- Generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates We report an optical method of generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates, the optical axes of which are set at a crossing angle of {\pi}/4. The method has the remarkable feature of being able to generate a distribution of arbitrary polarization states in a group of highly discrete spectra without spatially separating the individual spectral components. The target polarization-state distribution is obtained as an optimal solution through an exploration. Within a realistic exploration range, a sufficient number of near-optimal solutions are found. This property is also reproduced well by a concise model based on a distribution of exploration points on a Poincar\'e sphere, showing that the number of near-optimal solutions behaves according to a power law with respect to the number of spectral components of concern. As a typical example of an application, by applying this method to a set of phase-locked highly discrete spectra, we numerically demonstrate the continuous generation of a vector-like optical electric field waveform, the helicity of which is alternated within a single optical cycle in the time domain. 4 authors · Aug 1, 2023
- Glossy Object Reconstruction with Cost-effective Polarized Acquisition The challenge of image-based 3D reconstruction for glossy objects lies in separating diffuse and specular components on glossy surfaces from captured images, a task complicated by the ambiguity in discerning lighting conditions and material properties using RGB data alone. While state-of-the-art methods rely on tailored and/or high-end equipment for data acquisition, which can be cumbersome and time-consuming, this work introduces a scalable polarization-aided approach that employs cost-effective acquisition tools. By attaching a linear polarizer to readily available RGB cameras, multi-view polarization images can be captured without the need for advance calibration or precise measurements of the polarizer angle, substantially reducing system construction costs. The proposed approach represents polarimetric BRDF, Stokes vectors, and polarization states of object surfaces as neural implicit fields. These fields, combined with the polarizer angle, are retrieved by optimizing the rendering loss of input polarized images. By leveraging fundamental physical principles for the implicit representation of polarization rendering, our method demonstrates superiority over existing techniques through experiments in public datasets and real captured images on both reconstruction and novel view synthesis. 4 authors · Apr 9, 2025
- Reflection Removal Using Recurrent Polarization-to-Polarization Network This paper addresses reflection removal, which is the task of separating reflection components from a captured image and deriving the image with only transmission components. Considering that the existence of the reflection changes the polarization state of a scene, some existing methods have exploited polarized images for reflection removal. While these methods apply polarized images as the inputs, they predict the reflection and the transmission directly as non-polarized intensity images. In contrast, we propose a polarization-to-polarization approach that applies polarized images as the inputs and predicts "polarized" reflection and transmission images using two sequential networks to facilitate the separation task by utilizing the interrelated polarization information between the reflection and the transmission. We further adopt a recurrent framework, where the predicted reflection and transmission images are used to iteratively refine each other. Experimental results on a public dataset demonstrate that our method outperforms other state-of-the-art methods. 3 authors · Feb 28, 2024
- A Multi-Labeled Dataset for Indonesian Discourse: Examining Toxicity, Polarization, and Demographics Information Polarization is defined as divisive opinions held by two or more groups on substantive issues. As the world's third-largest democracy, Indonesia faces growing concerns about the interplay between political polarization and online toxicity, which is often directed at vulnerable minority groups. Despite the importance of this issue, previous NLP research has not fully explored the relationship between toxicity and polarization. To bridge this gap, we present a novel multi-label Indonesian dataset that incorporates toxicity, polarization, and annotator demographic information. Benchmarking this dataset using BERT-base models and large language models (LLMs) shows that polarization information enhances toxicity classification, and vice versa. Furthermore, providing demographic information significantly improves the performance of polarization classification. 9 authors · Mar 1, 2025
- PolarAnything: Diffusion-based Polarimetric Image Synthesis Polarization images facilitate image enhancement and 3D reconstruction tasks, but the limited accessibility of polarization cameras hinders their broader application. This gap drives the need for synthesizing photorealistic polarization images. The existing polarization simulator Mitsuba relies on a parametric polarization image formation model and requires extensive 3D assets covering shape and PBR materials, preventing it from generating large-scale photorealistic images. To address this problem, we propose PolarAnything, capable of synthesizing polarization images from a single RGB input with both photorealism and physical accuracy, eliminating the dependency on 3D asset collections. Drawing inspiration from the zero-shot performance of pretrained diffusion models, we introduce a diffusion-based generative framework with an effective representation strategy that preserves the fidelity of polarization properties. Experiments show that our model generates high-quality polarization images and supports downstream tasks like shape from polarization. 6 authors · Jul 23, 2025
- Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset Image datasets are essential not only in validating existing methods in computer vision but also in developing new methods. Most existing image datasets focus on trichromatic intensity images to mimic human vision. However, polarization and spectrum, the wave properties of light that animals in harsh environments and with limited brain capacity often rely on, remain underrepresented in existing datasets. Although spectro-polarimetric datasets exist, these datasets have insufficient object diversity, limited illumination conditions, linear-only polarization data, and inadequate image count. Here, we introduce two spectro-polarimetric datasets: trichromatic Stokes images and hyperspectral Stokes images. These novel datasets encompass both linear and circular polarization; they introduce multiple spectral channels; and they feature a broad selection of real-world scenes. With our dataset in hand, we analyze the spectro-polarimetric image statistics, develop efficient representations of such high-dimensional data, and evaluate spectral dependency of shape-from-polarization methods. As such, the proposed dataset promises a foundation for data-driven spectro-polarimetric imaging and vision research. Dataset and code will be publicly available. 7 authors · Nov 29, 2023
