LocalSearchBench: Benchmarking Agentic Search in Real-World Local Life Services

Recent advances in large reasoning models (LRMs) have enabled agentic search systems to perform complex multi-step reasoning across multiple sources. However, most studies focus on general information retrieval and rarely explores vertical domains with unique challenges. In this work, we focus on local life services and introduce LocalSearchBench, which encompass diverse and complex business scenarios. Real-world queries in this domain are often ambiguous and require multi-hop reasoning across merchants and products, remaining challenging and not fully addressed. As the first comprehensive benchmark for agentic search in local life services, LocalSearchBench includes over 150,000 high-quality entries from various cities and business types. We construct 300 multi-hop QA tasks based on real user queries, challenging agents to understand questions and retrieve information in multiple steps. We also developed LocalPlayground, a unified environment integrating multiple tools for agent interaction. Experiments show that even state-of-the-art LRMs struggle on LocalSearchBench: the best model (DeepSeek-V3.1) achieves only 34.34% correctness, and most models have issues with completeness (average 77.33%) and faithfulness (average 61.99%). This highlights the need for specialized benchmarks and domain-specific agent training in local life services. Code, Benchmark, and Leaderboard are available at localsearchbench.github.io.

  • 14 authors
·
Dec 8

Patho-AgenticRAG: Towards Multimodal Agentic Retrieval-Augmented Generation for Pathology VLMs via Reinforcement Learning

Although Vision Language Models (VLMs) have shown strong generalization in medical imaging, pathology presents unique challenges due to ultra-high resolution, complex tissue structures, and nuanced clinical semantics. These factors make pathology VLMs prone to hallucinations, i.e., generating outputs inconsistent with visual evidence, which undermines clinical trust. Existing RAG approaches in this domain largely depend on text-based knowledge bases, limiting their ability to leverage diagnostic visual cues. To address this, we propose Patho-AgenticRAG, a multimodal RAG framework with a database built on page-level embeddings from authoritative pathology textbooks. Unlike traditional text-only retrieval systems, it supports joint text-image search, enabling direct retrieval of textbook pages that contain both the queried text and relevant visual cues, thus avoiding the loss of critical image-based information. Patho-AgenticRAG also supports reasoning, task decomposition, and multi-turn search interactions, improving accuracy in complex diagnostic scenarios. Experiments show that Patho-AgenticRAG significantly outperforms existing multimodal models in complex pathology tasks like multiple-choice diagnosis and visual question answering. Our project is available at the Patho-AgenticRAG repository: https://github.com/Wenchuan-Zhang/Patho-AgenticRAG.

  • 9 authors
·
Aug 4

In-the-Flow Agentic System Optimization for Effective Planning and Tool Use

Outcome-driven reinforcement learning has advanced reasoning in large language models (LLMs), but prevailing tool-augmented approaches train a single, monolithic policy that interleaves thoughts and tool calls under full context; this scales poorly with long horizons and diverse tools and generalizes weakly to new scenarios. Agentic systems offer a promising alternative by decomposing work across specialized modules, yet most remain training-free or rely on offline training decoupled from the live dynamics of multi-turn interaction. We introduce AgentFlow, a trainable, in-the-flow agentic framework that coordinates four modules (planner, executor, verifier, generator) through an evolving memory and directly optimizes its planner inside the multi-turn loop. To train on-policy in live environments, we propose Flow-based Group Refined Policy Optimization (Flow-GRPO), which tackles long-horizon, sparse-reward credit assignment by converting multi-turn optimization into a sequence of tractable single-turn policy updates. It broadcasts a single, verifiable trajectory-level outcome to every turn to align local planner decisions with global success and stabilizes learning with group-normalized advantages. Across ten benchmarks, AgentFlow with a 7B-scale backbone outperforms top-performing baselines with average accuracy gains of 14.9% on search, 14.0% on agentic, 14.5% on mathematical, and 4.1% on scientific tasks, even surpassing larger proprietary models like GPT-4o. Further analyses confirm the benefits of in-the-flow optimization, showing improved planning, enhanced tool-calling reliability, and positive scaling with model size and reasoning turns.

Stanford Stanford AI
·
Oct 7 3

VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use

Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2times speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.

