Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeHierarchical Text-Conditional Image Generation with CLIP Latents
Contrastive models like CLIP have been shown to learn robust representations of images that capture both semantics and style. To leverage these representations for image generation, we propose a two-stage model: a prior that generates a CLIP image embedding given a text caption, and a decoder that generates an image conditioned on the image embedding. We show that explicitly generating image representations improves image diversity with minimal loss in photorealism and caption similarity. Our decoders conditioned on image representations can also produce variations of an image that preserve both its semantics and style, while varying the non-essential details absent from the image representation. Moreover, the joint embedding space of CLIP enables language-guided image manipulations in a zero-shot fashion. We use diffusion models for the decoder and experiment with both autoregressive and diffusion models for the prior, finding that the latter are computationally more efficient and produce higher-quality samples.
Fast Text-Conditional Discrete Denoising on Vector-Quantized Latent Spaces
Conditional text-to-image generation has seen countless recent improvements in terms of quality, diversity and fidelity. Nevertheless, most state-of-the-art models require numerous inference steps to produce faithful generations, resulting in performance bottlenecks for end-user applications. In this paper we introduce Paella, a novel text-to-image model requiring less than 10 steps to sample high-fidelity images, using a speed-optimized architecture allowing to sample a single image in less than 500 ms, while having 573M parameters. The model operates on a compressed & quantized latent space, it is conditioned on CLIP embeddings and uses an improved sampling function over previous works. Aside from text-conditional image generation, our model is able to do latent space interpolation and image manipulations such as inpainting, outpainting, and structural editing. We release all of our code and pretrained models at https://github.com/dome272/Paella
Enhancing Conditional Image Generation with Explainable Latent Space Manipulation
In the realm of image synthesis, achieving fidelity to a reference image while adhering to conditional prompts remains a significant challenge. This paper proposes a novel approach that integrates a diffusion model with latent space manipulation and gradient-based selective attention mechanisms to address this issue. Leveraging Grad-SAM (Gradient-based Selective Attention Manipulation), we analyze the cross attention maps of the cross attention layers and gradients for the denoised latent vector, deriving importance scores of elements of denoised latent vector related to the subject of interest. Using this information, we create masks at specific timesteps during denoising to preserve subjects while seamlessly integrating the reference image features. This approach ensures the faithful formation of subjects based on conditional prompts, while concurrently refining the background for a more coherent composition. Our experiments on places365 dataset demonstrate promising results, with our proposed model achieving the lowest mean and median Frechet Inception Distance (FID) scores compared to baseline models, indicating superior fidelity preservation. Furthermore, our model exhibits competitive performance in aligning the generated images with provided textual descriptions, as evidenced by high CLIP scores. These results highlight the effectiveness of our approach in both fidelity preservation and textual context preservation, offering a significant advancement in text-to-image synthesis tasks.
Not All Steps are Created Equal: Selective Diffusion Distillation for Image Manipulation
Conditional diffusion models have demonstrated impressive performance in image manipulation tasks. The general pipeline involves adding noise to the image and then denoising it. However, this method faces a trade-off problem: adding too much noise affects the fidelity of the image while adding too little affects its editability. This largely limits their practical applicability. In this paper, we propose a novel framework, Selective Diffusion Distillation (SDD), that ensures both the fidelity and editability of images. Instead of directly editing images with a diffusion model, we train a feedforward image manipulation network under the guidance of the diffusion model. Besides, we propose an effective indicator to select the semantic-related timestep to obtain the correct semantic guidance from the diffusion model. This approach successfully avoids the dilemma caused by the diffusion process. Our extensive experiments demonstrate the advantages of our framework. Code is released at https://github.com/AndysonYs/Selective-Diffusion-Distillation.
DeltaEdit: Exploring Text-free Training for Text-Driven Image Manipulation
Text-driven image manipulation remains challenging in training or inference flexibility. Conditional generative models depend heavily on expensive annotated training data. Meanwhile, recent frameworks, which leverage pre-trained vision-language models, are limited by either per text-prompt optimization or inference-time hyper-parameters tuning. In this work, we propose a novel framework named DeltaEdit to address these problems. Our key idea is to investigate and identify a space, namely delta image and text space that has well-aligned distribution between CLIP visual feature differences of two images and CLIP textual embedding differences of source and target texts. Based on the CLIP delta space, the DeltaEdit network is designed to map the CLIP visual features differences to the editing directions of StyleGAN at training phase. Then, in inference phase, DeltaEdit predicts the StyleGAN's editing directions from the differences of the CLIP textual features. In this way, DeltaEdit is trained in a text-free manner. Once trained, it can well generalize to various text prompts for zero-shot inference without bells and whistles. Code is available at https://github.com/Yueming6568/DeltaEdit.
CLIP-NeRF: Text-and-Image Driven Manipulation of Neural Radiance Fields
We present CLIP-NeRF, a multi-modal 3D object manipulation method for neural radiance fields (NeRF). By leveraging the joint language-image embedding space of the recent Contrastive Language-Image Pre-Training (CLIP) model, we propose a unified framework that allows manipulating NeRF in a user-friendly way, using either a short text prompt or an exemplar image. Specifically, to combine the novel view synthesis capability of NeRF and the controllable manipulation ability of latent representations from generative models, we introduce a disentangled conditional NeRF architecture that allows individual control over both shape and appearance. This is achieved by performing the shape conditioning via applying a learned deformation field to the positional encoding and deferring color conditioning to the volumetric rendering stage. To bridge this disentangled latent representation to the CLIP embedding, we design two code mappers that take a CLIP embedding as input and update the latent codes to reflect the targeted editing. The mappers are trained with a CLIP-based matching loss to ensure the manipulation accuracy. Furthermore, we propose an inverse optimization method that accurately projects an input image to the latent codes for manipulation to enable editing on real images. We evaluate our approach by extensive experiments on a variety of text prompts and exemplar images and also provide an intuitive interface for interactive editing. Our implementation is available at https://cassiepython.github.io/clipnerf/
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
We present a new method for synthesizing high-resolution photo-realistic images from semantic label maps using conditional generative adversarial networks (conditional GANs). Conditional GANs have enabled a variety of applications, but the results are often limited to low-resolution and still far from realistic. In this work, we generate 2048x1024 visually appealing results with a novel adversarial loss, as well as new multi-scale generator and discriminator architectures. Furthermore, we extend our framework to interactive visual manipulation with two additional features. First, we incorporate object instance segmentation information, which enables object manipulations such as removing/adding objects and changing the object category. Second, we propose a method to generate diverse results given the same input, allowing users to edit the object appearance interactively. Human opinion studies demonstrate that our method significantly outperforms existing methods, advancing both the quality and the resolution of deep image synthesis and editing.
Readout Guidance: Learning Control from Diffusion Features
We present Readout Guidance, a method for controlling text-to-image diffusion models with learned signals. Readout Guidance uses readout heads, lightweight networks trained to extract signals from the features of a pre-trained, frozen diffusion model at every timestep. These readouts can encode single-image properties, such as pose, depth, and edges; or higher-order properties that relate multiple images, such as correspondence and appearance similarity. Furthermore, by comparing the readout estimates to a user-defined target, and back-propagating the gradient through the readout head, these estimates can be used to guide the sampling process. Compared to prior methods for conditional generation, Readout Guidance requires significantly fewer added parameters and training samples, and offers a convenient and simple recipe for reproducing different forms of conditional control under a single framework, with a single architecture and sampling procedure. We showcase these benefits in the applications of drag-based manipulation, identity-consistent generation, and spatially aligned control. Project page: https://readout-guidance.github.io.
Condition-Aware Neural Network for Controlled Image Generation
We present Condition-Aware Neural Network (CAN), a new method for adding control to image generative models. In parallel to prior conditional control methods, CAN controls the image generation process by dynamically manipulating the weight of the neural network. This is achieved by introducing a condition-aware weight generation module that generates conditional weight for convolution/linear layers based on the input condition. We test CAN on class-conditional image generation on ImageNet and text-to-image generation on COCO. CAN consistently delivers significant improvements for diffusion transformer models, including DiT and UViT. In particular, CAN combined with EfficientViT (CaT) achieves 2.78 FID on ImageNet 512x512, surpassing DiT-XL/2 while requiring 52x fewer MACs per sampling step.
A Simple Approach to Unifying Diffusion-based Conditional Generation
Recent progress in image generation has sparked research into controlling these models through condition signals, with various methods addressing specific challenges in conditional generation. Instead of proposing another specialized technique, we introduce a simple, unified framework to handle diverse conditional generation tasks involving a specific image-condition correlation. By learning a joint distribution over a correlated image pair (e.g. image and depth) with a diffusion model, our approach enables versatile capabilities via different inference-time sampling schemes, including controllable image generation (e.g. depth to image), estimation (e.g. image to depth), signal guidance, joint generation (image & depth), and coarse control. Previous attempts at unification often introduce significant complexity through multi-stage training, architectural modification, or increased parameter counts. In contrast, our simple formulation requires a single, computationally efficient training stage, maintains the standard model input, and adds minimal learned parameters (15% of the base model). Moreover, our model supports additional capabilities like non-spatially aligned and coarse conditioning. Extensive results show that our single model can produce comparable results with specialized methods and better results than prior unified methods. We also demonstrate that multiple models can be effectively combined for multi-signal conditional generation.
Image-to-Image Translation with Conditional Adversarial Networks
We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Indeed, since the release of the pix2pix software associated with this paper, a large number of internet users (many of them artists) have posted their own experiments with our system, further demonstrating its wide applicability and ease of adoption without the need for parameter tweaking. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without hand-engineering our loss functions either.
Prompt Tuning Inversion for Text-Driven Image Editing Using Diffusion Models
Recently large-scale language-image models (e.g., text-guided diffusion models) have considerably improved the image generation capabilities to generate photorealistic images in various domains. Based on this success, current image editing methods use texts to achieve intuitive and versatile modification of images. To edit a real image using diffusion models, one must first invert the image to a noisy latent from which an edited image is sampled with a target text prompt. However, most methods lack one of the following: user-friendliness (e.g., additional masks or precise descriptions of the input image are required), generalization to larger domains, or high fidelity to the input image. In this paper, we design an accurate and quick inversion technique, Prompt Tuning Inversion, for text-driven image editing. Specifically, our proposed editing method consists of a reconstruction stage and an editing stage. In the first stage, we encode the information of the input image into a learnable conditional embedding via Prompt Tuning Inversion. In the second stage, we apply classifier-free guidance to sample the edited image, where the conditional embedding is calculated by linearly interpolating between the target embedding and the optimized one obtained in the first stage. This technique ensures a superior trade-off between editability and high fidelity to the input image of our method. For example, we can change the color of a specific object while preserving its original shape and background under the guidance of only a target text prompt. Extensive experiments on ImageNet demonstrate the superior editing performance of our method compared to the state-of-the-art baselines.
ImagenHub: Standardizing the evaluation of conditional image generation models
Recently, a myriad of conditional image generation and editing models have been developed to serve different downstream tasks, including text-to-image generation, text-guided image editing, subject-driven image generation, control-guided image generation, etc. However, we observe huge inconsistencies in experimental conditions: datasets, inference, and evaluation metrics - render fair comparisons difficult. This paper proposes ImagenHub, which is a one-stop library to standardize the inference and evaluation of all the conditional image generation models. Firstly, we define seven prominent tasks and curate high-quality evaluation datasets for them. Secondly, we built a unified inference pipeline to ensure fair comparison. Thirdly, we design two human evaluation scores, i.e. Semantic Consistency and Perceptual Quality, along with comprehensive guidelines to evaluate generated images. We train expert raters to evaluate the model outputs based on the proposed metrics. Our human evaluation achieves a high inter-worker agreement of Krippendorff's alpha on 76% models with a value higher than 0.4. We comprehensively evaluated a total of around 30 models and observed three key takeaways: (1) the existing models' performance is generally unsatisfying except for Text-guided Image Generation and Subject-driven Image Generation, with 74% models achieving an overall score lower than 0.5. (2) we examined the claims from published papers and found 83% of them hold with a few exceptions. (3) None of the existing automatic metrics has a Spearman's correlation higher than 0.2 except subject-driven image generation. Moving forward, we will continue our efforts to evaluate newly published models and update our leaderboard to keep track of the progress in conditional image generation.
UNIC-Adapter: Unified Image-instruction Adapter with Multi-modal Transformer for Image Generation
Recently, text-to-image generation models have achieved remarkable advancements, particularly with diffusion models facilitating high-quality image synthesis from textual descriptions. However, these models often struggle with achieving precise control over pixel-level layouts, object appearances, and global styles when using text prompts alone. To mitigate this issue, previous works introduce conditional images as auxiliary inputs for image generation, enhancing control but typically necessitating specialized models tailored to different types of reference inputs. In this paper, we explore a new approach to unify controllable generation within a single framework. Specifically, we propose the unified image-instruction adapter (UNIC-Adapter) built on the Multi-Modal-Diffusion Transformer architecture, to enable flexible and controllable generation across diverse conditions without the need for multiple specialized models. Our UNIC-Adapter effectively extracts multi-modal instruction information by incorporating both conditional images and task instructions, injecting this information into the image generation process through a cross-attention mechanism enhanced by Rotary Position Embedding. Experimental results across a variety of tasks, including pixel-level spatial control, subject-driven image generation, and style-image-based image synthesis, demonstrate the effectiveness of our UNIC-Adapter in unified controllable image generation.
Stable Diffusion Reference Only: Image Prompt and Blueprint Jointly Guided Multi-Condition Diffusion Model for Secondary Painting
Stable Diffusion and ControlNet have achieved excellent results in the field of image generation and synthesis. However, due to the granularity and method of its control, the efficiency improvement is limited for professional artistic creations such as comics and animation production whose main work is secondary painting. In the current workflow, fixing characters and image styles often need lengthy text prompts, and even requires further training through TextualInversion, DreamBooth or other methods, which is very complicated and expensive for painters. Therefore, we present a new method in this paper, Stable Diffusion Reference Only, a images-to-image self-supervised model that uses only two types of conditional images for precise control generation to accelerate secondary painting. The first type of conditional image serves as an image prompt, supplying the necessary conceptual and color information for generation. The second type is blueprint image, which controls the visual structure of the generated image. It is natively embedded into the original UNet, eliminating the need for ControlNet. We released all the code for the module and pipeline, and trained a controllable character line art coloring model at https://github.com/aihao2000/stable-diffusion-reference-only, that achieved state-of-the-art results in this field. This verifies the effectiveness of the structure and greatly improves the production efficiency of animations, comics, and fanworks.