- PolarFree: Polarization-based Reflection-free Imaging Reflection removal is challenging due to complex light interactions, where reflections obscure important details and hinder scene understanding. Polarization naturally provides a powerful cue to distinguish between reflected and transmitted light, enabling more accurate reflection removal. However, existing methods often rely on small-scale or synthetic datasets, which fail to capture the diversity and complexity of real-world scenarios. To this end, we construct a large-scale dataset, PolaRGB, for Polarization-based reflection removal of RGB images, which enables us to train models that generalize effectively across a wide range of real-world scenarios. The PolaRGB dataset contains 6,500 well-aligned mixed-transmission image pairs, 8x larger than existing polarization datasets, and is the first to include both RGB and polarization images captured across diverse indoor and outdoor environments with varying lighting conditions. Besides, to fully exploit the potential of polarization cues for reflection removal, we introduce PolarFree, which leverages diffusion process to generate reflection-free cues for accurate reflection removal. Extensive experiments show that PolarFree significantly enhances image clarity in challenging reflective scenarios, setting a new benchmark for polarized imaging and reflection removal. Code and dataset are available at https://github.com/mdyao/PolarFree. 6 authors · Mar 23, 2025
1 Unveiling Affective Polarization Trends in Parliamentary Proceedings Recent years have seen an increase in polarized discourse worldwide, on various platforms. We propose a novel method for quantifying polarization, based on the emotional style of the discourse rather than on differences in ideological stands. Using measures of Valence, Arousal and Dominance, we detect signals of emotional discourse and use them to operationalize the concept of affective polarization. Applying this method to a recently released corpus of proceedings of the Knesset, the Israeli parliament (in Hebrew), we find that the emotional style of members of government differs from that of opposition members; and that the level of affective polarization, as reflected by this style, is significantly increasing with time. 3 authors · Dec 4, 2025
- CommunityLM: Probing Partisan Worldviews from Language Models As political attitudes have diverged ideologically in the United States, political speech has diverged lingusitically. The ever-widening polarization between the US political parties is accelerated by an erosion of mutual understanding between them. We aim to make these communities more comprehensible to each other with a framework that probes community-specific responses to the same survey questions using community language models CommunityLM. In our framework we identify committed partisan members for each community on Twitter and fine-tune LMs on the tweets authored by them. We then assess the worldviews of the two groups using prompt-based probing of their corresponding LMs, with prompts that elicit opinions about public figures and groups surveyed by the American National Election Studies (ANES) 2020 Exploratory Testing Survey. We compare the responses generated by the LMs to the ANES survey results, and find a level of alignment that greatly exceeds several baseline methods. Our work aims to show that we can use community LMs to query the worldview of any group of people given a sufficiently large sample of their social media discussions or media diet. 4 authors · Sep 15, 2022
- Ferromagnetic ordering in mazelike stripe liquid of a dipolar six-state clock model We present a comprehensive numerical study of a six-state clock model with a long-range dipolar type interaction. This model is motivated by the ferroelectric orders in the multiferroic hexagonal manganites. At low temperatures, trimerization of local atomic structures leads to six distinct but energetically degenerate structural distortion, which can be modeled by a six-state clock model. Moreover, the atomic displacements in the trimerized state further produce a local electric polarization whose sign depends on whether the clock variable is even or odd. These induced electric dipoles, which can be modeled by emergent Ising degrees of freedom, interact with each other via long-range dipolar interactions. Extensive Monte Carlo simulations are carried out to investigate low temperature phases resulting from the competing interactions. Upon lowering temperature, the system undergoes two Berezinskii-Kosterlitz-Thouless (BKT) transitions, characteristic of the standard six-state clock model in two dimensions. The dipolar interaction between emergent Ising spins induces a first-order transition into a ground state characterized by a three-fold degenerate stripe order. The intermediate phase between the discontinuous and the second BKT transition corresponds to a maze-like hexagonal liquid with short-range stripe ordering. Moreover, this intermediate phase also exhibits an unusual ferromagnetic order with two adjacent clock variables occupying the two types of stripes of the labyrinthine pattern. 3 authors · Dec 12, 2024
- Polarization analysis of gravitational-wave backgrounds from the correlation signals of ground-based interferometers: measuring a circular-polarization mode The Stokes V parameter characterizes asymmetry of amplitudes between right- and left-handed waves, and non-vanishing value of the V parameter yields a circularly polarized signal. Cosmologically, V parameter may be a direct probe for parity violation in the universe. In this paper, we theoretically investigate a measurement of this parameter, particularly focusing on the gravitational-wave backgrounds observed via ground-based interferometers. In contrast to the traditional analysis that only considers the total amplitude (or equivalently Omega_{GW}), the signal analysis including a circular-polarized mode has a rich structure due to the multi-dimensionality of target parameters. We show that, by using the network of next-generation detectors, separation between polarized and unpolarized modes can be performed with small statistical loss induced by their correlation. 2 authors · Jan 27, 2008