TIGER-Lab TIGER-Lab
·
Aug 31 4

RecoWorld: Building Simulated Environments for Agentic Recommender Systems

We present RecoWorld, a blueprint for building simulated environments tailored to agentic recommender systems. Such environments give agents a proper training space where they can learn from errors without impacting real users. RecoWorld distinguishes itself with a dual-view architecture: a simulated user and an agentic recommender engage in multi-turn interactions aimed at maximizing user retention. The user simulator reviews recommended items, updates its mindset, and when sensing potential user disengagement, generates reflective instructions. The agentic recommender adapts its recommendations by incorporating these user instructions and reasoning traces, creating a dynamic feedback loop that actively engages users. This process leverages the exceptional reasoning capabilities of modern LLMs. We explore diverse content representations within the simulator, including text-based, multimodal, and semantic ID modeling, and discuss how multi-turn RL enables the recommender to refine its strategies through iterative interactions. RecoWorld also supports multi-agent simulations, allowing creators to simulate the responses of targeted user populations. It marks an important first step toward recommender systems where users and agents collaboratively shape personalized information streams. We envision new interaction paradigms where "user instructs, recommender responds," jointly optimizing user retention and engagement.

  • 15 authors
·
Sep 12 2

Apriel-H1: Towards Efficient Enterprise Reasoning Models

Large Language Models (LLMs) achieve remarkable reasoning capabilities through transformer architectures with attention mechanisms. However, transformers suffer from quadratic time and memory complexity in the attention module (MHA) and require caching key-value states during inference, which severely limits throughput and scalability. High inference throughput is critical for agentic tasks, long-context reasoning, efficient deployment under high request loads, and more efficient test-time compute scaling. State Space Models (SSMs) such as Mamba offer a promising alternative with linear inference complexity and a constant memory footprint via recurrent computation with fixed-size hidden states. In this technical report we introduce the Apriel-H1 family of hybrid LLMs that combine transformer attention and SSM sequence mixers for efficient reasoning at 15B model size. These models are obtained through incremental distillation from a pretrained reasoning transformer, Apriel-Nemotron-15B-Thinker, progressively replacing less critical attention layers with linear Mamba blocks. We release multiple post-distillation variants of Apriel-H1-15B-Thinker with different SSM-to-MHA ratios and analyse how reasoning performance degrades as more Mamba layers replace MHA. Additionally, we release a 30/50 hybrid variant of Apriel-H1, further fine-tuned on a supervised dataset of reasoning traces, achieving over 2x higher inference throughput when deployed in the production-ready vLLM environment, with minimal degradation in reasoning performance. This shows that distilled hybrid SSM-Transformer architectures can deliver substantial efficiency gains over the pretrained transformer equivalent without substantially compromising the reasoning quality.

  • 13 authors
·
Nov 4

Diagnosing Failure Root Causes in Platform-Orchestrated Agentic Systems: Dataset, Taxonomy, and Benchmark

Agentic systems consisting of multiple LLM-driven agents coordinating through tools and structured interactions, are increasingly deployed for complex reasoning and problem-solving tasks. At the same time, emerging low-code and template-based agent development platforms (e.g., Dify) enable users to rapidly build and orchestrate agentic systems, which we refer to as platform-orchestrated agentic systems. However, these systems are also fragile and it remains unclear how to systematically identify their potential failure root cause. This paper presents a study of root cause identification of these platform-orchestrated agentic systems. To support this initiative, we construct a dataset AgentFail containing 307 failure logs from ten agentic systems, each with fine-grained annotations linking failures to their root causes. We additionally utilize counterfactual reasoning-based repair strategy to ensure the reliability of the annotation. Building on the dataset, we develop a taxonomy that characterizes failure root causes and analyze their distribution across different platforms and task domains. Furthermore, we introduce a benchmark that leverages LLMs for automatically identifying root causes, in which we also utilize the proposed taxonomy as guidance for LLMs. Results show that the taxonomy can largely improve the performance, thereby confirming its utility. Nevertheless, the accuracy of root cause identification reaches at most 33.6%, which indicates that this task still remains challenging. In light of these results, we also provide actionable guidelines for building such agentic systems. In summary, this paper provides a reliable dataset of failure root cause for platform-orchestrated agentic systems, corresponding taxonomy and benchmark, which serves as a foundation for advancing the development of more reliable agentic systems.