NamedCurves: Learned Image Enhancement via Color Naming
A popular method for enhancing images involves learning the style of a professional photo editor using pairs of training images comprised of the original input with the editor-enhanced version. When manipulating images, many editing tools offer a feature that allows the user to manipulate a limited selection of familiar colors. Editing by color name allows easy adjustment of elements like the "blue" of the sky or the "green" of trees. Inspired by this approach to color manipulation, we propose NamedCurves, a learning-based image enhancement technique that separates the image into a small set of named colors. Our method learns to globally adjust the image for each specific named color via tone curves and then combines the images using an attention-based fusion mechanism to mimic spatial editing. We demonstrate the effectiveness of our method against several competing methods on the well-known Adobe 5K dataset and the PPR10K dataset, showing notable improvements.
Augmented Conditioning Is Enough For Effective Training Image Generation
Image generation abilities of text-to-image diffusion models have significantly advanced, yielding highly photo-realistic images from descriptive text and increasing the viability of leveraging synthetic images to train computer vision models. To serve as effective training data, generated images must be highly realistic while also sufficiently diverse within the support of the target data distribution. Yet, state-of-the-art conditional image generation models have been primarily optimized for creative applications, prioritizing image realism and prompt adherence over conditional diversity. In this paper, we investigate how to improve the diversity of generated images with the goal of increasing their effectiveness to train downstream image classification models, without fine-tuning the image generation model. We find that conditioning the generation process on an augmented real image and text prompt produces generations that serve as effective synthetic datasets for downstream training. Conditioning on real training images contextualizes the generation process to produce images that are in-domain with the real image distribution, while data augmentations introduce visual diversity that improves the performance of the downstream classifier. We validate augmentation-conditioning on a total of five established long-tail and few-shot image classification benchmarks and show that leveraging augmentations to condition the generation process results in consistent improvements over the state-of-the-art on the long-tailed benchmark and remarkable gains in extreme few-shot regimes of the remaining four benchmarks. These results constitute an important step towards effectively leveraging synthetic data for downstream training.
Towards Generic Image Manipulation Detection with Weakly-Supervised Self-Consistency Learning
As advanced image manipulation techniques emerge, detecting the manipulation becomes increasingly important. Despite the success of recent learning-based approaches for image manipulation detection, they typically require expensive pixel-level annotations to train, while exhibiting degraded performance when testing on images that are differently manipulated compared with training images. To address these limitations, we propose weakly-supervised image manipulation detection, such that only binary image-level labels (authentic or tampered with) are required for training purpose. Such a weakly-supervised setting can leverage more training images and has the potential to adapt quickly to new manipulation techniques. To improve the generalization ability, we propose weakly-supervised self-consistency learning (WSCL) to leverage the weakly annotated images. Specifically, two consistency properties are learned: multi-source consistency (MSC) and inter-patch consistency (IPC). MSC exploits different content-agnostic information and enables cross-source learning via an online pseudo label generation and refinement process. IPC performs global pair-wise patch-patch relationship reasoning to discover a complete region of manipulation. Extensive experiments validate that our WSCL, even though is weakly supervised, exhibits competitive performance compared with fully-supervised counterpart under both in-distribution and out-of-distribution evaluations, as well as reasonable manipulation localization ability.
Visual Instruction Inversion: Image Editing via Visual Prompting
Text-conditioned image editing has emerged as a powerful tool for editing images. However, in many situations, language can be ambiguous and ineffective in describing specific image edits. When faced with such challenges, visual prompts can be a more informative and intuitive way to convey ideas. We present a method for image editing via visual prompting. Given pairs of example that represent the "before" and "after" images of an edit, our goal is to learn a text-based editing direction that can be used to perform the same edit on new images. We leverage the rich, pretrained editing capabilities of text-to-image diffusion models by inverting visual prompts into editing instructions. Our results show that with just one example pair, we can achieve competitive results compared to state-of-the-art text-conditioned image editing frameworks.
3D-aware Conditional Image Synthesis
We propose pix2pix3D, a 3D-aware conditional generative model for controllable photorealistic image synthesis. Given a 2D label map, such as a segmentation or edge map, our model learns to synthesize a corresponding image from different viewpoints. To enable explicit 3D user control, we extend conditional generative models with neural radiance fields. Given widely-available monocular images and label map pairs, our model learns to assign a label to every 3D point in addition to color and density, which enables it to render the image and pixel-aligned label map simultaneously. Finally, we build an interactive system that allows users to edit the label map from any viewpoint and generate outputs accordingly.
Ctrl-U: Robust Conditional Image Generation via Uncertainty-aware Reward Modeling
In this paper, we focus on the task of conditional image generation, where an image is synthesized according to user instructions. The critical challenge underpinning this task is ensuring both the fidelity of the generated images and their semantic alignment with the provided conditions. To tackle this issue, previous studies have employed supervised perceptual losses derived from pre-trained models, i.e., reward models, to enforce alignment between the condition and the generated result. However, we observe one inherent shortcoming: considering the diversity of synthesized images, the reward model usually provides inaccurate feedback when encountering newly generated data, which can undermine the training process. To address this limitation, we propose an uncertainty-aware reward modeling, called Ctrl-U, including uncertainty estimation and uncertainty-aware regularization, designed to reduce the adverse effects of imprecise feedback from the reward model. Given the inherent cognitive uncertainty within reward models, even images generated under identical conditions often result in a relatively large discrepancy in reward loss. Inspired by the observation, we explicitly leverage such prediction variance as an uncertainty indicator. Based on the uncertainty estimation, we regularize the model training by adaptively rectifying the reward. In particular, rewards with lower uncertainty receive higher loss weights, while those with higher uncertainty are given reduced weights to allow for larger variability. The proposed uncertainty regularization facilitates reward fine-tuning through consistency construction. Extensive experiments validate the effectiveness of our methodology in improving the controllability and generation quality, as well as its scalability across diverse conditional scenarios. Code will soon be available at https://grenoble-zhang.github.io/Ctrl-U-Page/.
InstructPix2Pix: Learning to Follow Image Editing Instructions
We propose a method for editing images from human instructions: given an input image and a written instruction that tells the model what to do, our model follows these instructions to edit the image. To obtain training data for this problem, we combine the knowledge of two large pretrained models -- a language model (GPT-3) and a text-to-image model (Stable Diffusion) -- to generate a large dataset of image editing examples. Our conditional diffusion model, InstructPix2Pix, is trained on our generated data, and generalizes to real images and user-written instructions at inference time. Since it performs edits in the forward pass and does not require per example fine-tuning or inversion, our model edits images quickly, in a matter of seconds. We show compelling editing results for a diverse collection of input images and written instructions.
Conditional Image Generation with Pretrained Generative Model
In recent years, diffusion models have gained popularity for their ability to generate higher-quality images in comparison to GAN models. However, like any other large generative models, these models require a huge amount of data, computational resources, and meticulous tuning for successful training. This poses a significant challenge, rendering it infeasible for most individuals. As a result, the research community has devised methods to leverage pre-trained unconditional diffusion models with additional guidance for the purpose of conditional image generative. These methods enable conditional image generations on diverse inputs and, most importantly, circumvent the need for training the diffusion model. In this paper, our objective is to reduce the time-required and computational overhead introduced by the addition of guidance in diffusion models -- while maintaining comparable image quality. We propose a set of methods based on our empirical analysis, demonstrating a reduction in computation time by approximately threefold.
CreatiPoster: Towards Editable and Controllable Multi-Layer Graphic Design Generation
Graphic design plays a crucial role in both commercial and personal contexts, yet creating high-quality, editable, and aesthetically pleasing graphic compositions remains a time-consuming and skill-intensive task, especially for beginners. Current AI tools automate parts of the workflow, but struggle to accurately incorporate user-supplied assets, maintain editability, and achieve professional visual appeal. Commercial systems, like Canva Magic Design, rely on vast template libraries, which are impractical for replicate. In this paper, we introduce CreatiPoster, a framework that generates editable, multi-layer compositions from optional natural-language instructions or assets. A protocol model, an RGBA large multimodal model, first produces a JSON specification detailing every layer (text or asset) with precise layout, hierarchy, content and style, plus a concise background prompt. A conditional background model then synthesizes a coherent background conditioned on this rendered foreground layers. We construct a benchmark with automated metrics for graphic-design generation and show that CreatiPoster surpasses leading open-source approaches and proprietary commercial systems. To catalyze further research, we release a copyright-free corpus of 100,000 multi-layer designs. CreatiPoster supports diverse applications such as canvas editing, text overlay, responsive resizing, multilingual adaptation, and animated posters, advancing the democratization of AI-assisted graphic design. Project homepage: https://github.com/graphic-design-ai/creatiposter
Semantic Image Manipulation Using Scene Graphs
Image manipulation can be considered a special case of image generation where the image to be produced is a modification of an existing image. Image generation and manipulation have been, for the most part, tasks that operate on raw pixels. However, the remarkable progress in learning rich image and object representations has opened the way for tasks such as text-to-image or layout-to-image generation that are mainly driven by semantics. In our work, we address the novel problem of image manipulation from scene graphs, in which a user can edit images by merely applying changes in the nodes or edges of a semantic graph that is generated from the image. Our goal is to encode image information in a given constellation and from there on generate new constellations, such as replacing objects or even changing relationships between objects, while respecting the semantics and style from the original image. We introduce a spatio-semantic scene graph network that does not require direct supervision for constellation changes or image edits. This makes it possible to train the system from existing real-world datasets with no additional annotation effort.
Unaligned 2D to 3D Translation with Conditional Vector-Quantized Code Diffusion using Transformers
Generating 3D images of complex objects conditionally from a few 2D views is a difficult synthesis problem, compounded by issues such as domain gap and geometric misalignment. For instance, a unified framework such as Generative Adversarial Networks cannot achieve this unless they explicitly define both a domain-invariant and geometric-invariant joint latent distribution, whereas Neural Radiance Fields are generally unable to handle both issues as they optimize at the pixel level. By contrast, we propose a simple and novel 2D to 3D synthesis approach based on conditional diffusion with vector-quantized codes. Operating in an information-rich code space enables high-resolution 3D synthesis via full-coverage attention across the views. Specifically, we generate the 3D codes (e.g. for CT images) conditional on previously generated 3D codes and the entire codebook of two 2D views (e.g. 2D X-rays). Qualitative and quantitative results demonstrate state-of-the-art performance over specialized methods across varied evaluation criteria, including fidelity metrics such as density, coverage, and distortion metrics for two complex volumetric imagery datasets from in real-world scenarios.
ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback
To enhance the controllability of text-to-image diffusion models, existing efforts like ControlNet incorporated image-based conditional controls. In this paper, we reveal that existing methods still face significant challenges in generating images that align with the image conditional controls. To this end, we propose ControlNet++, a novel approach that improves controllable generation by explicitly optimizing pixel-level cycle consistency between generated images and conditional controls. Specifically, for an input conditional control, we use a pre-trained discriminative reward model to extract the corresponding condition of the generated images, and then optimize the consistency loss between the input conditional control and extracted condition. A straightforward implementation would be generating images from random noises and then calculating the consistency loss, but such an approach requires storing gradients for multiple sampling timesteps, leading to considerable time and memory costs. To address this, we introduce an efficient reward strategy that deliberately disturbs the input images by adding noise, and then uses the single-step denoised images for reward fine-tuning. This avoids the extensive costs associated with image sampling, allowing for more efficient reward fine-tuning. Extensive experiments show that ControlNet++ significantly improves controllability under various conditional controls. For example, it achieves improvements over ControlNet by 7.9% mIoU, 13.4% SSIM, and 7.6% RMSE, respectively, for segmentation mask, line-art edge, and depth conditions.
Taming Transformers for High-Resolution Image Synthesis
Designed to learn long-range interactions on sequential data, transformers continue to show state-of-the-art results on a wide variety of tasks. In contrast to CNNs, they contain no inductive bias that prioritizes local interactions. This makes them expressive, but also computationally infeasible for long sequences, such as high-resolution images. We demonstrate how combining the effectiveness of the inductive bias of CNNs with the expressivity of transformers enables them to model and thereby synthesize high-resolution images. We show how to (i) use CNNs to learn a context-rich vocabulary of image constituents, and in turn (ii) utilize transformers to efficiently model their composition within high-resolution images. Our approach is readily applied to conditional synthesis tasks, where both non-spatial information, such as object classes, and spatial information, such as segmentations, can control the generated image. In particular, we present the first results on semantically-guided synthesis of megapixel images with transformers and obtain the state of the art among autoregressive models on class-conditional ImageNet. Code and pretrained models can be found at https://github.com/CompVis/taming-transformers .
FaceCLIPNeRF: Text-driven 3D Face Manipulation using Deformable Neural Radiance Fields
As recent advances in Neural Radiance Fields (NeRF) have enabled high-fidelity 3D face reconstruction and novel view synthesis, its manipulation also became an essential task in 3D vision. However, existing manipulation methods require extensive human labor, such as a user-provided semantic mask and manual attribute search unsuitable for non-expert users. Instead, our approach is designed to require a single text to manipulate a face reconstructed with NeRF. To do so, we first train a scene manipulator, a latent code-conditional deformable NeRF, over a dynamic scene to control a face deformation using the latent code. However, representing a scene deformation with a single latent code is unfavorable for compositing local deformations observed in different instances. As so, our proposed Position-conditional Anchor Compositor (PAC) learns to represent a manipulated scene with spatially varying latent codes. Their renderings with the scene manipulator are then optimized to yield high cosine similarity to a target text in CLIP embedding space for text-driven manipulation. To the best of our knowledge, our approach is the first to address the text-driven manipulation of a face reconstructed with NeRF. Extensive results, comparisons, and ablation studies demonstrate the effectiveness of our approach.
Conditional Latent Coding with Learnable Synthesized Reference for Deep Image Compression
In this paper, we study how to synthesize a dynamic reference from an external dictionary to perform conditional coding of the input image in the latent domain and how to learn the conditional latent synthesis and coding modules in an end-to-end manner. Our approach begins by constructing a universal image feature dictionary using a multi-stage approach involving modified spatial pyramid pooling, dimension reduction, and multi-scale feature clustering. For each input image, we learn to synthesize a conditioning latent by selecting and synthesizing relevant features from the dictionary, which significantly enhances the model's capability in capturing and exploring image source correlation. This conditional latent synthesis involves a correlation-based feature matching and alignment strategy, comprising a Conditional Latent Matching (CLM) module and a Conditional Latent Synthesis (CLS) module. The synthesized latent is then used to guide the encoding process, allowing for more efficient compression by exploiting the correlation between the input image and the reference dictionary. According to our theoretical analysis, the proposed conditional latent coding (CLC) method is robust to perturbations in the external dictionary samples and the selected conditioning latent, with an error bound that scales logarithmically with the dictionary size, ensuring stability even with large and diverse dictionaries. Experimental results on benchmark datasets show that our new method improves the coding performance by a large margin (up to 1.2 dB) with a very small overhead of approximately 0.5\% bits per pixel. Our code is publicly available at https://github.com/ydchen0806/CLC.