- Understanding Political Polarization via Jointly Modeling Users, Connections and Multimodal Contents on Heterogeneous Graphs Understanding political polarization on social platforms is important as public opinions may become increasingly extreme when they are circulated in homogeneous communities, thus potentially causing damage in the real world. Automatically detecting the political ideology of social media users can help better understand political polarization. However, it is challenging due to the scarcity of ideology labels, complexity of multimodal contents, and cost of time-consuming data collection process. In this study, we adopt a heterogeneous graph neural network to jointly model user characteristics, multimodal post contents as well as user-item relations in a bipartite graph to learn a comprehensive and effective user embedding without requiring ideology labels. We apply our framework to online discussions about economy and public health topics. The learned embeddings are then used to detect political ideology and understand political polarization. Our framework outperforms the unimodal, early/late fusion baselines, and homogeneous GNN frameworks by a margin of at least 9% absolute gain in the area under the receiver operating characteristic on two social media datasets. More importantly, our work does not require a time-consuming data collection process, which allows faster detection and in turn allows the policy makers to conduct analysis and design policies in time to respond to crises. We also show that our framework learns meaningful user embeddings and can help better understand political polarization. Notable differences in user descriptions, topics, images, and levels of retweet/quote activities are observed. Our framework for decoding user-content interaction shows wide applicability in understanding political polarization. Furthermore, it can be extended to user-item bipartite information networks for other applications such as content and product recommendation. 2 authors · Jan 15, 2022
1 Reasoning About Group Polarization: From Semantic Games to Sequent Systems Group polarization, the phenomenon where individuals become more extreme after interacting, has been gaining attention, especially with the rise of social media shaping people's opinions. Recent interest has emerged in formal reasoning about group polarization using logical systems. In this work we consider the modal logic PNL that captures the notion of agents agreeing or disagreeing on a given topic. Our contribution involves enhancing PNL with advanced formal reasoning techniques, instead of relying on axiomatic systems for analyzing group polarization. To achieve this, we introduce a semantic game tailored for (hybrid) extensions of PNL. This game fosters dynamic reasoning about concrete network models, aligning with our goal of strengthening PNL's effectiveness in studying group polarization. We show how this semantic game leads to a provability game by systemically exploring the truth in all models. This leads to the first cut-free sequent systems for some variants of PNL. Using polarization of formulas, the proposed calculi can be modularly adapted to consider different frame properties of the underlying model. 4 authors · May 2, 2024
- Quantum coherence and distribution of N-partite bosonic fields in noninertial frame We study the quantum coherence and its distribution of N-partite GHZ and W states of bosonic fields in the noninertial frames with arbitrary number of acceleration observers. We find that the coherence of both GHZ and W state reduces with accelerations and freezes in the limit of infinite accelerations. The freezing value of coherence depends on the number of accelerated observers. The coherence of N-partite GHZ state is genuinely global and no coherence exists in any subsystems. For the N-partite W state, however, the coherence is essentially bipartite types, and the total coherence is equal to the sum of coherence of all the bipartite subsystems. 3 authors · Jan 4, 2022
1 Polarization by Design: How Elites Could Shape Mass Preferences as AI Reduces Persuasion Costs In democracies, major policy decisions typically require some form of majority or consensus, so elites must secure mass support to govern. Historically, elites could shape support only through limited instruments like schooling and mass media; advances in AI-driven persuasion sharply reduce the cost and increase the precision of shaping public opinion, making the distribution of preferences itself an object of deliberate design. We develop a dynamic model in which elites choose how much to reshape the distribution of policy preferences, subject to persuasion costs and a majority rule constraint. With a single elite, any optimal intervention tends to push society toward more polarized opinion profiles - a ``polarization pull'' - and improvements in persuasion technology accelerate this drift. When two opposed elites alternate in power, the same technology also creates incentives to park society in ``semi-lock'' regions where opinions are more cohesive and harder for a rival to overturn, so advances in persuasion can either heighten or dampen polarization depending on the environment. Taken together, cheaper persuasion technologies recast polarization as a strategic instrument of governance rather than a purely emergent social byproduct, with important implications for democratic stability as AI capabilities advance. 1 authors · Dec 3, 2025
- Statistics of X-Ray Polarization Measurements The polarization of an X-ray beam that produces electrons with velocity components perpendicular to the beam generates an azimuthal distribution of the ejected electrons. We present methods for simulating and for analyzing the angular dependence of electron detections which enable us to derive simple analytical expressions for useful statistical properties of observable data. The derivations are verified by simulations. While we confirm the results of previous work on this topic, we provide an extension needed for analytical treatment of the full range of possible polarization amplitudes. 2 authors · Jan 9, 2015
- Simulating the two-dimensional t-J model at finite doping with neural quantum states Simulating large, strongly interacting fermionic systems remains a major challenge for existing numerical methods. In this work, we present, for the first time, the application of neural quantum states - specifically, hidden fermion determinant states (HFDS) - to simulate the strongly interacting limit of the Fermi-Hubbard model, namely the t-J model, across the entire doping regime. We demonstrate that HFDS achieve energies competitive with matrix product states (MPS) on lattices as large as 8 times 8 sites while using several orders of magnitude fewer parameters, suggesting the potential for efficient application to even larger system sizes. This remarkable efficiency enables us to probe low-energy physics across the full doping range, providing new insights into the competition between kinetic and magnetic interactions and the nature of emergent quasiparticles. Starting from the low-doping regime, where magnetic polarons dominate the low energy physics, we track their evolution with increasing doping through analyses of spin and polaron correlation functions. Our findings demonstrate the potential of determinant-based neural quantum states with inherent fermionic sign structure, opening the way for simulating large-scale fermionic systems at any particle filling. 4 authors · Nov 15, 2024