  • 7 authors
·
Sep 28

RE-Searcher: Robust Agentic Search with Goal-oriented Planning and Self-reflection

Large language models (LLMs) excel at knowledge-intensive question answering and reasoning, yet their real-world deployment remains constrained by knowledge cutoff, hallucination, and limited interaction modalities. Augmenting LLMs with external search tools helps alleviate these issues, but it also exposes agents to a complex search environment in which small, plausible variations in query formulation can steer reasoning into unproductive trajectories and amplify errors. We present a systematic analysis that quantifies how environmental complexity induces fragile search behaviors and, in turn, degrades overall performance. To address this challenge, we propose a simple yet effective approach to instantiate a search agent, RE-Searcher. During search, RE-Searcher explicitly articulates a concrete search goal and subsequently reflects on whether the retrieved evidence satisfies that goal. This combination of goal-oriented planning and self-reflection enables RE-Searcher to resist spurious cues in complex search environments and perform robust search. Extensive experiments show that our method improves search accuracy and achieves state-of-the-art results. Perturbation studies further demonstrate substantial resilience to noisy or misleading external signals, mitigating the fragility of the search process. We believe these findings offer practical guidance for integrating LLM-powered agents into more complex interactive environments and enabling more autonomous decision-making.

  • 14 authors
·
Sep 30

Multimodal DeepResearcher: Generating Text-Chart Interleaved Reports From Scratch with Agentic Framework

Visualizations play a crucial part in effective communication of concepts and information. Recent advances in reasoning and retrieval augmented generation have enabled Large Language Models (LLMs) to perform deep research and generate comprehensive reports. Despite its progress, existing deep research frameworks primarily focus on generating text-only content, leaving the automated generation of interleaved texts and visualizations underexplored. This novel task poses key challenges in designing informative visualizations and effectively integrating them with text reports. To address these challenges, we propose Formal Description of Visualization (FDV), a structured textual representation of charts that enables LLMs to learn from and generate diverse, high-quality visualizations. Building on this representation, we introduce Multimodal DeepResearcher, an agentic framework that decomposes the task into four stages: (1) researching, (2) exemplar report textualization, (3) planning, and (4) multimodal report generation. For the evaluation of generated multimodal reports, we develop MultimodalReportBench, which contains 100 diverse topics served as inputs along with 5 dedicated metrics. Extensive experiments across models and evaluation methods demonstrate the effectiveness of Multimodal DeepResearcher. Notably, utilizing the same Claude 3.7 Sonnet model, Multimodal DeepResearcher achieves an 82\% overall win rate over the baseline method.

  • 8 authors
·
Jun 3 2

SealQA: Raising the Bar for Reasoning in Search-Augmented Language Models

We introduce SealQA, a new challenge benchmark for evaluating SEarch-Augmented Language models on fact-seeking questions where web search yields conflicting, noisy, or unhelpful results. SealQA comes in three flavors: (1) Seal-0 (main) and (2) Seal-Hard, which assess factual accuracy and reasoning capabilities, with Seal-0 focusing on the most challenging questions where chat models (e.g., GPT-4.1) typically achieve near-zero accuracy; and (3) LongSeal, which extends SealQA to test long-context, multi-document reasoning in "needle-in-a-haystack" settings. Our evaluation reveals critical limitations in current models: Even frontier LLMs perform poorly across all SealQA flavors. On Seal-0, frontier agentic models equipped with tools like o3 and o4-mini achieve only 17.1% and 6.3% accuracy, respectively, at their best reasoning efforts. We find that advanced reasoning models such as DeepSeek-R1-671B and o3-mini are highly vulnerable to noisy search results. Notably, increasing test-time compute does not yield reliable gains across o3-mini, o4-mini, and o3, with performance often plateauing or even declining early. Additionally, while recent models are less affected by the "lost-in-the-middle" issue, they still fail to reliably identify relevant documents in LongSeal when faced with numerous distractors. To facilitate future work, we release SealQA at huggingface.co/datasets/vtllms/sealqa.