Advancing Pose-Guided Image Synthesis with Progressive Conditional Diffusion Models
Recent work has showcased the significant potential of diffusion models in pose-guided person image synthesis. However, owing to the inconsistency in pose between the source and target images, synthesizing an image with a distinct pose, relying exclusively on the source image and target pose information, remains a formidable challenge. This paper presents Progressive Conditional Diffusion Models (PCDMs) that incrementally bridge the gap between person images under the target and source poses through three stages. Specifically, in the first stage, we design a simple prior conditional diffusion model that predicts the global features of the target image by mining the global alignment relationship between pose coordinates and image appearance. Then, the second stage establishes a dense correspondence between the source and target images using the global features from the previous stage, and an inpainting conditional diffusion model is proposed to further align and enhance the contextual features, generating a coarse-grained person image. In the third stage, we propose a refining conditional diffusion model to utilize the coarsely generated image from the previous stage as a condition, achieving texture restoration and enhancing fine-detail consistency. The three-stage PCDMs work progressively to generate the final high-quality and high-fidelity synthesized image. Both qualitative and quantitative results demonstrate the consistency and photorealism of our proposed PCDMs under challenging scenarios.The code and model will be available at https://github.com/muzishen/PCDMs.
Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional Image Synthesis
Conditional generative models typically demand large annotated training sets to achieve high-quality synthesis. As a result, there has been significant interest in designing models that perform plug-and-play generation, i.e., to use a predefined or pretrained model, which is not explicitly trained on the generative task, to guide the generative process (e.g., using language). However, such guidance is typically useful only towards synthesizing high-level semantics rather than editing fine-grained details as in image-to-image translation tasks. To this end, and capitalizing on the powerful fine-grained generative control offered by the recent diffusion-based generative models, we introduce Steered Diffusion, a generalized framework for photorealistic zero-shot conditional image generation using a diffusion model trained for unconditional generation. The key idea is to steer the image generation of the diffusion model at inference time via designing a loss using a pre-trained inverse model that characterizes the conditional task. This loss modulates the sampling trajectory of the diffusion process. Our framework allows for easy incorporation of multiple conditions during inference. We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution. Our results demonstrate clear qualitative and quantitative improvements over state-of-the-art diffusion-based plug-and-play models while adding negligible additional computational cost.
On the Robustness of Normalizing Flows for Inverse Problems in Imaging
Conditional normalizing flows can generate diverse image samples for solving inverse problems. Most normalizing flows for inverse problems in imaging employ the conditional affine coupling layer that can generate diverse images quickly. However, unintended severe artifacts are occasionally observed in the output of them. In this work, we address this critical issue by investigating the origins of these artifacts and proposing the conditions to avoid them. First of all, we empirically and theoretically reveal that these problems are caused by "exploding inverse" in the conditional affine coupling layer for certain out-of-distribution (OOD) conditional inputs. Then, we further validated that the probability of causing erroneous artifacts in pixels is highly correlated with a Mahalanobis distance-based OOD score for inverse problems in imaging. Lastly, based on our investigations, we propose a remark to avoid exploding inverse and then based on it, we suggest a simple remedy that substitutes the affine coupling layers with the modified rational quadratic spline coupling layers in normalizing flows, to encourage the robustness of generated image samples. Our experimental results demonstrated that our suggested methods effectively suppressed critical artifacts occurring in normalizing flows for super-resolution space generation and low-light image enhancement.
Detecting Photoshopped Faces by Scripting Photoshop
Most malicious photo manipulations are created using standard image editing tools, such as Adobe Photoshop. We present a method for detecting one very popular Photoshop manipulation -- image warping applied to human faces -- using a model trained entirely using fake images that were automatically generated by scripting Photoshop itself. We show that our model outperforms humans at the task of recognizing manipulated images, can predict the specific location of edits, and in some cases can be used to "undo" a manipulation to reconstruct the original, unedited image. We demonstrate that the system can be successfully applied to real, artist-created image manipulations.
AID: Attention Interpolation of Text-to-Image Diffusion
Conditional diffusion models can create unseen images in various settings, aiding image interpolation. Interpolation in latent spaces is well-studied, but interpolation with specific conditions like text or poses is less understood. Simple approaches, such as linear interpolation in the space of conditions, often result in images that lack consistency, smoothness, and fidelity. To that end, we introduce a novel training-free technique named Attention Interpolation via Diffusion (AID). Our key contributions include 1) proposing an inner/outer interpolated attention layer; 2) fusing the interpolated attention with self-attention to boost fidelity; and 3) applying beta distribution to selection to increase smoothness. We also present a variant, Prompt-guided Attention Interpolation via Diffusion (PAID), that considers interpolation as a condition-dependent generative process. This method enables the creation of new images with greater consistency, smoothness, and efficiency, and offers control over the exact path of interpolation. Our approach demonstrates effectiveness for conceptual and spatial interpolation. Code and demo are available at https://github.com/QY-H00/attention-interpolation-diffusion.
Image Colorization with Generative Adversarial Networks
Over the last decade, the process of automatic image colorization has been of significant interest for several application areas including restoration of aged or degraded images. This problem is highly ill-posed due to the large degrees of freedom during the assignment of color information. Many of the recent developments in automatic colorization involve images that contain a common theme or require highly processed data such as semantic maps as input. In our approach, we attempt to fully generalize the colorization procedure using a conditional Deep Convolutional Generative Adversarial Network (DCGAN), extend current methods to high-resolution images and suggest training strategies that speed up the process and greatly stabilize it. The network is trained over datasets that are publicly available such as CIFAR-10 and Places365. The results of the generative model and traditional deep neural networks are compared.
Interactive White Balancing for Camera-Rendered Images
White balance (WB) is one of the first photo-finishing steps used to render a captured image to its final output. WB is applied to remove the color cast caused by the scene's illumination. Interactive photo-editing software allows users to manually select different regions in a photo as examples of the illumination for WB correction (e.g., clicking on achromatic objects). Such interactive editing is possible only with images saved in a RAW image format. This is because RAW images have no photo-rendering operations applied and photo-editing software is able to apply WB and other photo-finishing procedures to render the final image. Interactively editing WB in camera-rendered images is significantly more challenging. This is because the camera hardware has already applied WB to the image and subsequent nonlinear photo-processing routines. These nonlinear rendering operations make it difficult to change the WB post-capture. The goal of this paper is to allow interactive WB manipulation of camera-rendered images. The proposed method is an extension of our recent work afifi2019color that proposed a post-capture method for WB correction based on nonlinear color-mapping functions. Here, we introduce a new framework that links the nonlinear color-mapping functions directly to user-selected colors to enable {\it interactive} WB manipulation. This new framework is also more efficient in terms of memory and run-time (99\% reduction in memory and 3times speed-up). Lastly, we describe how our framework can leverage a simple illumination estimation method (i.e., gray-world) to perform auto-WB correction that is on a par with the WB correction results in afifi2019color. The source code is publicly available at https://github.com/mahmoudnafifi/Interactive_WB_correction.
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
Given a factorization of an image into a sum of linear components, we present a zero-shot method to control each individual component through diffusion model sampling. For example, we can decompose an image into low and high spatial frequencies and condition these components on different text prompts. This produces hybrid images, which change appearance depending on viewing distance. By decomposing an image into three frequency subbands, we can generate hybrid images with three prompts. We also use a decomposition into grayscale and color components to produce images whose appearance changes when they are viewed in grayscale, a phenomena that naturally occurs under dim lighting. And we explore a decomposition by a motion blur kernel, which produces images that change appearance under motion blurring. Our method works by denoising with a composite noise estimate, built from the components of noise estimates conditioned on different prompts. We also show that for certain decompositions, our method recovers prior approaches to compositional generation and spatial control. Finally, we show that we can extend our approach to generate hybrid images from real images. We do this by holding one component fixed and generating the remaining components, effectively solving an inverse problem.
CCM: Adding Conditional Controls to Text-to-Image Consistency Models
Consistency Models (CMs) have showed a promise in creating visual content efficiently and with high quality. However, the way to add new conditional controls to the pretrained CMs has not been explored. In this technical report, we consider alternative strategies for adding ControlNet-like conditional control to CMs and present three significant findings. 1) ControlNet trained for diffusion models (DMs) can be directly applied to CMs for high-level semantic controls but struggles with low-level detail and realism control. 2) CMs serve as an independent class of generative models, based on which ControlNet can be trained from scratch using Consistency Training proposed by Song et al. 3) A lightweight adapter can be jointly optimized under multiple conditions through Consistency Training, allowing for the swift transfer of DMs-based ControlNet to CMs. We study these three solutions across various conditional controls, including edge, depth, human pose, low-resolution image and masked image with text-to-image latent consistency models.
Zero-1-to-3: Zero-shot One Image to 3D Object
We introduce Zero-1-to-3, a framework for changing the camera viewpoint of an object given just a single RGB image. To perform novel view synthesis in this under-constrained setting, we capitalize on the geometric priors that large-scale diffusion models learn about natural images. Our conditional diffusion model uses a synthetic dataset to learn controls of the relative camera viewpoint, which allow new images to be generated of the same object under a specified camera transformation. Even though it is trained on a synthetic dataset, our model retains a strong zero-shot generalization ability to out-of-distribution datasets as well as in-the-wild images, including impressionist paintings. Our viewpoint-conditioned diffusion approach can further be used for the task of 3D reconstruction from a single image. Qualitative and quantitative experiments show that our method significantly outperforms state-of-the-art single-view 3D reconstruction and novel view synthesis models by leveraging Internet-scale pre-training.
Conditional Image Generation with PixelCNN Decoders
This work explores conditional image generation with a new image density model based on the PixelCNN architecture. The model can be conditioned on any vector, including descriptive labels or tags, or latent embeddings created by other networks. When conditioned on class labels from the ImageNet database, the model is able to generate diverse, realistic scenes representing distinct animals, objects, landscapes and structures. When conditioned on an embedding produced by a convolutional network given a single image of an unseen face, it generates a variety of new portraits of the same person with different facial expressions, poses and lighting conditions. We also show that conditional PixelCNN can serve as a powerful decoder in an image autoencoder. Additionally, the gated convolutional layers in the proposed model improve the log-likelihood of PixelCNN to match the state-of-the-art performance of PixelRNN on ImageNet, with greatly reduced computational cost.
A Unified Agentic Framework for Evaluating Conditional Image Generation
Conditional image generation has gained significant attention for its ability to personalize content. However, the field faces challenges in developing task-agnostic, reliable, and explainable evaluation metrics. This paper introduces CIGEval, a unified agentic framework for comprehensive evaluation of conditional image generation tasks. CIGEval utilizes large multimodal models (LMMs) as its core, integrating a multi-functional toolbox and establishing a fine-grained evaluation framework. Additionally, we synthesize evaluation trajectories for fine-tuning, empowering smaller LMMs to autonomously select appropriate tools and conduct nuanced analyses based on tool outputs. Experiments across seven prominent conditional image generation tasks demonstrate that CIGEval (GPT-4o version) achieves a high correlation of 0.4625 with human assessments, closely matching the inter-annotator correlation of 0.47. Moreover, when implemented with 7B open-source LMMs using only 2.3K training trajectories, CIGEval surpasses the previous GPT-4o-based state-of-the-art method. Case studies on GPT-4o image generation highlight CIGEval's capability in identifying subtle issues related to subject consistency and adherence to control guidance, indicating its great potential for automating evaluation of image generation tasks with human-level reliability.
Fighting Fake News: Image Splice Detection via Learned Self-Consistency
Advances in photo editing and manipulation tools have made it significantly easier to create fake imagery. Learning to detect such manipulations, however, remains a challenging problem due to the lack of sufficient amounts of manipulated training data. In this paper, we propose a learning algorithm for detecting visual image manipulations that is trained only using a large dataset of real photographs. The algorithm uses the automatically recorded photo EXIF metadata as supervisory signal for training a model to determine whether an image is self-consistent -- that is, whether its content could have been produced by a single imaging pipeline. We apply this self-consistency model to the task of detecting and localizing image splices. The proposed method obtains state-of-the-art performance on several image forensics benchmarks, despite never seeing any manipulated images at training. That said, it is merely a step in the long quest for a truly general purpose visual forensics tool.
LBM: Latent Bridge Matching for Fast Image-to-Image Translation
In this paper, we introduce Latent Bridge Matching (LBM), a new, versatile and scalable method that relies on Bridge Matching in a latent space to achieve fast image-to-image translation. We show that the method can reach state-of-the-art results for various image-to-image tasks using only a single inference step. In addition to its efficiency, we also demonstrate the versatility of the method across different image translation tasks such as object removal, normal and depth estimation, and object relighting. We also derive a conditional framework of LBM and demonstrate its effectiveness by tackling the tasks of controllable image relighting and shadow generation. We provide an open-source implementation of the method at https://github.com/gojasper/LBM.
MMoT: Mixture-of-Modality-Tokens Transformer for Composed Multimodal Conditional Image Synthesis
Existing multimodal conditional image synthesis (MCIS) methods generate images conditioned on any combinations of various modalities that require all of them must be exactly conformed, hindering the synthesis controllability and leaving the potential of cross-modality under-exploited. To this end, we propose to generate images conditioned on the compositions of multimodal control signals, where modalities are imperfectly complementary, i.e., composed multimodal conditional image synthesis (CMCIS). Specifically, we observe two challenging issues of the proposed CMCIS task, i.e., the modality coordination problem and the modality imbalance problem. To tackle these issues, we introduce a Mixture-of-Modality-Tokens Transformer (MMoT) that adaptively fuses fine-grained multimodal control signals, a multimodal balanced training loss to stabilize the optimization of each modality, and a multimodal sampling guidance to balance the strength of each modality control signal. Comprehensive experimental results demonstrate that MMoT achieves superior performance on both unimodal conditional image synthesis (UCIS) and MCIS tasks with high-quality and faithful image synthesis on complex multimodal conditions. The project website is available at https://jabir-zheng.github.io/MMoT.