- Five open problems in quantum information We identify five selected open problems in the theory of quantum information, which are rather simple to formulate, were well-studied in the literature, but are technically not easy. As these problems enjoy diverse mathematical connections, they offer a huge breakthrough potential. The first four concern existence of certain objects relevant for quantum information, namely a family of symmetric informationally complete generalized measurements in an infinite sequence of dimensions, mutually unbiased bases in dimension six, absolutely maximally entangled states for four subsystems with six levels each and bound entangled states with negative partial transpose. The fifth problem requires checking whether a certain state of a two-ququart system is 2-copy distillable. An award for solving each of them is announced. 3 authors · Feb 8, 2020
- Indirect measurement of atomic magneto-optical rotation via Hilbert transform The Kramers-Kronig relations are a pivotal foundation of linear optics and atomic physics, embedding a physical connection between the real and imaginary components of any causal response function. A mathematically equivalent, but simpler, approach instead utilises the Hilbert transform. In a previous study, the Hilbert transform was applied to absorption spectra in order to infer the sole refractive index of an atomic medium in the absence of an external magnetic field. The presence of a magnetic field causes the medium to become birefringent and dichroic, and therefore it is instead characterised by two refractive indices. In this study, we apply the same Hilbert transform technique to independently measure both refractive indices of a birefringent atomic medium, leading to an indirect measurement of atomic magneto-optical rotation. Key to this measurement is the insight that inputting specific light polarisations into an atomic medium induces absorption associated with only one of the refractive indices. We show this is true in two configurations, commonly referred to in literature as the Faraday and Voigt geometries, which differ by the magnetic field orientation with respect to the light wavevector. For both cases, we measure the two refractive indices independently for a Rb thermal vapour in a 0.6 T magnetic field, finding excellent agreement with theory. This study further emphasises the application of the Hilbert transform to the field of quantum and atomic optics in the linear regime. 4 authors · Mar 1, 2024
- A helical magnetic field in quasar NRAO150 revealed by Faraday rotation Active Galactic Nuclei (AGN) are some of the most luminous and extreme environments in the Universe. The central engines of AGN, believed to be super-massive black-holes, are fed by accretion discs threaded by magnetic fields within a dense magneto-ionic medium. We report our findings from polarimetric Very-long-baseline Interferometry (VLBI) observations of quasar NRAO150 taken in October 2022 using a combined network of the Very Long Baseline Array (VLBA) and Effelsberg 100-m Radio Telescope. These observations are the first co-temporal multi-frequency polarimetric VLBI observations of NRAO150 at frequencies above 15GHz. We use the new VLBI polarization calibration procedure, GPCAL, with polarization observations of frequencies of 12GHz, 15GHz, 24GHz, and 43GHz of NRAO150. From these observations, we measure Faraday rotation. Using our measurement of Faraday rotation, we also derive the intrinsic electric vector position angle (EVPA0) for the source. As a complementary measurement we determine the behavior of polarization as a function of observed frequency. The polarization from NRAO150 only comes from the core region, with a peak polarization intensity occurring at 24GHz. Across the core region of NRAO150 we see clear gradients in Faraday rotation and EVPA0 values that are aligned with the direction of the jet curving around the core region. We find that for the majority of the polarized region the polarization fraction is greater at higher frequencies, with intrinsic polarization fractions in the core 3%. The Faraday rotation gradients and circular patterns in EVPA0 are strong evidence for a helical/toroidal magnetic field, and the presence of low intrinsic polarization fractions indicate that the polarized emission and hence the helical/toroidal magnetic field, occur within the innermost jet. 10 authors · Mar 5, 2025
1 SPIDeRS: Structured Polarization for Invisible Depth and Reflectance Sensing Can we capture shape and reflectance in stealth? Such capability would be valuable for many application domains in vision, xR, robotics, and HCI. We introduce Structured Polarization, the first depth and reflectance sensing method using patterns of polarized light (SPIDeRS). The key idea is to modulate the angle of linear polarization (AoLP) of projected light at each pixel. The use of polarization makes it invisible and lets us recover not only depth but also directly surface normals and even reflectance. We implement SPIDeRS with a liquid crystal spatial light modulator (SLM) and a polarimetric camera. We derive a novel method for robustly extracting the projected structured polarization pattern from the polarimetric object appearance. We evaluate the effectiveness of SPIDeRS by applying it to a number of real-world objects. The results show that our method successfully reconstructs object shapes of various materials and is robust to diffuse reflection and ambient light. We also demonstrate relighting using recovered surface normals and reflectance. We believe SPIDeRS opens a new avenue of polarization use in visual sensing. 3 authors · Dec 7, 2023
- Polarization aberrations in next-generation Giant Segmented Mirror Telescopes (GSMTs). II. Influence of segment-to-segment coating variations on high-contrast imaging and polarimetry Direct exo-Earth imaging is a key science goal for astronomy in the next decade. This ambitious task imposes a target contrast of ~10^-7 at wavelengths from I to J-band. In our prior study, we determined that polarization aberrations can limit the achievable contrast to 10^-5 to 10^-6 in the infrared. However, these results assumed a perfect coronagraph coupled to a telescope with an ideal coating on each of the mirrors. In this study we seek to understand the influence of polarization aberrations from segment-to-segment coating variations on coronagraphy and polarimetry. We use the Poke open-source polarization ray tracing package to compute the Jones pupil of each GSMT with spatially-varying coatings applied to the segments. The influence of the resultant polarization aberrations is simulated by propagating the Jones pupil through physical optics models of coronagraphs using HCIPy. After applying wavefront control from an ideal adaptive optics system, we determine that the segment-to-segment variations applied limit the performance of coronagraphy to a raw contrast of approximately 10^-8 in I-band, which is 2-3 orders of magnitude lower the target performance for high-contrast imaging systems on the ground. This is a negligible addition to the nominal polarization aberrations for ground-based systems. We further observe negligible degradation in polarimetric imaging of debris disks from segment-to-segment aberrations above and beyond the impact of nominal polarization aberration. 11 authors · Jan 7, 2025