  • 6 authors
·
Jun 1 2

Small Language Models for Agentic Systems: A Survey of Architectures, Capabilities, and Deployment Trade offs

Small language models (SLMs; 1-12B params, sometimes up to 20B) are sufficient and often superior for agentic workloads where the objective is schema- and API-constrained accuracy rather than open-ended generation. We synthesize recent evidence across open and proprietary SLMs (Phi-4-Mini, Qwen-2.5-7B, Gemma-2-9B, Llama-3.2-1B/3B, Ministral-3B/8B, Apple on-device 3B, DeepSeek-R1-Distill) and connect it to modern evaluations (BFCL v3/v4, StableToolBench) and serving stacks (vLLM, SGLang, TensorRT-LLM) paired with guided decoding libraries (XGrammar, Outlines). We formalize SLM-default, LLM-fallback systems with uncertainty-aware routing and verifier cascades, and propose engineering metrics that reflect real production goals: cost per successful task (CPS), schema validity rate, executable call rate, p50/p95 latency, and energy per request. Guided decoding, strict JSON Schema outputs, and validator-first tool execution close much of the capability gap with larger models and often let SLMs match or surpass LLMs on tool use, function calling, and RAG at 10x-100x lower token cost with materially better latency and energy. We provide design patterns for agent stacks that prioritize SLMs: schema-first prompting, type-safe function registries, confidence scoring with verifier rollups, and lightweight adaptation via LoRA/QLoRA. We also delineate limits where fallback remains valuable (open-domain reasoning and some long-horizon planning). The result is a practical blueprint for building fast, inexpensive, and reliable agents that default to SLMs while preserving headroom with targeted LLM assistance. Keywords: small language models, agents, function calling, structured outputs, JSON Schema, guided decoding, LoRA/QLoRA, routing, energy efficiency, edge inference

  • 2 authors
·
Oct 4

TxGemma: Efficient and Agentic LLMs for Therapeutics

Therapeutic development is a costly and high-risk endeavor that is often plagued by high failure rates. To address this, we introduce TxGemma, a suite of efficient, generalist large language models (LLMs) capable of therapeutic property prediction as well as interactive reasoning and explainability. Unlike task-specific models, TxGemma synthesizes information from diverse sources, enabling broad application across the therapeutic development pipeline. The suite includes 2B, 9B, and 27B parameter models, fine-tuned from Gemma-2 on a comprehensive dataset of small molecules, proteins, nucleic acids, diseases, and cell lines. Across 66 therapeutic development tasks, TxGemma achieved superior or comparable performance to the state-of-the-art generalist model on 64 (superior on 45), and against state-of-the-art specialist models on 50 (superior on 26). Fine-tuning TxGemma models on therapeutic downstream tasks, such as clinical trial adverse event prediction, requires less training data than fine-tuning base LLMs, making TxGemma suitable for data-limited applications. Beyond these predictive capabilities, TxGemma features conversational models that bridge the gap between general LLMs and specialized property predictors. These allow scientists to interact in natural language, provide mechanistic reasoning for predictions based on molecular structure, and engage in scientific discussions. Building on this, we further introduce Agentic-Tx, a generalist therapeutic agentic system powered by Gemini 2.5 that reasons, acts, manages diverse workflows, and acquires external domain knowledge. Agentic-Tx surpasses prior leading models on the Humanity's Last Exam benchmark (Chemistry & Biology) with 52.3% relative improvement over o3-mini (high) and 26.7% over o3-mini (high) on GPQA (Chemistry) and excels with improvements of 6.3% (ChemBench-Preference) and 2.4% (ChemBench-Mini) over o3-mini (high).

  • 9 authors
·
Apr 8

Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models

Recent breakthroughs in Large Language Models (LLMs) have led to the emergence of agentic AI systems that extend beyond the capabilities of standalone models. By empowering LLMs to perceive external environments, integrate multimodal information, and interact with various tools, these agentic systems exhibit greater autonomy and adaptability across complex tasks. This evolution brings new opportunities to recommender systems (RS): LLM-based Agentic RS (LLM-ARS) can offer more interactive, context-aware, and proactive recommendations, potentially reshaping the user experience and broadening the application scope of RS. Despite promising early results, fundamental challenges remain, including how to effectively incorporate external knowledge, balance autonomy with controllability, and evaluate performance in dynamic, multimodal settings. In this perspective paper, we first present a systematic analysis of LLM-ARS: (1) clarifying core concepts and architectures; (2) highlighting how agentic capabilities -- such as planning, memory, and multimodal reasoning -- can enhance recommendation quality; and (3) outlining key research questions in areas such as safety, efficiency, and lifelong personalization. We also discuss open problems and future directions, arguing that LLM-ARS will drive the next wave of RS innovation. Ultimately, we foresee a paradigm shift toward intelligent, autonomous, and collaborative recommendation experiences that more closely align with users' evolving needs and complex decision-making processes.