ImageBrush: Learning Visual In-Context Instructions for Exemplar-Based Image Manipulation
While language-guided image manipulation has made remarkable progress, the challenge of how to instruct the manipulation process faithfully reflecting human intentions persists. An accurate and comprehensive description of a manipulation task using natural language is laborious and sometimes even impossible, primarily due to the inherent uncertainty and ambiguity present in linguistic expressions. Is it feasible to accomplish image manipulation without resorting to external cross-modal language information? If this possibility exists, the inherent modality gap would be effortlessly eliminated. In this paper, we propose a novel manipulation methodology, dubbed ImageBrush, that learns visual instructions for more accurate image editing. Our key idea is to employ a pair of transformation images as visual instructions, which not only precisely captures human intention but also facilitates accessibility in real-world scenarios. Capturing visual instructions is particularly challenging because it involves extracting the underlying intentions solely from visual demonstrations and then applying this operation to a new image. To address this challenge, we formulate visual instruction learning as a diffusion-based inpainting problem, where the contextual information is fully exploited through an iterative process of generation. A visual prompting encoder is carefully devised to enhance the model's capacity in uncovering human intent behind the visual instructions. Extensive experiments show that our method generates engaging manipulation results conforming to the transformations entailed in demonstrations. Moreover, our model exhibits robust generalization capabilities on various downstream tasks such as pose transfer, image translation and video inpainting.
RealFusion: 360° Reconstruction of Any Object from a Single Image
We consider the problem of reconstructing a full 360{\deg} photographic model of an object from a single image of it. We do so by fitting a neural radiance field to the image, but find this problem to be severely ill-posed. We thus take an off-the-self conditional image generator based on diffusion and engineer a prompt that encourages it to "dream up" novel views of the object. Using an approach inspired by DreamFields and DreamFusion, we fuse the given input view, the conditional prior, and other regularizers in a final, consistent reconstruction. We demonstrate state-of-the-art reconstruction results on benchmark images when compared to prior methods for monocular 3D reconstruction of objects. Qualitatively, our reconstructions provide a faithful match of the input view and a plausible extrapolation of its appearance and 3D shape, including to the side of the object not visible in the image.
Color Alignment in Diffusion
Diffusion models have shown great promise in synthesizing visually appealing images. However, it remains challenging to condition the synthesis at a fine-grained level, for instance, synthesizing image pixels following some generic color pattern. Existing image synthesis methods often produce contents that fall outside the desired pixel conditions. To address this, we introduce a novel color alignment algorithm that confines the generative process in diffusion models within a given color pattern. Specifically, we project diffusion terms, either imagery samples or latent representations, into a conditional color space to align with the input color distribution. This strategy simplifies the prediction in diffusion models within a color manifold while still allowing plausible structures in generated contents, thus enabling the generation of diverse contents that comply with the target color pattern. Experimental results demonstrate our state-of-the-art performance in conditioning and controlling of color pixels, while maintaining on-par generation quality and diversity in comparison with regular diffusion models.
Diffusion Model-Based Image Editing: A Survey
Denoising diffusion models have emerged as a powerful tool for various image generation and editing tasks, facilitating the synthesis of visual content in an unconditional or input-conditional manner. The core idea behind them is learning to reverse the process of gradually adding noise to images, allowing them to generate high-quality samples from a complex distribution. In this survey, we provide an exhaustive overview of existing methods using diffusion models for image editing, covering both theoretical and practical aspects in the field. We delve into a thorough analysis and categorization of these works from multiple perspectives, including learning strategies, user-input conditions, and the array of specific editing tasks that can be accomplished. In addition, we pay special attention to image inpainting and outpainting, and explore both earlier traditional context-driven and current multimodal conditional methods, offering a comprehensive analysis of their methodologies. To further evaluate the performance of text-guided image editing algorithms, we propose a systematic benchmark, EditEval, featuring an innovative metric, LMM Score. Finally, we address current limitations and envision some potential directions for future research. The accompanying repository is released at https://github.com/SiatMMLab/Awesome-Diffusion-Model-Based-Image-Editing-Methods.
Art Creation with Multi-Conditional StyleGANs
Creating meaningful art is often viewed as a uniquely human endeavor. A human artist needs a combination of unique skills, understanding, and genuine intention to create artworks that evoke deep feelings and emotions. In this paper, we introduce a multi-conditional Generative Adversarial Network (GAN) approach trained on large amounts of human paintings to synthesize realistic-looking paintings that emulate human art. Our approach is based on the StyleGAN neural network architecture, but incorporates a custom multi-conditional control mechanism that provides fine-granular control over characteristics of the generated paintings, e.g., with regard to the perceived emotion evoked in a spectator. For better control, we introduce the conditional truncation trick, which adapts the standard truncation trick for the conditional setting and diverse datasets. Finally, we develop a diverse set of evaluation techniques tailored to multi-conditional generation.
Text-Driven Image Editing via Learnable Regions
Language has emerged as a natural interface for image editing. In this paper, we introduce a method for region-based image editing driven by textual prompts, without the need for user-provided masks or sketches. Specifically, our approach leverages an existing pretrained text-to-image model and introduces a bounding box generator to find the edit regions that are aligned with the textual prompts. We show that this simple approach enables flexible editing that is compatible with current image generation models, and is able to handle complex prompts featuring multiple objects, complex sentences or long paragraphs. We conduct an extensive user study to compare our method against state-of-the-art methods. Experiments demonstrate the competitive performance of our method in manipulating images with high fidelity and realism that align with the language descriptions provided. Our project webpage: https://yuanze-lin.me/LearnableRegions_page.
MaskSketch: Unpaired Structure-guided Masked Image Generation
Recent conditional image generation methods produce images of remarkable diversity, fidelity and realism. However, the majority of these methods allow conditioning only on labels or text prompts, which limits their level of control over the generation result. In this paper, we introduce MaskSketch, an image generation method that allows spatial conditioning of the generation result using a guiding sketch as an extra conditioning signal during sampling. MaskSketch utilizes a pre-trained masked generative transformer, requiring no model training or paired supervision, and works with input sketches of different levels of abstraction. We show that intermediate self-attention maps of a masked generative transformer encode important structural information of the input image, such as scene layout and object shape, and we propose a novel sampling method based on this observation to enable structure-guided generation. Our results show that MaskSketch achieves high image realism and fidelity to the guiding structure. Evaluated on standard benchmark datasets, MaskSketch outperforms state-of-the-art methods for sketch-to-image translation, as well as unpaired image-to-image translation approaches.
UniCombine: Unified Multi-Conditional Combination with Diffusion Transformer
With the rapid development of diffusion models in image generation, the demand for more powerful and flexible controllable frameworks is increasing. Although existing methods can guide generation beyond text prompts, the challenge of effectively combining multiple conditional inputs while maintaining consistency with all of them remains unsolved. To address this, we introduce UniCombine, a DiT-based multi-conditional controllable generative framework capable of handling any combination of conditions, including but not limited to text prompts, spatial maps, and subject images. Specifically, we introduce a novel Conditional MMDiT Attention mechanism and incorporate a trainable LoRA module to build both the training-free and training-based versions. Additionally, we propose a new pipeline to construct SubjectSpatial200K, the first dataset designed for multi-conditional generative tasks covering both the subject-driven and spatially-aligned conditions. Extensive experimental results on multi-conditional generation demonstrate the outstanding universality and powerful capability of our approach with state-of-the-art performance.
Improved Diffusion-based Image Colorization via Piggybacked Models
Image colorization has been attracting the research interests of the community for decades. However, existing methods still struggle to provide satisfactory colorized results given grayscale images due to a lack of human-like global understanding of colors. Recently, large-scale Text-to-Image (T2I) models have been exploited to transfer the semantic information from the text prompts to the image domain, where text provides a global control for semantic objects in the image. In this work, we introduce a colorization model piggybacking on the existing powerful T2I diffusion model. Our key idea is to exploit the color prior knowledge in the pre-trained T2I diffusion model for realistic and diverse colorization. A diffusion guider is designed to incorporate the pre-trained weights of the latent diffusion model to output a latent color prior that conforms to the visual semantics of the grayscale input. A lightness-aware VQVAE will then generate the colorized result with pixel-perfect alignment to the given grayscale image. Our model can also achieve conditional colorization with additional inputs (e.g. user hints and texts). Extensive experiments show that our method achieves state-of-the-art performance in terms of perceptual quality.
MCGM: Mask Conditional Text-to-Image Generative Model
Recent advancements in generative models have revolutionized the field of artificial intelligence, enabling the creation of highly-realistic and detailed images. In this study, we propose a novel Mask Conditional Text-to-Image Generative Model (MCGM) that leverages the power of conditional diffusion models to generate pictures with specific poses. Our model builds upon the success of the Break-a-scene [1] model in generating new scenes using a single image with multiple subjects and incorporates a mask embedding injection that allows the conditioning of the generation process. By introducing this additional level of control, MCGM offers a flexible and intuitive approach for generating specific poses for one or more subjects learned from a single image, empowering users to influence the output based on their requirements. Through extensive experimentation and evaluation, we demonstrate the effectiveness of our proposed model in generating high-quality images that meet predefined mask conditions and improving the current Break-a-scene generative model.
DICEPTION: A Generalist Diffusion Model for Visual Perceptual Tasks
Our primary goal here is to create a good, generalist perception model that can tackle multiple tasks, within limits on computational resources and training data. To achieve this, we resort to text-to-image diffusion models pre-trained on billions of images. Our exhaustive evaluation metrics demonstrate that DICEPTION effectively tackles multiple perception tasks, achieving performance on par with state-of-the-art models. We achieve results on par with SAM-vit-h using only 0.06% of their data (e.g., 600K vs. 1B pixel-level annotated images). Inspired by Wang et al., DICEPTION formulates the outputs of various perception tasks using color encoding; and we show that the strategy of assigning random colors to different instances is highly effective in both entity segmentation and semantic segmentation. Unifying various perception tasks as conditional image generation enables us to fully leverage pre-trained text-to-image models. Thus, DICEPTION can be efficiently trained at a cost of orders of magnitude lower, compared to conventional models that were trained from scratch. When adapting our model to other tasks, it only requires fine-tuning on as few as 50 images and 1% of its parameters. DICEPTION provides valuable insights and a more promising solution for visual generalist models.
FlashI2V: Fourier-Guided Latent Shifting Prevents Conditional Image Leakage in Image-to-Video Generation
In Image-to-Video (I2V) generation, a video is created using an input image as the first-frame condition. Existing I2V methods concatenate the full information of the conditional image with noisy latents to achieve high fidelity. However, the denoisers in these methods tend to shortcut the conditional image, which is known as conditional image leakage, leading to performance degradation issues such as slow motion and color inconsistency. In this work, we further clarify that conditional image leakage leads to overfitting to in-domain data and decreases the performance in out-of-domain scenarios. Moreover, we introduce Fourier-Guided Latent Shifting I2V, named FlashI2V, to prevent conditional image leakage. Concretely, FlashI2V consists of: (1) Latent Shifting. We modify the source and target distributions of flow matching by subtracting the conditional image information from the noisy latents, thereby incorporating the condition implicitly. (2) Fourier Guidance. We use high-frequency magnitude features obtained by the Fourier Transform to accelerate convergence and enable the adjustment of detail levels in the generated video. Experimental results show that our method effectively overcomes conditional image leakage and achieves the best generalization and performance on out-of-domain data among various I2V paradigms. With only 1.3B parameters, FlashI2V achieves a dynamic degree score of 53.01 on Vbench-I2V, surpassing CogVideoX1.5-5B-I2V and Wan2.1-I2V-14B-480P. Github page: https://pku-yuangroup.github.io/FlashI2V/
Conditional Balance: Improving Multi-Conditioning Trade-Offs in Image Generation
Balancing content fidelity and artistic style is a pivotal challenge in image generation. While traditional style transfer methods and modern Denoising Diffusion Probabilistic Models (DDPMs) strive to achieve this balance, they often struggle to do so without sacrificing either style, content, or sometimes both. This work addresses this challenge by analyzing the ability of DDPMs to maintain content and style equilibrium. We introduce a novel method to identify sensitivities within the DDPM attention layers, identifying specific layers that correspond to different stylistic aspects. By directing conditional inputs only to these sensitive layers, our approach enables fine-grained control over style and content, significantly reducing issues arising from over-constrained inputs. Our findings demonstrate that this method enhances recent stylization techniques by better aligning style and content, ultimately improving the quality of generated visual content.
Conditional Diffusion Distillation
Generative diffusion models provide strong priors for text-to-image generation and thereby serve as a foundation for conditional generation tasks such as image editing, restoration, and super-resolution. However, one major limitation of diffusion models is their slow sampling time. To address this challenge, we present a novel conditional distillation method designed to supplement the diffusion priors with the help of image conditions, allowing for conditional sampling with very few steps. We directly distill the unconditional pre-training in a single stage through joint-learning, largely simplifying the previous two-stage procedures that involve both distillation and conditional finetuning separately. Furthermore, our method enables a new parameter-efficient distillation mechanism that distills each task with only a small number of additional parameters combined with the shared frozen unconditional backbone. Experiments across multiple tasks including super-resolution, image editing, and depth-to-image generation demonstrate that our method outperforms existing distillation techniques for the same sampling time. Notably, our method is the first distillation strategy that can match the performance of the much slower fine-tuned conditional diffusion models.
CPAM: Context-Preserving Adaptive Manipulation for Zero-Shot Real Image Editing
Editing natural images using textual descriptions in text-to-image diffusion models remains a significant challenge, particularly in achieving consistent generation and handling complex, non-rigid objects. Existing methods often struggle to preserve textures and identity, require extensive fine-tuning, and exhibit limitations in editing specific spatial regions or objects while retaining background details. This paper proposes Context-Preserving Adaptive Manipulation (CPAM), a novel zero-shot framework for complicated, non-rigid real image editing. Specifically, we propose a preservation adaptation module that adjusts self-attention mechanisms to preserve and independently control the object and background effectively. This ensures that the objects' shapes, textures, and identities are maintained while keeping the background undistorted during the editing process using the mask guidance technique. Additionally, we develop a localized extraction module to mitigate the interference with the non-desired modified regions during conditioning in cross-attention mechanisms. We also introduce various mask-guidance strategies to facilitate diverse image manipulation tasks in a simple manner. Extensive experiments on our newly constructed Image Manipulation BenchmArk (IMBA), a robust benchmark dataset specifically designed for real image editing, demonstrate that our proposed method is the preferred choice among human raters, outperforming existing state-of-the-art editing techniques.