- Protocols for creating and distilling multipartite GHZ states with Bell pairs The distribution of high-quality Greenberger-Horne-Zeilinger (GHZ) states is at the heart of many quantum communication tasks, ranging from extending the baseline of telescopes to secret sharing. They also play an important role in error-correction architectures for distributed quantum computation, where Bell pairs can be leveraged to create an entangled network of quantum computers. We investigate the creation and distillation of GHZ states out of non-perfect Bell pairs over quantum networks. In particular, we introduce a heuristic dynamic programming algorithm to optimize over a large class of protocols that create and purify GHZ states. All protocols considered use a common framework based on measurements of non-local stabilizer operators of the target state (i.e., the GHZ state), where each non-local measurement consumes another (non-perfect) entangled state as a resource. The new protocols outperform previous proposals for scenarios without decoherence and local gate noise. Furthermore, the algorithms can be applied for finding protocols for any number of parties and any number of entangled pairs involved. 4 authors · Oct 23, 2020
- The Virtual Quantum Optics Laboratory We present a web-based software tool, the Virtual Quantum Optics Laboratory (VQOL), that may be used for designing and executing realistic simulations of quantum optics experiments. A graphical user interface allows one to rapidly build and configure a variety of different optical experiments, while the runtime environment provides unique capabilities for visualization and analysis. All standard linear optical components are available as well as sources of thermal, coherent, and entangled Gaussian states. A unique aspect of VQOL is the introduction of non-Gaussian measurements using detectors modeled as deterministic devices that "click" when the amplitude of the light falls above a given threshold. We describe the underlying theoretical models and provide several illustrative examples. We find that VQOL provides a a faithful representation of many experimental quantum optics phenomena and may serve as both a useful instructional tool for students as well as a valuable research tool for practitioners. 5 authors · May 15, 2021
7 Understanding and Mitigating Bottlenecks of State Space Models through the Lens of Recency and Over-smoothing Structured State Space Models (SSMs) have emerged as alternatives to transformers. While SSMs are often regarded as effective in capturing long-sequence dependencies, we rigorously demonstrate that they are inherently limited by strong recency bias. Our empirical studies also reveal that this bias impairs the models' ability to recall distant information and introduces robustness issues. Our scaling experiments then discovered that deeper structures in SSMs can facilitate the learning of long contexts. However, subsequent theoretical analysis reveals that as SSMs increase in depth, they exhibit another inevitable tendency toward over-smoothing, e.g., token representations becoming increasingly indistinguishable. This fundamental dilemma between recency and over-smoothing hinders the scalability of existing SSMs. Inspired by our theoretical findings, we propose to polarize two channels of the state transition matrices in SSMs, setting them to zero and one, respectively, simultaneously addressing recency bias and over-smoothing. Experiments demonstrate that our polarization technique consistently enhances the associative recall accuracy of long-range tokens and unlocks SSMs to benefit further from deeper architectures. All source codes are released at https://github.com/VITA-Group/SSM-Bottleneck. 7 authors · Dec 31, 2024 2
- Measurement of the electric dipole moment of AlCl We report the measurement of the electric dipole moment of aluminum monochloride (AlCl) using a cryogenic buffer-gas beam source. Our measurements provide values for the dipole moments of the two lowest vibrational states of the X^1Sigma^+ and the A^1Pi electronic states. We also show that spin-orbit coupling with an extended number of spin states is essential in the ab initio calculation to correctly describe both the dipole moment and the Te energy of AlCl. We further lay out the implications of these results for astrophysical models of stellar and planetary evolution that have used a substitute value for the dipole moment of AlCl until now. 5 authors · Mar 17, 2025
- RePBubLik: Reducing the Polarized Bubble Radius with Link Insertions The topology of the hyperlink graph among pages expressing different opinions may influence the exposure of readers to diverse content. Structural bias may trap a reader in a polarized bubble with no access to other opinions. We model readers' behavior as random walks. A node is in a polarized bubble if the expected length of a random walk from it to a page of different opinion is large. The structural bias of a graph is the sum of the radii of highly-polarized bubbles. We study the problem of decreasing the structural bias through edge insertions. Healing all nodes with high polarized bubble radius is hard to approximate within a logarithmic factor, so we focus on finding the best k edges to insert to maximally reduce the structural bias. We present RePBubLik, an algorithm that leverages a variant of the random walk closeness centrality to select the edges to insert. RePBubLik obtains, under mild conditions, a constant-factor approximation. It reduces the structural bias faster than existing edge-recommendation methods, including some designed to reduce the polarization of a graph. 4 authors · Jan 12, 2021