  • 12 authors
·
Mar 20

TeaRAG: A Token-Efficient Agentic Retrieval-Augmented Generation Framework

Retrieval-Augmented Generation (RAG) utilizes external knowledge to augment Large Language Models' (LLMs) reliability. For flexibility, agentic RAG employs autonomous, multi-round retrieval and reasoning to resolve queries. Although recent agentic RAG has improved via reinforcement learning, they often incur substantial token overhead from search and reasoning processes. This trade-off prioritizes accuracy over efficiency. To address this issue, this work proposes TeaRAG, a token-efficient agentic RAG framework capable of compressing both retrieval content and reasoning steps. 1) First, the retrieved content is compressed by augmenting chunk-based semantic retrieval with a graph retrieval using concise triplets. A knowledge association graph is then built from semantic similarity and co-occurrence. Finally, Personalized PageRank is leveraged to highlight key knowledge within this graph, reducing the number of tokens per retrieval. 2) Besides, to reduce reasoning steps, Iterative Process-aware Direct Preference Optimization (IP-DPO) is proposed. Specifically, our reward function evaluates the knowledge sufficiency by a knowledge matching mechanism, while penalizing excessive reasoning steps. This design can produce high-quality preference-pair datasets, supporting iterative DPO to improve reasoning conciseness. Across six datasets, TeaRAG improves the average Exact Match by 4% and 2% while reducing output tokens by 61% and 59% on Llama3-8B-Instruct and Qwen2.5-14B-Instruct, respectively. Code is available at https://github.com/Applied-Machine-Learning-Lab/TeaRAG.

  • 12 authors
·
Nov 7

FinAgentBench: A Benchmark Dataset for Agentic Retrieval in Financial Question Answering

Accurate information retrieval (IR) is critical in the financial domain, where investors must identify relevant information from large collections of documents. Traditional IR methods -- whether sparse or dense -- often fall short in retrieval accuracy, as it requires not only capturing semantic similarity but also performing fine-grained reasoning over document structure and domain-specific knowledge. Recent advances in large language models (LLMs) have opened up new opportunities for retrieval with multi-step reasoning, where the model ranks passages through iterative reasoning about which information is most relevant to a given query. However, there exists no benchmark to evaluate such capabilities in the financial domain. To address this gap, we introduce FinAgentBench, the first large-scale benchmark for evaluating retrieval with multi-step reasoning in finance -- a setting we term agentic retrieval. The benchmark consists of 26K expert-annotated examples on S&P-500 listed firms and assesses whether LLM agents can (1) identify the most relevant document type among candidates, and (2) pinpoint the key passage within the selected document. Our evaluation framework explicitly separates these two reasoning steps to address context limitations. This design enables to provide a quantitative basis for understanding retrieval-centric LLM behavior in finance. We evaluate a suite of state-of-the-art models and further demonstrated how targeted fine-tuning can significantly improve agentic retrieval performance. Our benchmark provides a foundation for studying retrieval-centric LLM behavior in complex, domain-specific tasks for finance.

  • 11 authors
·
Aug 7

UAVs Meet Agentic AI: A Multidomain Survey of Autonomous Aerial Intelligence and Agentic UAVs

Agentic UAVs represent a new frontier in autonomous aerial intelligence, integrating perception, decision-making, memory, and collaborative planning to operate adaptively in complex, real-world environments. Driven by recent advances in Agentic AI, these systems surpass traditional UAVs by exhibiting goal-driven behavior, contextual reasoning, and interactive autonomy. We provide a comprehensive foundation for understanding the architectural components and enabling technologies that distinguish Agentic UAVs from traditional autonomous UAVs. Furthermore, a detailed comparative analysis highlights advancements in autonomy with AI agents, learning, and mission flexibility. This study explores seven high-impact application domains precision agriculture, construction & mining, disaster response, environmental monitoring, infrastructure inspection, logistics, security, and wildlife conservation, illustrating the broad societal value of agentic aerial intelligence. Furthermore, we identify key challenges in technical constraints, regulatory limitations, and data-model reliability, and we present emerging solutions across hardware innovation, learning architectures, and human-AI interaction. Finally, a future roadmap is proposed, outlining pathways toward self-evolving aerial ecosystems, system-level collaboration, and sustainable, equitable deployments. This survey establishes a foundational framework for the future development, deployment, and governance of agentic aerial systems (Agentic UAVs) across diverse societal and industrial domains.

  • 3 authors
·
Jun 7