Safety Verification of Deep Neural Networks
Deep neural networks have achieved impressive experimental results in image classification, but can surprisingly be unstable with respect to adversarial perturbations, that is, minimal changes to the input image that cause the network to misclassify it. With potential applications including perception modules and end-to-end controllers for self-driving cars, this raises concerns about their safety. We develop a novel automated verification framework for feed-forward multi-layer neural networks based on Satisfiability Modulo Theory (SMT). We focus on safety of image classification decisions with respect to image manipulations, such as scratches or changes to camera angle or lighting conditions that would result in the same class being assigned by a human, and define safety for an individual decision in terms of invariance of the classification within a small neighbourhood of the original image. We enable exhaustive search of the region by employing discretisation, and propagate the analysis layer by layer. Our method works directly with the network code and, in contrast to existing methods, can guarantee that adversarial examples, if they exist, are found for the given region and family of manipulations. If found, adversarial examples can be shown to human testers and/or used to fine-tune the network. We implement the techniques using Z3 and evaluate them on state-of-the-art networks, including regularised and deep learning networks. We also compare against existing techniques to search for adversarial examples and estimate network robustness.
High-Perceptual Quality JPEG Decoding via Posterior Sampling
JPEG is arguably the most popular image coding format, achieving high compression ratios via lossy quantization that may create visual artifacts degradation. Numerous attempts to remove these artifacts were conceived over the years, and common to most of these is the use of deterministic post-processing algorithms that optimize some distortion measure (e.g., PSNR, SSIM). In this paper we propose a different paradigm for JPEG artifact correction: Our method is stochastic, and the objective we target is high perceptual quality -- striving to obtain sharp, detailed and visually pleasing reconstructed images, while being consistent with the compressed input. These goals are achieved by training a stochastic conditional generator (conditioned on the compressed input), accompanied by a theoretically well-founded loss term, resulting in a sampler from the posterior distribution. Our solution offers a diverse set of plausible and fast reconstructions for a given input with perfect consistency. We demonstrate our scheme's unique properties and its superiority to a variety of alternative methods on the FFHQ and ImageNet datasets.
GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
Diffusion models have recently been shown to generate high-quality synthetic images, especially when paired with a guidance technique to trade off diversity for fidelity. We explore diffusion models for the problem of text-conditional image synthesis and compare two different guidance strategies: CLIP guidance and classifier-free guidance. We find that the latter is preferred by human evaluators for both photorealism and caption similarity, and often produces photorealistic samples. Samples from a 3.5 billion parameter text-conditional diffusion model using classifier-free guidance are favored by human evaluators to those from DALL-E, even when the latter uses expensive CLIP reranking. Additionally, we find that our models can be fine-tuned to perform image inpainting, enabling powerful text-driven image editing. We train a smaller model on a filtered dataset and release the code and weights at https://github.com/openai/glide-text2im.
BiGR: Harnessing Binary Latent Codes for Image Generation and Improved Visual Representation Capabilities
We introduce BiGR, a novel conditional image generation model using compact binary latent codes for generative training, focusing on enhancing both generation and representation capabilities. BiGR is the first conditional generative model that unifies generation and discrimination within the same framework. BiGR features a binary tokenizer, a masked modeling mechanism, and a binary transcoder for binary code prediction. Additionally, we introduce a novel entropy-ordered sampling method to enable efficient image generation. Extensive experiments validate BiGR's superior performance in generation quality, as measured by FID-50k, and representation capabilities, as evidenced by linear-probe accuracy. Moreover, BiGR showcases zero-shot generalization across various vision tasks, enabling applications such as image inpainting, outpainting, editing, interpolation, and enrichment, without the need for structural modifications. Our findings suggest that BiGR unifies generative and discriminative tasks effectively, paving the way for further advancements in the field.
StyleDiffusion: Prompt-Embedding Inversion for Text-Based Editing
A significant research effort is focused on exploiting the amazing capacities of pretrained diffusion models for the editing of images. They either finetune the model, or invert the image in the latent space of the pretrained model. However, they suffer from two problems: (1) Unsatisfying results for selected regions, and unexpected changes in nonselected regions. (2) They require careful text prompt editing where the prompt should include all visual objects in the input image. To address this, we propose two improvements: (1) Only optimizing the input of the value linear network in the cross-attention layers, is sufficiently powerful to reconstruct a real image. (2) We propose attention regularization to preserve the object-like attention maps after editing, enabling us to obtain accurate style editing without invoking significant structural changes. We further improve the editing technique which is used for the unconditional branch of classifier-free guidance, as well as the conditional one as used by P2P. Extensive experimental prompt-editing results on a variety of images, demonstrate qualitatively and quantitatively that our method has superior editing capabilities than existing and concurrent works.
Dataset Enhancement with Instance-Level Augmentations
We present a method for expanding a dataset by incorporating knowledge from the wide distribution of pre-trained latent diffusion models. Data augmentations typically incorporate inductive biases about the image formation process into the training (e.g. translation, scaling, colour changes, etc.). Here, we go beyond simple pixel transformations and introduce the concept of instance-level data augmentation by repainting parts of the image at the level of object instances. The method combines a conditional diffusion model with depth and edge maps control conditioning to seamlessly repaint individual objects inside the scene, being applicable to any segmentation or detection dataset. Used as a data augmentation method, it improves the performance and generalization of the state-of-the-art salient object detection, semantic segmentation and object detection models. By redrawing all privacy-sensitive instances (people, license plates, etc.), the method is also applicable for data anonymization. We also release fully synthetic and anonymized expansions for popular datasets: COCO, Pascal VOC and DUTS.
Beyond Imperfections: A Conditional Inpainting Approach for End-to-End Artifact Removal in VTON and Pose Transfer
Artifacts often degrade the visual quality of virtual try-on (VTON) and pose transfer applications, impacting user experience. This study introduces a novel conditional inpainting technique designed to detect and remove such distortions, improving image aesthetics. Our work is the first to present an end-to-end framework addressing this specific issue, and we developed a specialized dataset of artifacts in VTON and pose transfer tasks, complete with masks highlighting the affected areas. Experimental results show that our method not only effectively removes artifacts but also significantly enhances the visual quality of the final images, setting a new benchmark in computer vision and image processing.
Webly-Supervised Image Manipulation Localization via Category-Aware Auto-Annotation
Images manipulated using image editing tools can mislead viewers and pose significant risks to social security. However, accurately localizing the manipulated regions within an image remains a challenging problem. One of the main barriers in this area is the high cost of data acquisition and the severe lack of high-quality annotated datasets. To address this challenge, we introduce novel methods that mitigate data scarcity by leveraging readily available web data. We utilize a large collection of manually forged images from the web, as well as automatically generated annotations derived from a simpler auxiliary task, constrained image manipulation localization. Specifically, we introduce a new paradigm CAAAv2, which automatically and accurately annotates manipulated regions at the pixel level. To further improve annotation quality, we propose a novel metric, QES, which filters out unreliable annotations. Through CAAA v2 and QES, we construct MIMLv2, a large-scale, diverse, and high-quality dataset containing 246,212 manually forged images with pixel-level mask annotations. This is over 120x larger than existing handcrafted datasets like IMD20. Additionally, we introduce Object Jitter, a technique that further enhances model training by generating high-quality manipulation artifacts. Building on these advances, we develop a new model, Web-IML, designed to effectively leverage web-scale supervision for the image manipulation localization task. Extensive experiments demonstrate that our approach substantially alleviates the data scarcity problem and significantly improves the performance of various models on multiple real-world forgery benchmarks. With the proposed web supervision, Web-IML achieves a striking performance gain of 31% and surpasses previous SOTA TruFor by 24.1 average IoU points. The dataset and code will be made publicly available at https://github.com/qcf-568/MIML.
TurboEdit: Instant text-based image editing
We address the challenges of precise image inversion and disentangled image editing in the context of few-step diffusion models. We introduce an encoder based iterative inversion technique. The inversion network is conditioned on the input image and the reconstructed image from the previous step, allowing for correction of the next reconstruction towards the input image. We demonstrate that disentangled controls can be easily achieved in the few-step diffusion model by conditioning on an (automatically generated) detailed text prompt. To manipulate the inverted image, we freeze the noise maps and modify one attribute in the text prompt (either manually or via instruction based editing driven by an LLM), resulting in the generation of a new image similar to the input image with only one attribute changed. It can further control the editing strength and accept instructive text prompt. Our approach facilitates realistic text-guided image edits in real-time, requiring only 8 number of functional evaluations (NFEs) in inversion (one-time cost) and 4 NFEs per edit. Our method is not only fast, but also significantly outperforms state-of-the-art multi-step diffusion editing techniques.
OminiControl2: Efficient Conditioning for Diffusion Transformers
Fine-grained control of text-to-image diffusion transformer models (DiT) remains a critical challenge for practical deployment. While recent advances such as OminiControl and others have enabled a controllable generation of diverse control signals, these methods face significant computational inefficiency when handling long conditional inputs. We present OminiControl2, an efficient framework that achieves efficient image-conditional image generation. OminiControl2 introduces two key innovations: (1) a dynamic compression strategy that streamlines conditional inputs by preserving only the most semantically relevant tokens during generation, and (2) a conditional feature reuse mechanism that computes condition token features only once and reuses them across denoising steps. These architectural improvements preserve the original framework's parameter efficiency and multi-modal versatility while dramatically reducing computational costs. Our experiments demonstrate that OminiControl2 reduces conditional processing overhead by over 90% compared to its predecessor, achieving an overall 5.9times speedup in multi-conditional generation scenarios. This efficiency enables the practical implementation of complex, multi-modal control for high-quality image synthesis with DiT models.
FilterPrompt: Guiding Image Transfer in Diffusion Models
In controllable generation tasks, flexibly manipulating the generated images to attain a desired appearance or structure based on a single input image cue remains a critical and longstanding challenge. Achieving this requires the effective decoupling of key attributes within the input image data, aiming to get representations accurately. Previous research has predominantly concentrated on disentangling image attributes within feature space. However, the complex distribution present in real-world data often makes the application of such decoupling algorithms to other datasets challenging. Moreover, the granularity of control over feature encoding frequently fails to meet specific task requirements. Upon scrutinizing the characteristics of various generative models, we have observed that the input sensitivity and dynamic evolution properties of the diffusion model can be effectively fused with the explicit decomposition operation in pixel space. This integration enables the image processing operations performed in pixel space for a specific feature distribution of the input image, and can achieve the desired control effect in the generated results. Therefore, we propose FilterPrompt, an approach to enhance the model control effect. It can be universally applied to any diffusion model, allowing users to adjust the representation of specific image features in accordance with task requirements, thereby facilitating more precise and controllable generation outcomes. In particular, our designed experiments demonstrate that the FilterPrompt optimizes feature correlation, mitigates content conflicts during the generation process, and enhances the model's control capability.
Conditional 360-degree Image Synthesis for Immersive Indoor Scene Decoration
In this paper, we address the problem of conditional scene decoration for 360-degree images. Our method takes a 360-degree background photograph of an indoor scene and generates decorated images of the same scene in the panorama view. To do this, we develop a 360-aware object layout generator that learns latent object vectors in the 360-degree view to enable a variety of furniture arrangements for an input 360-degree background image. We use this object layout to condition a generative adversarial network to synthesize images of an input scene. To further reinforce the generation capability of our model, we develop a simple yet effective scene emptier that removes the generated furniture and produces an emptied scene for our model to learn a cyclic constraint. We train the model on the Structure3D dataset and show that our model can generate diverse decorations with controllable object layout. Our method achieves state-of-the-art performance on the Structure3D dataset and generalizes well to the Zillow indoor scene dataset. Our user study confirms the immersive experiences provided by the realistic image quality and furniture layout in our generation results. Our implementation will be made available.
MonetGPT: Solving Puzzles Enhances MLLMs' Image Retouching Skills
Retouching is an essential task in post-manipulation of raw photographs. Generative editing, guided by text or strokes, provides a new tool accessible to users but can easily change the identity of the original objects in unacceptable and unpredictable ways. In contrast, although traditional procedural edits, as commonly supported by photoediting tools (e.g., Gimp, Lightroom), are conservative, they are still preferred by professionals. Unfortunately, professional quality retouching involves many individual procedural editing operations that is challenging to plan for most novices. In this paper, we ask if a multimodal large language model (MLLM) can be taught to critique raw photographs, suggest suitable remedies, and finally realize them with a given set of pre-authored procedural image operations. We demonstrate that MLLMs can be first made aware of the underlying image processing operations, by training them to solve specially designed visual puzzles. Subsequently, such an operation-aware MLLM can both plan and propose edit sequences. To facilitate training, given a set of expert-edited photos, we synthesize a reasoning dataset by procedurally manipulating the expert edits and then grounding a pretrained LLM on the visual adjustments, to synthesize reasoning for finetuning. The proposed retouching operations are, by construction, understandable by the users, preserve object details and resolution, and can be optionally overridden. We evaluate our setup on a variety of test examples and show advantages, in terms of explainability and identity preservation, over existing generative and other procedural alternatives. Code, data, models, and supplementary results can be found via our project website at https://monetgpt.github.io.
Stand-In: A Lightweight and Plug-and-Play Identity Control for Video Generation
Generating high-fidelity human videos that match user-specified identities is important yet challenging in the field of generative AI. Existing methods often rely on an excessive number of training parameters and lack compatibility with other AIGC tools. In this paper, we propose Stand-In, a lightweight and plug-and-play framework for identity preservation in video generation. Specifically, we introduce a conditional image branch into the pre-trained video generation model. Identity control is achieved through restricted self-attentions with conditional position mapping, and can be learned quickly with only 2000 pairs. Despite incorporating and training just sim1\% additional parameters, our framework achieves excellent results in video quality and identity preservation, outperforming other full-parameter training methods. Moreover, our framework can be seamlessly integrated for other tasks, such as subject-driven video generation, pose-referenced video generation, stylization, and face swapping.
ControlVAR: Exploring Controllable Visual Autoregressive Modeling
Conditional visual generation has witnessed remarkable progress with the advent of diffusion models (DMs), especially in tasks like control-to-image generation. However, challenges such as expensive computational cost, high inference latency, and difficulties of integration with large language models (LLMs) have necessitated exploring alternatives to DMs. This paper introduces ControlVAR, a novel framework that explores pixel-level controls in visual autoregressive (VAR) modeling for flexible and efficient conditional generation. In contrast to traditional conditional models that learn the conditional distribution, ControlVAR jointly models the distribution of image and pixel-level conditions during training and imposes conditional controls during testing. To enhance the joint modeling, we adopt the next-scale AR prediction paradigm and unify control and image representations. A teacher-forcing guidance strategy is proposed to further facilitate controllable generation with joint modeling. Extensive experiments demonstrate the superior efficacy and flexibility of ControlVAR across various conditional generation tasks against popular conditional DMs, \eg, ControlNet and T2I-Adaptor. Code: https://github.com/lxa9867/ControlVAR.