- Characterisation of three-body loss in {}^{166}Er and optimised production of large Bose-Einstein condensates Ultracold gases of highly magnetic lanthanide atoms have enabled the realisation of dipolar quantum droplets and supersolids. However, future studies could be limited by the achievable atom numbers and hindered by high three-body loss rates. Here we study density-dependent atom loss in an ultracold gas of {}^{166}Er for magnetic fields below 4 G, identifying six previously unreported, strongly temperature-dependent features. We find that their positions and widths show a linear temperature dependence up to at least 15,muK. In addition, we observe a weak, polarisation-dependent shift of the loss features with the intensity of the light used to optically trap the atoms. This detailed knowledge of the loss landscape allows us to optimise the production of dipolar BECs with more than 2 times 10^5 atoms and points towards optimal strategies for the study of large-atom-number dipolar gases in the droplet and supersolid regimes. 7 authors · Jul 3, 2023
- Polariton Enhanced Free Charge Carrier Generation in Donor-Acceptor Cavity Systems by a Second-Hybridization Mechanism Cavity quantum electrodynamics has been studied as a potential approach to modify free charge carrier generation in donor-acceptor heterojunctions because of the delocalization and controllable energy level properties of hybridized light-matter states known as polaritons. However, in many experimental systems, cavity coupling decreases charge separation. Here, we theoretically study the quantum dynamics of a coherent and dissipative donor-acceptor cavity system, to investigate the dynamical mechanism and further discover the conditions under which polaritons may enhance free charge carrier generation. We use open quantum system methods based on single-pulse pumping to find that polaritons have the potential to connect excitonic states and charge separated states, further enhancing free charge generation on an ultrafast timescale of several hundred femtoseconds. The mechanism involves that polaritons with proper energy levels allow the exciton to overcome the high Coulomb barrier induced by electron-hole attraction. Moreover, we propose that a second-hybridization between a polariton state and dark states with similar energy enables the formation of the hybrid charge separated states that are optically active. These two mechanisms lead to a maximum of 50% enhancement of free charge carrier generation on a short timescale. However, our simulation reveals that on the longer timescale of picoseconds, internal conversion and cavity loss dominate and suppress free charge carrier generation, reproducing the experimental results. Thus, our work shows that polaritons can affect the charge separation mechanism and promote free charge carrier generation efficiency, but predominantly on a short timescale after photoexcitation. 4 authors · Oct 3, 2022
- Planck 2018 results. V. CMB power spectra and likelihoods This paper describes the 2018 Planck CMB likelihoods, following a hybrid approach similar to the 2015 one, with different approximations at low and high multipoles, and implementing several methodological and analysis refinements. With more realistic simulations, and better correction and modelling of systematics, we can now make full use of the High Frequency Instrument polarization data. The low-multipole 100x143 GHz EE cross-spectrum constrains the reionization optical-depth parameter tau to better than 15% (in combination with with the other low- and high-ell likelihoods). We also update the 2015 baseline low-ell joint TEB likelihood based on the Low Frequency Instrument data, which provides a weaker tau constraint. At high multipoles, a better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (polarization efficiency or PE) allow us to fully use the polarization spectra, improving the constraints on the LambdaCDM parameters by 20 to 30% compared to TT-only constraints. Tests on the modelling of the polarization demonstrate good consistency, with some residual modelling uncertainties, the accuracy of the PE modelling being the main limitation. Using our various tests, simulations, and comparison between different high-ell implementations, we estimate the consistency of the results to be better than the 0.5sigma level. Minor curiosities already present before (differences between ell<800 and ell>800 parameters or the preference for more smoothing of the C_ell peaks) are shown to be driven by the TT power spectrum and are not significantly modified by the inclusion of polarization. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations. (Abridged) 168 authors · Jul 30, 2019
- Probing the axion-photon coupling with space-based gravitational waves detectors We propose a simple modification of space-based gravitational wave (GW) detector optical benches which would enable the measurement of vacuum birefringence of light induced by axion dark matterthrough its coupling to electromagnetism. Specifically, we propose to change a half-wave plate by a circular polarizer. While marginally affecting the sensitivity to GW by a factor 2, we show that such an adjustment would make future detectors such as LISA, TianQin, Taiji and Big-Bang Observer the most sensitive experiments at low axion masses 3 authors · Oct 23, 2024
- Comparing coherent and incoherent models for quantum homogenization Here we investigate the role of quantum interference in the quantum homogenizer, whose convergence properties model a thermalization process. In the original quantum homogenizer protocol, a system qubit converges to the state of identical reservoir qubits through partial-swap interactions, that allow interference between reservoir qubits. We design an alternative, incoherent quantum homogenizer, where each system-reservoir interaction is moderated by a control qubit using a controlled-swap interaction. We show that our incoherent homogenizer satisfies the essential conditions for homogenization, being able to transform a qubit from any state to any other state to arbitrary accuracy, with negligible impact on the reservoir qubits' states. Our results show that the convergence properties of homogenization machines that are important for modelling thermalization are not dependent on coherence between qubits in the homogenization protocol. We then derive bounds on the resources required to re-use the homogenizers for performing state transformations. This demonstrates that both homogenizers are universal for any number of homogenizations, for an increased resource cost. 4 authors · Sep 27, 2023
- Anomalous CMB polarization and gravitational chirality We consider the possibility that gravity breaks parity, with left and right handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous CMB polarization. Non-vanishing TB (and EB) polarization components emerge, revealing interesting experimental targets. Indeed if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation. 3 authors · Jun 18, 2008