DCI: Dual-Conditional Inversion for Boosting Diffusion-Based Image Editing
Diffusion models have achieved remarkable success in image generation and editing tasks. Inversion within these models aims to recover the latent noise representation for a real or generated image, enabling reconstruction, editing, and other downstream tasks. However, to date, most inversion approaches suffer from an intrinsic trade-off between reconstruction accuracy and editing flexibility. This limitation arises from the difficulty of maintaining both semantic alignment and structural consistency during the inversion process. In this work, we introduce Dual-Conditional Inversion (DCI), a novel framework that jointly conditions on the source prompt and reference image to guide the inversion process. Specifically, DCI formulates the inversion process as a dual-condition fixed-point optimization problem, minimizing both the latent noise gap and the reconstruction error under the joint guidance. This design anchors the inversion trajectory in both semantic and visual space, leading to more accurate and editable latent representations. Our novel setup brings new understanding to the inversion process. Extensive experiments demonstrate that DCI achieves state-of-the-art performance across multiple editing tasks, significantly improving both reconstruction quality and editing precision. Furthermore, we also demonstrate that our method achieves strong results in reconstruction tasks, implying a degree of robustness and generalizability approaching the ultimate goal of the inversion process.
Diffusion Models Beat GANs on Image Synthesis
We show that diffusion models can achieve image sample quality superior to the current state-of-the-art generative models. We achieve this on unconditional image synthesis by finding a better architecture through a series of ablations. For conditional image synthesis, we further improve sample quality with classifier guidance: a simple, compute-efficient method for trading off diversity for fidelity using gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128times128, 4.59 on ImageNet 256times256, and 7.72 on ImageNet 512times512, and we match BigGAN-deep even with as few as 25 forward passes per sample, all while maintaining better coverage of the distribution. Finally, we find that classifier guidance combines well with upsampling diffusion models, further improving FID to 3.94 on ImageNet 256times256 and 3.85 on ImageNet 512times512. We release our code at https://github.com/openai/guided-diffusion
iColoriT: Towards Propagating Local Hint to the Right Region in Interactive Colorization by Leveraging Vision Transformer
Point-interactive image colorization aims to colorize grayscale images when a user provides the colors for specific locations. It is essential for point-interactive colorization methods to appropriately propagate user-provided colors (i.e., user hints) in the entire image to obtain a reasonably colorized image with minimal user effort. However, existing approaches often produce partially colorized results due to the inefficient design of stacking convolutional layers to propagate hints to distant relevant regions. To address this problem, we present iColoriT, a novel point-interactive colorization Vision Transformer capable of propagating user hints to relevant regions, leveraging the global receptive field of Transformers. The self-attention mechanism of Transformers enables iColoriT to selectively colorize relevant regions with only a few local hints. Our approach colorizes images in real-time by utilizing pixel shuffling, an efficient upsampling technique that replaces the decoder architecture. Also, in order to mitigate the artifacts caused by pixel shuffling with large upsampling ratios, we present the local stabilizing layer. Extensive quantitative and qualitative results demonstrate that our approach highly outperforms existing methods for point-interactive colorization, producing accurately colorized images with a user's minimal effort. Official codes are available at https://pmh9960.github.io/research/iColoriT
PRISM: A Unified Framework for Photorealistic Reconstruction and Intrinsic Scene Modeling
We present PRISM, a unified framework that enables multiple image generation and editing tasks in a single foundational model. Starting from a pre-trained text-to-image diffusion model, PRISM proposes an effective fine-tuning strategy to produce RGB images along with intrinsic maps (referred to as X layers) simultaneously. Unlike previous approaches, which infer intrinsic properties individually or require separate models for decomposition and conditional generation, PRISM maintains consistency across modalities by generating all intrinsic layers jointly. It supports diverse tasks, including text-to-RGBX generation, RGB-to-X decomposition, and X-to-RGBX conditional generation. Additionally, PRISM enables both global and local image editing through conditioning on selected intrinsic layers and text prompts. Extensive experiments demonstrate the competitive performance of PRISM both for intrinsic image decomposition and conditional image generation while preserving the base model's text-to-image generation capability.
FocalLens: Instruction Tuning Enables Zero-Shot Conditional Image Representations
Visual understanding is inherently contextual -- what we focus on in an image depends on the task at hand. For instance, given an image of a person holding a bouquet of flowers, we may focus on either the person such as their clothing, or the type of flowers, depending on the context of interest. Yet, most existing image encoding paradigms represent an image as a fixed, generic feature vector, overlooking the potential needs of prioritizing varying visual information for different downstream use cases. In this work, we introduce FocalLens, a conditional visual encoding method that produces different representations for the same image based on the context of interest, expressed flexibly through natural language. We leverage vision instruction tuning data and contrastively finetune a pretrained vision encoder to take natural language instructions as additional inputs for producing conditional image representations. Extensive experiments validate that conditional image representation from FocalLens better pronounce the visual features of interest compared to generic features produced by standard vision encoders like CLIP. In addition, we show FocalLens further leads to performance improvements on a range of downstream tasks including image-image retrieval, image classification, and image-text retrieval, with an average gain of 5 and 10 points on the challenging SugarCrepe and MMVP-VLM benchmarks, respectively.
Conditional Generative Adversarial Nets
Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustrate how this model could be used to learn a multi-modal model, and provide preliminary examples of an application to image tagging in which we demonstrate how this approach can generate descriptive tags which are not part of training labels.
ECNet: Effective Controllable Text-to-Image Diffusion Models
The conditional text-to-image diffusion models have garnered significant attention in recent years. However, the precision of these models is often compromised mainly for two reasons, ambiguous condition input and inadequate condition guidance over single denoising loss. To address the challenges, we introduce two innovative solutions. Firstly, we propose a Spatial Guidance Injector (SGI) which enhances conditional detail by encoding text inputs with precise annotation information. This method directly tackles the issue of ambiguous control inputs by providing clear, annotated guidance to the model. Secondly, to overcome the issue of limited conditional supervision, we introduce Diffusion Consistency Loss (DCL), which applies supervision on the denoised latent code at any given time step. This encourages consistency between the latent code at each time step and the input signal, thereby enhancing the robustness and accuracy of the output. The combination of SGI and DCL results in our Effective Controllable Network (ECNet), which offers a more accurate controllable end-to-end text-to-image generation framework with a more precise conditioning input and stronger controllable supervision. We validate our approach through extensive experiments on generation under various conditions, such as human body skeletons, facial landmarks, and sketches of general objects. The results consistently demonstrate that our method significantly enhances the controllability and robustness of the generated images, outperforming existing state-of-the-art controllable text-to-image models.
Colorful Image Colorization
Given a grayscale photograph as input, this paper attacks the problem of hallucinating a plausible color version of the photograph. This problem is clearly underconstrained, so previous approaches have either relied on significant user interaction or resulted in desaturated colorizations. We propose a fully automatic approach that produces vibrant and realistic colorizations. We embrace the underlying uncertainty of the problem by posing it as a classification task and use class-rebalancing at training time to increase the diversity of colors in the result. The system is implemented as a feed-forward pass in a CNN at test time and is trained on over a million color images. We evaluate our algorithm using a "colorization Turing test," asking human participants to choose between a generated and ground truth color image. Our method successfully fools humans on 32% of the trials, significantly higher than previous methods. Moreover, we show that colorization can be a powerful pretext task for self-supervised feature learning, acting as a cross-channel encoder. This approach results in state-of-the-art performance on several feature learning benchmarks.
Identifying and Solving Conditional Image Leakage in Image-to-Video Diffusion Model
Diffusion models have obtained substantial progress in image-to-video (I2V) generation. However, such models are not fully understood. In this paper, we report a significant but previously overlooked issue in I2V diffusion models (I2V-DMs), namely, conditional image leakage. I2V-DMs tend to over-rely on the conditional image at large time steps, neglecting the crucial task of predicting the clean video from noisy inputs, which results in videos lacking dynamic and vivid motion. We further address this challenge from both inference and training aspects by presenting plug-and-play strategies accordingly. First, we introduce a training-free inference strategy that starts the generation process from an earlier time step to avoid the unreliable late-time steps of I2V-DMs, as well as an initial noise distribution with optimal analytic expressions (Analytic-Init) by minimizing the KL divergence between it and the actual marginal distribution to effectively bridge the training-inference gap. Second, to mitigate conditional image leakage during training, we design a time-dependent noise distribution for the conditional image, which favors high noise levels at large time steps to sufficiently interfere with the conditional image. We validate these strategies on various I2V-DMs using our collected open-domain image benchmark and the UCF101 dataset. Extensive results demonstrate that our methods outperform baselines by producing videos with more dynamic and natural motion without compromising image alignment and temporal consistency. The project page: https://cond-image-leak.github.io/.
Controllable-Continuous Color Editing in Diffusion Model via Color Mapping
In recent years, text-driven image editing has made significant progress. However, due to the inherent ambiguity and discreteness of natural language, color editing still faces challenges such as insufficient precision and difficulty in achieving continuous control. Although linearly interpolating the embedding vectors of different textual descriptions can guide the model to generate a sequence of images with varying colors, this approach lacks precise control over the range of color changes in the output images. Moreover, the relationship between the interpolation coefficient and the resulting image color is unknown and uncontrollable. To address these issues, we introduce a color mapping module that explicitly models the correspondence between the text embedding space and image RGB values. This module predicts the corresponding embedding vector based on a given RGB value, enabling precise color control of the generated images while maintaining semantic consistency. Users can specify a target RGB range to generate images with continuous color variations within the desired range, thereby achieving finer-grained, continuous, and controllable color editing. Experimental results demonstrate that our method performs well in terms of color continuity and controllability.
Binary Latent Diffusion
In this paper, we show that a binary latent space can be explored for compact yet expressive image representations. We model the bi-directional mappings between an image and the corresponding latent binary representation by training an auto-encoder with a Bernoulli encoding distribution. On the one hand, the binary latent space provides a compact discrete image representation of which the distribution can be modeled more efficiently than pixels or continuous latent representations. On the other hand, we now represent each image patch as a binary vector instead of an index of a learned cookbook as in discrete image representations with vector quantization. In this way, we obtain binary latent representations that allow for better image quality and high-resolution image representations without any multi-stage hierarchy in the latent space. In this binary latent space, images can now be generated effectively using a binary latent diffusion model tailored specifically for modeling the prior over the binary image representations. We present both conditional and unconditional image generation experiments with multiple datasets, and show that the proposed method performs comparably to state-of-the-art methods while dramatically improving the sampling efficiency to as few as 16 steps without using any test-time acceleration. The proposed framework can also be seamlessly scaled to 1024 times 1024 high-resolution image generation without resorting to latent hierarchy or multi-stage refinements.
3D-aware Image Generation and Editing with Multi-modal Conditions
3D-consistent image generation from a single 2D semantic label is an important and challenging research topic in computer graphics and computer vision. Although some related works have made great progress in this field, most of the existing methods suffer from poor disentanglement performance of shape and appearance, and lack multi-modal control. In this paper, we propose a novel end-to-end 3D-aware image generation and editing model incorporating multiple types of conditional inputs, including pure noise, text and reference image. On the one hand, we dive into the latent space of 3D Generative Adversarial Networks (GANs) and propose a novel disentanglement strategy to separate appearance features from shape features during the generation process. On the other hand, we propose a unified framework for flexible image generation and editing tasks with multi-modal conditions. Our method can generate diverse images with distinct noises, edit the attribute through a text description and conduct style transfer by giving a reference RGB image. Extensive experiments demonstrate that the proposed method outperforms alternative approaches both qualitatively and quantitatively on image generation and editing.
HairCLIP: Design Your Hair by Text and Reference Image
Hair editing is an interesting and challenging problem in computer vision and graphics. Many existing methods require well-drawn sketches or masks as conditional inputs for editing, however these interactions are neither straightforward nor efficient. In order to free users from the tedious interaction process, this paper proposes a new hair editing interaction mode, which enables manipulating hair attributes individually or jointly based on the texts or reference images provided by users. For this purpose, we encode the image and text conditions in a shared embedding space and propose a unified hair editing framework by leveraging the powerful image text representation capability of the Contrastive Language-Image Pre-Training (CLIP) model. With the carefully designed network structures and loss functions, our framework can perform high-quality hair editing in a disentangled manner. Extensive experiments demonstrate the superiority of our approach in terms of manipulation accuracy, visual realism of editing results, and irrelevant attribute preservation. Project repo is https://github.com/wty-ustc/HairCLIP.
More Control for Free! Image Synthesis with Semantic Diffusion Guidance
Controllable image synthesis models allow creation of diverse images based on text instructions or guidance from a reference image. Recently, denoising diffusion probabilistic models have been shown to generate more realistic imagery than prior methods, and have been successfully demonstrated in unconditional and class-conditional settings. We investigate fine-grained, continuous control of this model class, and introduce a novel unified framework for semantic diffusion guidance, which allows either language or image guidance, or both. Guidance is injected into a pretrained unconditional diffusion model using the gradient of image-text or image matching scores, without re-training the diffusion model. We explore CLIP-based language guidance as well as both content and style-based image guidance in a unified framework. Our text-guided synthesis approach can be applied to datasets without associated text annotations. We conduct experiments on FFHQ and LSUN datasets, and show results on fine-grained text-guided image synthesis, synthesis of images related to a style or content reference image, and examples with both textual and image guidance.
SmartControl: Enhancing ControlNet for Handling Rough Visual Conditions
Human visual imagination usually begins with analogies or rough sketches. For example, given an image with a girl playing guitar before a building, one may analogously imagine how it seems like if Iron Man playing guitar before Pyramid in Egypt. Nonetheless, visual condition may not be precisely aligned with the imaginary result indicated by text prompt, and existing layout-controllable text-to-image (T2I) generation models is prone to producing degraded generated results with obvious artifacts. To address this issue, we present a novel T2I generation method dubbed SmartControl, which is designed to modify the rough visual conditions for adapting to text prompt. The key idea of our SmartControl is to relax the visual condition on the areas that are conflicted with text prompts. In specific, a Control Scale Predictor (CSP) is designed to identify the conflict regions and predict the local control scales, while a dataset with text prompts and rough visual conditions is constructed for training CSP. It is worth noting that, even with a limited number (e.g., 1,000~2,000) of training samples, our SmartControl can generalize well to unseen objects. Extensive experiments on four typical visual condition types clearly show the efficacy of our SmartControl against state-of-the-arts. Source code, pre-trained models, and datasets are available at https://github.com/liuxiaoyu1104/SmartControl.
Text2LIVE: Text-Driven Layered Image and Video Editing
We present a method for zero-shot, text-driven appearance manipulation in natural images and videos. Given an input image or video and a target text prompt, our goal is to edit the appearance of existing objects (e.g., object's texture) or augment the scene with visual effects (e.g., smoke, fire) in a semantically meaningful manner. We train a generator using an internal dataset of training examples, extracted from a single input (image or video and target text prompt), while leveraging an external pre-trained CLIP model to establish our losses. Rather than directly generating the edited output, our key idea is to generate an edit layer (color+opacity) that is composited over the original input. This allows us to constrain the generation process and maintain high fidelity to the original input via novel text-driven losses that are applied directly to the edit layer. Our method neither relies on a pre-trained generator nor requires user-provided edit masks. We demonstrate localized, semantic edits on high-resolution natural images and videos across a variety of objects and scenes.
Visual Anagrams: Generating Multi-View Optical Illusions with Diffusion Models
We address the problem of synthesizing multi-view optical illusions: images that change appearance upon a transformation, such as a flip or rotation. We propose a simple, zero-shot method for obtaining these illusions from off-the-shelf text-to-image diffusion models. During the reverse diffusion process, we estimate the noise from different views of a noisy image, and then combine these noise estimates together and denoise the image. A theoretical analysis suggests that this method works precisely for views that can be written as orthogonal transformations, of which permutations are a subset. This leads to the idea of a visual anagram--an image that changes appearance under some rearrangement of pixels. This includes rotations and flips, but also more exotic pixel permutations such as a jigsaw rearrangement. Our approach also naturally extends to illusions with more than two views. We provide both qualitative and quantitative results demonstrating the effectiveness and flexibility of our method. Please see our project webpage for additional visualizations and results: https://dangeng.github.io/visual_anagrams/
Photorealistic Material Editing Through Direct Image Manipulation
Creating photorealistic materials for light transport algorithms requires carefully fine-tuning a set of material properties to achieve a desired artistic effect. This is typically a lengthy process that involves a trained artist with specialized knowledge. In this work, we present a technique that aims to empower novice and intermediate-level users to synthesize high-quality photorealistic materials by only requiring basic image processing knowledge. In the proposed workflow, the user starts with an input image and applies a few intuitive transforms (e.g., colorization, image inpainting) within a 2D image editor of their choice, and in the next step, our technique produces a photorealistic result that approximates this target image. Our method combines the advantages of a neural network-augmented optimizer and an encoder neural network to produce high-quality output results within 30 seconds. We also demonstrate that it is resilient against poorly-edited target images and propose a simple extension to predict image sequences with a strict time budget of 1-2 seconds per image.
Rethinking Rotation in Self-Supervised Contrastive Learning: Adaptive Positive or Negative Data Augmentation
Rotation is frequently listed as a candidate for data augmentation in contrastive learning but seldom provides satisfactory improvements. We argue that this is because the rotated image is always treated as either positive or negative. The semantics of an image can be rotation-invariant or rotation-variant, so whether the rotated image is treated as positive or negative should be determined based on the content of the image. Therefore, we propose a novel augmentation strategy, adaptive Positive or Negative Data Augmentation (PNDA), in which an original and its rotated image are a positive pair if they are semantically close and a negative pair if they are semantically different. To achieve PNDA, we first determine whether rotation is positive or negative on an image-by-image basis in an unsupervised way. Then, we apply PNDA to contrastive learning frameworks. Our experiments showed that PNDA improves the performance of contrastive learning. The code is available at https://github.com/AtsuMiyai/rethinking_rotation.
Dynamic Prompt Learning: Addressing Cross-Attention Leakage for Text-Based Image Editing
Large-scale text-to-image generative models have been a ground-breaking development in generative AI, with diffusion models showing their astounding ability to synthesize convincing images following an input text prompt. The goal of image editing research is to give users control over the generated images by modifying the text prompt. Current image editing techniques are susceptible to unintended modifications of regions outside the targeted area, such as on the background or on distractor objects which have some semantic or visual relationship with the targeted object. According to our experimental findings, inaccurate cross-attention maps are at the root of this problem. Based on this observation, we propose Dynamic Prompt Learning (DPL) to force cross-attention maps to focus on correct noun words in the text prompt. By updating the dynamic tokens for nouns in the textual input with the proposed leakage repairment losses, we achieve fine-grained image editing over particular objects while preventing undesired changes to other image regions. Our method DPL, based on the publicly available Stable Diffusion, is extensively evaluated on a wide range of images, and consistently obtains superior results both quantitatively (CLIP score, Structure-Dist) and qualitatively (on user-evaluation). We show improved prompt editing results for Word-Swap, Prompt Refinement, and Attention Re-weighting, especially for complex multi-object scenes.
ManipShield: A Unified Framework for Image Manipulation Detection, Localization and Explanation
With the rapid advancement of generative models, powerful image editing methods now enable diverse and highly realistic image manipulations that far surpass traditional deepfake techniques, posing new challenges for manipulation detection. Existing image manipulation detection and localization (IMDL) benchmarks suffer from limited content diversity, narrow generative-model coverage, and insufficient interpretability, which hinders the generalization and explanation capabilities of current manipulation detection methods. To address these limitations, we introduce ManipBench, a large-scale benchmark for image manipulation detection and localization focusing on AI-edited images. ManipBench contains over 450K manipulated images produced by 25 state-of-the-art image editing models across 12 manipulation categories, among which 100K images are further annotated with bounding boxes, judgment cues, and textual explanations to support interpretable detection. Building upon ManipBench, we propose ManipShield, an all-in-one model based on a Multimodal Large Language Model (MLLM) that leverages contrastive LoRA fine-tuning and task-specific decoders to achieve unified image manipulation detection, localization, and explanation. Extensive experiments on ManipBench and several public datasets demonstrate that ManipShield achieves state-of-the-art performance and exhibits strong generality to unseen manipulation models. Both ManipBench and ManipShield will be released upon publication.
Unrestricted Adversarial Examples via Semantic Manipulation
Machine learning models, especially deep neural networks (DNNs), have been shown to be vulnerable against adversarial examples which are carefully crafted samples with a small magnitude of the perturbation. Such adversarial perturbations are usually restricted by bounding their L_p norm such that they are imperceptible, and thus many current defenses can exploit this property to reduce their adversarial impact. In this paper, we instead introduce "unrestricted" perturbations that manipulate semantically meaningful image-based visual descriptors - color and texture - in order to generate effective and photorealistic adversarial examples. We show that these semantically aware perturbations are effective against JPEG compression, feature squeezing and adversarially trained model. We also show that the proposed methods can effectively be applied to both image classification and image captioning tasks on complex datasets such as ImageNet and MSCOCO. In addition, we conduct comprehensive user studies to show that our generated semantic adversarial examples are photorealistic to humans despite large magnitude perturbations when compared to other attacks.
Discrete Noise Inversion for Next-scale Autoregressive Text-based Image Editing
Visual autoregressive models (VAR) have recently emerged as a promising class of generative models, achieving performance comparable to diffusion models in text-to-image generation tasks. While conditional generation has been widely explored, the ability to perform prompt-guided image editing without additional training is equally critical, as it supports numerous practical real-world applications. This paper investigates the text-to-image editing capabilities of VAR by introducing Visual AutoRegressive Inverse Noise (VARIN), the first noise inversion-based editing technique designed explicitly for VAR models. VARIN leverages a novel pseudo-inverse function for argmax sampling, named Location-aware Argmax Inversion (LAI), to generate inverse Gumbel noises. These inverse noises enable precise reconstruction of the source image and facilitate targeted, controllable edits aligned with textual prompts. Extensive experiments demonstrate that VARIN effectively modifies source images according to specified prompts while significantly preserving the original background and structural details, thus validating its efficacy as a practical editing approach.
AR-GRPO: Training Autoregressive Image Generation Models via Reinforcement Learning
Inspired by the success of reinforcement learning (RL) in refining large language models (LLMs), we propose AR-GRPO, an approach to integrate online RL training into autoregressive (AR) image generation models. We adapt the Group Relative Policy Optimization (GRPO) algorithm to refine the vanilla autoregressive models' outputs by carefully designed reward functions that evaluate generated images across multiple quality dimensions, including perceptual quality, realism, and semantic fidelity. We conduct comprehensive experiments on both class-conditional (i.e., class-to-image) and text-conditional (i.e., text-to-image) image generation tasks, demonstrating that our RL-enhanced framework significantly improves both the image quality and human preference of generated images compared to the standard AR baselines. Our results show consistent improvements across various evaluation metrics, establishing the viability of RL-based optimization for AR image generation and opening new avenues for controllable and high-quality image synthesis. The source codes and models are available at: https://github.com/Kwai-Klear/AR-GRPO.
Detecting Recolored Image by Spatial Correlation
Image forensics, aiming to ensure the authenticity of the image, has made great progress in dealing with common image manipulation such as copy-move, splicing, and inpainting in the past decades. However, only a few researchers pay attention to an emerging editing technique called image recoloring, which can manipulate the color values of an image to give it a new style. To prevent it from being used maliciously, the previous approaches address the conventional recoloring from the perspective of inter-channel correlation and illumination consistency. In this paper, we try to explore a solution from the perspective of the spatial correlation, which exhibits the generic detection capability for both conventional and deep learning-based recoloring. Through theoretical and numerical analysis, we find that the recoloring operation will inevitably destroy the spatial correlation between pixels, implying a new prior of statistical discriminability. Based on such fact, we generate a set of spatial correlation features and learn the informative representation from the set via a convolutional neural network. To train our network, we use three recoloring methods to generate a large-scale and high-quality data set. Extensive experimental results in two recoloring scenes demonstrate that the spatial correlation features are highly discriminative. Our method achieves the state-of-the-art detection accuracy on multiple benchmark datasets and exhibits well generalization for unknown types of recoloring methods.
Diffuse to Choose: Enriching Image Conditioned Inpainting in Latent Diffusion Models for Virtual Try-All
As online shopping is growing, the ability for buyers to virtually visualize products in their settings-a phenomenon we define as "Virtual Try-All"-has become crucial. Recent diffusion models inherently contain a world model, rendering them suitable for this task within an inpainting context. However, traditional image-conditioned diffusion models often fail to capture the fine-grained details of products. In contrast, personalization-driven models such as DreamPaint are good at preserving the item's details but they are not optimized for real-time applications. We present "Diffuse to Choose," a novel diffusion-based image-conditioned inpainting model that efficiently balances fast inference with the retention of high-fidelity details in a given reference item while ensuring accurate semantic manipulations in the given scene content. Our approach is based on incorporating fine-grained features from the reference image directly into the latent feature maps of the main diffusion model, alongside with a perceptual loss to further preserve the reference item's details. We conduct extensive testing on both in-house and publicly available datasets, and show that Diffuse to Choose is superior to existing zero-shot diffusion inpainting methods as well as few-shot diffusion personalization algorithms like DreamPaint.
Unified Generative Adversarial Networks for Controllable Image-to-Image Translation
We propose a unified Generative Adversarial Network (GAN) for controllable image-to-image translation, i.e., transferring an image from a source to a target domain guided by controllable structures. In addition to conditioning on a reference image, we show how the model can generate images conditioned on controllable structures, e.g., class labels, object keypoints, human skeletons, and scene semantic maps. The proposed model consists of a single generator and a discriminator taking a conditional image and the target controllable structure as input. In this way, the conditional image can provide appearance information and the controllable structure can provide the structure information for generating the target result. Moreover, our model learns the image-to-image mapping through three novel losses, i.e., color loss, controllable structure guided cycle-consistency loss, and controllable structure guided self-content preserving loss. Also, we present the Fr\'echet ResNet Distance (FRD) to evaluate the quality of the generated images. Experiments on two challenging image translation tasks, i.e., hand gesture-to-gesture translation and cross-view image translation, show that our model generates convincing results, and significantly outperforms other state-of-the-art methods on both tasks. Meanwhile, the proposed framework is a unified solution, thus it can be applied to solving other controllable structure guided image translation tasks such as landmark guided facial expression translation and keypoint guided person image generation. To the best of our knowledge, we are the first to make one GAN framework work on all such controllable structure guided image translation tasks. Code is available at https://github.com/Ha0Tang/GestureGAN.
CODE: Confident Ordinary Differential Editing
Conditioning image generation facilitates seamless editing and the creation of photorealistic images. However, conditioning on noisy or Out-of-Distribution (OoD) images poses significant challenges, particularly in balancing fidelity to the input and realism of the output. We introduce Confident Ordinary Differential Editing (CODE), a novel approach for image synthesis that effectively handles OoD guidance images. Utilizing a diffusion model as a generative prior, CODE enhances images through score-based updates along the probability-flow Ordinary Differential Equation (ODE) trajectory. This method requires no task-specific training, no handcrafted modules, and no assumptions regarding the corruptions affecting the conditioning image. Our method is compatible with any diffusion model. Positioned at the intersection of conditional image generation and blind image restoration, CODE operates in a fully blind manner, relying solely on a pre-trained generative model. Our method introduces an alternative approach to blind restoration: instead of targeting a specific ground truth image based on assumptions about the underlying corruption, CODE aims to increase the likelihood of the input image while maintaining fidelity. This results in the most probable in-distribution image around the input. Our contributions are twofold. First, CODE introduces a novel editing method based on ODE, providing enhanced control, realism, and fidelity compared to its SDE-based counterpart. Second, we introduce a confidence interval-based clipping method, which improves CODE's effectiveness by allowing it to disregard certain pixels or information, thus enhancing the restoration process in a blind manner. Experimental results demonstrate CODE's effectiveness over existing methods, particularly in scenarios involving severe degradation or OoD inputs.
Integrating View Conditions for Image Synthesis
In the field of image processing, applying intricate semantic modifications within existing images remains an enduring challenge. This paper introduces a pioneering framework that integrates viewpoint information to enhance the control of image editing tasks, especially for interior design scenes. By surveying existing object editing methodologies, we distill three essential criteria -- consistency, controllability, and harmony -- that should be met for an image editing method. In contrast to previous approaches, our framework takes the lead in satisfying all three requirements for addressing the challenge of image synthesis. Through comprehensive experiments, encompassing both quantitative assessments and qualitative comparisons with contemporary state-of-the-art methods, we present compelling evidence of our framework's superior performance across multiple dimensions. This work establishes a promising avenue for advancing image synthesis techniques and empowering precise object modifications while preserving the visual coherence of the entire composition.
Realistic Saliency Guided Image Enhancement
Common editing operations performed by professional photographers include the cleanup operations: de-emphasizing distracting elements and enhancing subjects. These edits are challenging, requiring a delicate balance between manipulating the viewer's attention while maintaining photo realism. While recent approaches can boast successful examples of attention attenuation or amplification, most of them also suffer from frequent unrealistic edits. We propose a realism loss for saliency-guided image enhancement to maintain high realism across varying image types, while attenuating distractors and amplifying objects of interest. Evaluations with professional photographers confirm that we achieve the dual objective of realism and effectiveness, and outperform the recent approaches on their own datasets, while requiring a smaller memory footprint and runtime. We thus offer a viable solution for automating image enhancement and photo cleanup operations.
End-to-End Optimization of Scene Layout
We propose an end-to-end variational generative model for scene layout synthesis conditioned on scene graphs. Unlike unconditional scene layout generation, we use scene graphs as an abstract but general representation to guide the synthesis of diverse scene layouts that satisfy relationships included in the scene graph. This gives rise to more flexible control over the synthesis process, allowing various forms of inputs such as scene layouts extracted from sentences or inferred from a single color image. Using our conditional layout synthesizer, we can generate various layouts that share the same structure of the input example. In addition to this conditional generation design, we also integrate a differentiable rendering module that enables layout refinement using only 2D projections of the scene. Given a depth and a semantics map, the differentiable rendering module enables optimizing over the synthesized layout to fit the given input in an analysis-by-synthesis fashion. Experiments suggest that our model achieves higher accuracy and diversity in conditional scene synthesis and allows exemplar-based scene generation from various input forms.
Foreground-Background Separation through Concept Distillation from Generative Image Foundation Models
Curating datasets for object segmentation is a difficult task. With the advent of large-scale pre-trained generative models, conditional image generation has been given a significant boost in result quality and ease of use. In this paper, we present a novel method that enables the generation of general foreground-background segmentation models from simple textual descriptions, without requiring segmentation labels. We leverage and explore pre-trained latent diffusion models, to automatically generate weak segmentation masks for concepts and objects. The masks are then used to fine-tune the diffusion model on an inpainting task, which enables fine-grained removal of the object, while at the same time providing a synthetic foreground and background dataset. We demonstrate that using this method beats previous methods in both discriminative and generative performance and closes the gap with fully supervised training while requiring no pixel-wise object labels. We show results on the task of segmenting four different objects (humans, dogs, cars, birds) and a use case scenario in medical image analysis. The code is available at https://github.com/MischaD/fobadiffusion.
GECCO: Geometrically-Conditioned Point Diffusion Models
Diffusion models generating images conditionally on text, such as Dall-E 2 and Stable Diffusion, have recently made a splash far beyond the computer vision community. Here, we tackle the related problem of generating point clouds, both unconditionally, and conditionally with images. For the latter, we introduce a novel geometrically-motivated conditioning scheme based on projecting sparse image features into the point cloud and attaching them to each individual point, at every step in the denoising process. This approach improves geometric consistency and yields greater fidelity than current methods relying on unstructured, global latent codes. Additionally, we show how to apply recent continuous-time diffusion schemes. Our method performs on par or above the state of art on conditional and unconditional experiments on synthetic data, while being faster, lighter, and delivering tractable likelihoods. We show it can also scale to diverse indoors scenes.
Semantic Photo Manipulation with a Generative Image Prior
Despite the recent success of GANs in synthesizing images conditioned on inputs such as a user sketch, text, or semantic labels, manipulating the high-level attributes of an existing natural photograph with GANs is challenging for two reasons. First, it is hard for GANs to precisely reproduce an input image. Second, after manipulation, the newly synthesized pixels often do not fit the original image. In this paper, we address these issues by adapting the image prior learned by GANs to image statistics of an individual image. Our method can accurately reconstruct the input image and synthesize new content, consistent with the appearance of the input image. We demonstrate our interactive system on several semantic image editing tasks, including synthesizing new objects consistent with background, removing unwanted objects, and changing the appearance of an object. Quantitative and qualitative comparisons against several existing methods demonstrate the effectiveness of our method.
Face X-ray for More General Face Forgery Detection
In this paper we propose a novel image representation called face X-ray for detecting forgery in face images. The face X-ray of an input face image is a greyscale image that reveals whether the input image can be decomposed into the blending of two images from different sources. It does so by showing the blending boundary for a forged image and the absence of blending for a real image. We observe that most existing face manipulation methods share a common step: blending the altered face into an existing background image. For this reason, face X-ray provides an effective way for detecting forgery generated by most existing face manipulation algorithms. Face X-ray is general in the sense that it only assumes the existence of a blending step and does not rely on any knowledge of the artifacts associated with a specific face manipulation technique. Indeed, the algorithm for computing face X-ray can be trained without fake images generated by any of the state-of-the-art face manipulation methods. Extensive experiments show that face X-ray remains effective when applied to forgery generated by unseen face manipulation techniques, while most existing face forgery detection or deepfake detection algorithms experience a significant performance drop.
Controllable Layer Decomposition for Reversible Multi-Layer Image Generation
This work presents Controllable Layer Decomposition (CLD), a method for achieving fine-grained and controllable multi-layer separation of raster images. In practical workflows, designers typically generate and edit each RGBA layer independently before compositing them into a final raster image. However, this process is irreversible: once composited, layer-level editing is no longer possible. Existing methods commonly rely on image matting and inpainting, but remain limited in controllability and segmentation precision. To address these challenges, we propose two key modules: LayerDecompose-DiT (LD-DiT), which decouples image elements into distinct layers and enables fine-grained control; and Multi-Layer Conditional Adapter (MLCA), which injects target image information into multi-layer tokens to achieve precise conditional generation. To enable a comprehensive evaluation, we build a new benchmark and introduce tailored evaluation metrics. Experimental results show that CLD consistently outperforms existing methods in both decomposition quality and controllability. Furthermore, the separated layers produced by CLD can be directly manipulated in commonly used design tools such as PowerPoint, highlighting its practical value and applicability in real-world creative workflows.
CompSlider: Compositional Slider for Disentangled Multiple-Attribute Image Generation
In text-to-image (T2I) generation, achieving fine-grained control over attributes - such as age or smile - remains challenging, even with detailed text prompts. Slider-based methods offer a solution for precise control of image attributes. Existing approaches typically train individual adapter for each attribute separately, overlooking the entanglement among multiple attributes. As a result, interference occurs among different attributes, preventing precise control of multiple attributes together. To address this challenge, we aim to disentangle multiple attributes in slider-based generation to enbale more reliable and independent attribute manipulation. Our approach, CompSlider, can generate a conditional prior for the T2I foundation model to control multiple attributes simultaneously. Furthermore, we introduce novel disentanglement and structure losses to compose multiple attribute changes while maintaining structural consistency within the image. Since CompSlider operates in the latent space of the conditional prior and does not require retraining the foundation model, it reduces the computational burden for both training and inference. We evaluate our approach on a variety of image attributes and highlight its generality by extending to video generation.
Anywhere: A Multi-Agent Framework for Reliable and Diverse Foreground-Conditioned Image Inpainting
Recent advancements in image inpainting, particularly through diffusion modeling, have yielded promising outcomes. However, when tested in scenarios involving the completion of images based on the foreground objects, current methods that aim to inpaint an image in an end-to-end manner encounter challenges such as "over-imagination", inconsistency between foreground and background, and limited diversity. In response, we introduce Anywhere, a pioneering multi-agent framework designed to address these issues. Anywhere utilizes a sophisticated pipeline framework comprising various agents such as Visual Language Model (VLM), Large Language Model (LLM), and image generation models. This framework consists of three principal components: the prompt generation module, the image generation module, and the outcome analyzer. The prompt generation module conducts a semantic analysis of the input foreground image, leveraging VLM to predict relevant language descriptions and LLM to recommend optimal language prompts. In the image generation module, we employ a text-guided canny-to-image generation model to create a template image based on the edge map of the foreground image and language prompts, and an image refiner to produce the outcome by blending the input foreground and the template image. The outcome analyzer employs VLM to evaluate image content rationality, aesthetic score, and foreground-background relevance, triggering prompt and image regeneration as needed. Extensive experiments demonstrate that our Anywhere framework excels in foreground-conditioned image inpainting, mitigating "over-imagination", resolving foreground-background discrepancies, and enhancing diversity. It successfully elevates foreground-conditioned image inpainting to produce more reliable and diverse results.
CAMS: Color-Aware Multi-Style Transfer
Image style transfer aims to manipulate the appearance of a source image, or "content" image, to share similar texture and colors of a target "style" image. Ideally, the style transfer manipulation should also preserve the semantic content of the source image. A commonly used approach to assist in transferring styles is based on Gram matrix optimization. One problem of Gram matrix-based optimization is that it does not consider the correlation between colors and their styles. Specifically, certain textures or structures should be associated with specific colors. This is particularly challenging when the target style image exhibits multiple style types. In this work, we propose a color-aware multi-style transfer method that generates aesthetically pleasing results while preserving the style-color correlation between style and generated images. We achieve this desired outcome by introducing a simple but efficient modification to classic Gram matrix-based style transfer optimization. A nice feature of our method is that it enables the users to manually select the color associations between the target style and content image for more transfer flexibility. We validated our method with several qualitative comparisons, including a user study conducted with 30 participants. In comparison with prior work, our method is simple, easy to implement, and achieves visually appealing results when targeting images that have multiple styles. Source code is available at https://github.com/mahmoudnafifi/color-aware-style-transfer.
Manifold Preserving Guided Diffusion
Despite the recent advancements, conditional image generation still faces challenges of cost, generalizability, and the need for task-specific training. In this paper, we propose Manifold Preserving Guided Diffusion (MPGD), a training-free conditional generation framework that leverages pretrained diffusion models and off-the-shelf neural networks with minimal additional inference cost for a broad range of tasks. Specifically, we leverage the manifold hypothesis to refine the guided diffusion steps and introduce a shortcut algorithm in the process. We then propose two methods for on-manifold training-free guidance using pre-trained autoencoders and demonstrate that our shortcut inherently preserves the manifolds when applied to latent diffusion models. Our experiments show that MPGD is efficient and effective for solving a variety of conditional generation applications in low-compute settings, and can consistently offer up to 3.8x speed-ups with the same number of diffusion steps while maintaining high sample quality compared to the baselines.
StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery
Inspired by the ability of StyleGAN to generate highly realistic images in a variety of domains, much recent work has focused on understanding how to use the latent spaces of StyleGAN to manipulate generated and real images. However, discovering semantically meaningful latent manipulations typically involves painstaking human examination of the many degrees of freedom, or an annotated collection of images for each desired manipulation. In this work, we explore leveraging the power of recently introduced Contrastive Language-Image Pre-training (CLIP) models in order to develop a text-based interface for StyleGAN image manipulation that does not require such manual effort. We first introduce an optimization scheme that utilizes a CLIP-based loss to modify an input latent vector in response to a user-provided text prompt. Next, we describe a latent mapper that infers a text-guided latent manipulation step for a given input image, allowing faster and more stable text-based manipulation. Finally, we present a method for mapping a text prompts to input-agnostic directions in StyleGAN's style space, enabling interactive text-driven image manipulation. Extensive results and comparisons demonstrate the effectiveness of our approaches.
DLGAN: Disentangling Label-Specific Fine-Grained Features for Image Manipulation
Recent studies have shown how disentangling images into content and feature spaces can provide controllable image translation/ manipulation. In this paper, we propose a framework to enable utilizing discrete multi-labels to control which features to be disentangled, i.e., disentangling label-specific fine-grained features for image manipulation (dubbed DLGAN). By mapping the discrete label-specific attribute features into a continuous prior distribution, we leverage the advantages of both discrete labels and reference images to achieve image manipulation in a hybrid fashion. For example, given a face image dataset (e.g., CelebA) with multiple discrete fine-grained labels, we can learn to smoothly interpolate a face image between black hair and blond hair through reference images while immediately controlling the gender and age through discrete input labels. To the best of our knowledge, this is the first work that realizes such a hybrid manipulation within a single model. More importantly, it is the first work to achieve image interpolation between two different domains without requiring continuous labels as the supervision. Qualitative and quantitative experiments demonstrate the effectiveness of the proposed method.
Tight Inversion: Image-Conditioned Inversion for Real Image Editing
Text-to-image diffusion models offer powerful image editing capabilities. To edit real images, many methods rely on the inversion of the image into Gaussian noise. A common approach to invert an image is to gradually add noise to the image, where the noise is determined by reversing the sampling equation. This process has an inherent tradeoff between reconstruction and editability, limiting the editing of challenging images such as highly-detailed ones. Recognizing the reliance of text-to-image models inversion on a text condition, this work explores the importance of the condition choice. We show that a condition that precisely aligns with the input image significantly improves the inversion quality. Based on our findings, we introduce Tight Inversion, an inversion method that utilizes the most possible precise condition -- the input image itself. This tight condition narrows the distribution of the model's output and enhances both reconstruction and editability. We demonstrate the effectiveness of our approach when combined with existing inversion methods through extensive experiments, evaluating the reconstruction accuracy as well as the integration with various editing methods.
FlexPainter: Flexible and Multi-View Consistent Texture Generation
Texture map production is an important part of 3D modeling and determines the rendering quality. Recently, diffusion-based methods have opened a new way for texture generation. However, restricted control flexibility and limited prompt modalities may prevent creators from producing desired results. Furthermore, inconsistencies between generated multi-view images often lead to poor texture generation quality. To address these issues, we introduce FlexPainter, a novel texture generation pipeline that enables flexible multi-modal conditional guidance and achieves highly consistent texture generation. A shared conditional embedding space is constructed to perform flexible aggregation between different input modalities. Utilizing such embedding space, we present an image-based CFG method to decompose structural and style information, achieving reference image-based stylization. Leveraging the 3D knowledge within the image diffusion prior, we first generate multi-view images simultaneously using a grid representation to enhance global understanding. Meanwhile, we propose a view synchronization and adaptive weighting module during diffusion sampling to further ensure local consistency. Finally, a 3D-aware texture completion model combined with a texture enhancement model is used to generate seamless, high-resolution texture maps. Comprehensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods in both flexibility and generation quality.