- Quantum Geometric Tensor for Mixed States Based on the Covariant Derivative The quantum geometric tensor (QGT) is a fundamental quantity for characterizing the geometric properties of quantum states and plays an essential role in elucidating various physical phenomena. The traditional QGT, defined only for pure states, has limited applicability in realistic scenarios where mixed states are common. To address this limitation, we generalize the definition of the QGT to mixed states using the purification bundle and the covariant derivative. Notably, our proposed definition reduces to the traditional QGT when mixed states approach pure states. In our framework, the real and imaginary parts of this generalized QGT correspond to the Bures metric and the mean gauge curvature, respectively, endowing it with a broad range of potential applications. Additionally, using our proposed mixed-state QGT (MSQGT), we derive the geodesic equation applicable to mixed states. This work establishes a unified framework for the geometric analysis of both pure and mixed states, thereby deepening our understanding of the geometric properties of quantum states. 4 authors · May 30, 2025
1 From chambers to echo chambers: Quantifying polarization with a second-neighbor approach applied to Twitter's climate discussion Social media platforms often foster environments where users primarily engage with content that aligns with their existing beliefs, thereby reinforcing their views and limiting exposure to opposing viewpoints. In this paper, we analyze X (formerly Twitter) discussions on climate change throughout 2019, using an unsupervised method centered on chambers--second-order information sources--to uncover ideological patterns at scale. Beyond direct connections, chambers capture shared sources of influence, revealing polarization dynamics efficiently and effectively. Analyzing retweet patterns, we identify echo chambers of climate believers and skeptics, revealing strong chamber overlap within ideological groups and minimal overlap between them, resulting in a robust bimodal structure that characterizes polarization. Our method enables us to infer the stance of high-impact users based on their audience's chamber alignment, allowing for the classification of over half the retweeting population with minimal cross-group interaction, in what we term augmented echo chamber classification. We benchmark our approach against manual labeling and a state-of-the-art latent ideology model, finding comparable performance but with nearly four times greater coverage. Moreover, we find that echo chamber structures remain stable over time, even as their members change significantly, suggesting that these structures are a persistent and emergent property of the system. Notably, polarization decreases and climate skepticism rises during the #FridaysForFuture strikes in September 2019. This chamber-based analysis offers valuable insights into the persistence and fluidity of ideological polarization on social media. 4 authors · Jun 29, 2022 1
- Wave optics lensing of gravitational waves: theory and phenomenology of triple systems in the LISA band We study lensing of gravitational waves by a black hole in the deep wave optics regime, i.e. when the wavelength is much larger than the black hole Schwarzschild radius. We apply it to triple systems, with a binary of stellar mass objects in the inspiraling phase orbiting around a central massive black hole. We describe the full polarisation structure of the wave and derive predictions for the polarisation modes of the scattered wave measured by the observer. We show that lensing in the wave optics regime is not helicity preserving, as opposed to lensing in the geometric optics regime. The amplitude of the total wave is modulated due to interference between the directly transmitted and lensed components. The relative amplitude of the modulation is fixed by the lensing geometry and can reach unity in the most favourable settings. This indicates that wave optics lensing is potentially detectable by LISA for sufficiently high SNR systems. Our findings show that in the wave optics regime it is necessary to go beyond the usual lensing description where the amplification factor is assumed to be the same for both helicity modes. While motivated by GW190521 and the AGN formation scenario, our results apply more broadly to stellar-mass binaries orbiting a third body described as a Schwarzschild black hole, with a period comparable to the GW observation time. 4 authors · Apr 10, 2024
- The Frequency-dependent Modulation Features of PSR J1948+3540 Using observations from GMRT and FAST, we conducted multi-wavelength studies on PSR J1948+3540 and analyzed its intensity modulation characteristics in detail. We found that the intensity modulation of this pulsar exhibits broad low-frequency modulation features. The modulation frequency/period is time-dependent, but the dominant modulation component varies with the observing frequency. Specifically, at low frequencies, the modulation is dominated by the first half of the middle component, while at high frequencies, it is dominated by the second half of the middle component. Spectral analysis revealed that the intensities of the leading and trailing components vary with the observing frequency, but the middle component does not change significantly. Besides, the polarization analyses reveal that the peak of the radiation intensity is located in the latter half of the middle component, whereas the linear polarization is dominant in the former half. However, due to the low degree of linear polarization, the change of the dominant modulation component with the observed frequency is not caused by the variation in linear polarization. The phenomenon of the dominant modulation component varying with observing frequency has not been reported before and remains difficult to understand within the current theoretical framework. 9 authors · May 6, 2025
1 Quantum control of a cat-qubit with bit-flip times exceeding ten seconds Binary classical information is routinely encoded in the two metastable states of a dynamical system. Since these states may exhibit macroscopic lifetimes, the encoded information inherits a strong protection against bit-flips. A recent qubit - the cat-qubit - is encoded in the manifold of metastable states of a quantum dynamical system, thereby acquiring bit-flip protection. An outstanding challenge is to gain quantum control over such a system without breaking its protection. If this challenge is met, significant shortcuts in hardware overhead are forecast for quantum computing. In this experiment, we implement a cat-qubit with bit-flip times exceeding ten seconds. This is a four order of magnitude improvement over previous cat-qubit implementations, and six orders of magnitude enhancement over the single photon lifetime that compose this dynamical qubit. This was achieved by introducing a quantum tomography protocol that does not break bit-flip protection. We prepare and image quantum superposition states, and measure phase-flip times above 490 nanoseconds. Most importantly, we control the phase of these superpositions while maintaining the bit-flip time above ten seconds. This work demonstrates quantum operations that preserve macroscopic bit-flip times, a necessary step to scale these dynamical qubits into fully protected hardware-efficient architectures. 16 authors · Jul 13, 2023
- Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation The theory of open quantum systems lays the foundations for a substantial part of modern research in quantum science and engineering. Rooted in the dimensionality of their extended Hilbert spaces, the high computational complexity of simulating open quantum systems calls for the development of strategies to approximate their dynamics. In this paper, we present an approach for tackling open quantum system dynamics. Using an exact probabilistic formulation of quantum physics based on positive operator-valued measure (POVM), we compactly represent quantum states with autoregressive transformer neural networks; such networks bring significant algorithmic flexibility due to efficient exact sampling and tractable density. We further introduce the concept of String States to partially restore the symmetry of the autoregressive transformer neural network and improve the description of local correlations. Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator using a forward-backward trapezoid method and find the steady state via a variational formulation. Our approach is benchmarked on prototypical one and two-dimensional systems, finding results which closely track the exact solution and achieve higher accuracy than alternative approaches based on using Markov chain Monte Carlo to sample restricted Boltzmann machines. Our work provides general methods for understanding quantum dynamics in various contexts, as well as techniques for solving high-dimensional probabilistic differential equations in classical setups. 4 authors · Sep 11, 2020
- Transparent Shape from a Single View Polarization Image This paper presents a learning-based method for transparent surface estimation from a single view polarization image. Existing shape from polarization(SfP) methods have the difficulty in estimating transparent shape since the inherent transmission interference heavily reduces the reliability of physics-based prior. To address this challenge, we propose the concept of physics-based prior, which is inspired by the characteristic that the transmission component in the polarization image has more noise than reflection. The confidence is used to determine the contribution of the interfered physics-based prior. Then, we build a network(TransSfP) with multi-branch architecture to avoid the destruction of relationships between different hierarchical inputs. To train and test our method, we construct a dataset for transparent shape from polarization with paired polarization images and ground-truth normal maps. Extensive experiments and comparisons demonstrate the superior accuracy of our method. 5 authors · Apr 13, 2022
- Quantum Measurement and Observable Universe In this paper, we discuss that an observable-based single-system Copenhagen and entanglement-based two-system von Neumann measurement protocols in quantum theory can be made equivalent by considering the second part of the two-system scheme to be a Dirac-type negative sea filling up the first system. Based on this equivalence, and by considering the universe as a computational process, the choice of the apparatus state in the two-system protocol can be identified with the choice of the observable in the single-system scheme as negative sea filling up the observable universe. In particular, the measuring party's state is considered to be evolving backwards in time to the big bang as a nondeterministic computational process, which chooses the acceptable path as a time-reversal process of irreversible computation. The suggested model proposes that the prepared microstate of the universe, or reality, corresponds to the observer's choice, therefore, subjective reality. Thus, this effectively provides a specific description of the subjective universe model previously proposed, which is based on the symmetry breakdown between the Schrodinger and the Heisenberg pictures of quantum theory. 1 authors · Jul 22, 2015
- Hyperentanglement in Nanophotonic Systems with Discrete Rotational Symmetry We propose a scheme to generate hyperentanglement between photons carrying angular momentum in nanophotonic systems with discrete rotational symmetry. Coupling free-space photons into surface plasmon polaritons by a polygonal-shaped grating restricts the basis of the generated near-field modes to a finite set, thus creating a new mechanism for spatial mode entanglement. By encoding the incoming photons with spin and orbital angular momenta, we find that the system preserves the high-dimensional Hilbert space, in contrast to rotationally symmetric nanophotonic platforms, where the inseparability of spin and orbital degrees of freedom results in loss of information. We further show that by properly engineering the phase of the photons to conform to the polygonal boundary conditions, we achieve a new scheme for generating hyperentangled states, utilizing both the vector-field nature of the nanophotonic modes and the finite basis of states in polygonal boundary conditions. Our approach paves the way for on-chip quantum communication by expanding the Hilbert space used in computation. 6 authors · Nov 2, 2025
- Chiral Primordial Gravitational Waves from a Lifshitz Point We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Ho{rmr}ava. Assuming power-counting renormalizability, foliation preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves. 2 authors · Apr 3, 2009
- Sub-second spin and lifetime-limited optical coherences in ^{171}Yb^{3+}:CaWO_4 Optically addressable solid-state spins have been extensively studied for quantum technologies, offering unique advantages for quantum computing, communication, and sensing. Advancing these applications is generally limited by finding materials that simultaneously provide lifetime-limited optical and long spin coherences. Here, we introduce ^{171}Yb^{3+} ions doped into a CaWO_4 crystal. We perform high-resolution spectroscopy of the excited state, and demonstrate all-optical coherent control of the electron-nuclear spin ensemble. We find narrow inhomogeneous broadening of the optical transitions of 185 MHz and radiative-lifetime-limited coherence time up to 0.75 ms. Next to this, we measure a spin-transition ensemble line width of 5 kHz and electron-nuclear spin coherence time reaching 0.15 seconds at zero magnetic field between 50 mK and 1 K temperatures. These results demonstrate the potential of ^{171}Yb^{3+}:CaWO_4 as a low-noise platform for building quantum technologies with ensemble-based memories, microwave-to-optical transducers, and optically addressable single-ion spin qubits. 11 authors · Apr 2, 2025
- IXPE Observation of the Low-Synchrotron Peaked Blazar S4 0954+65 During An Optical-X-ray Flare The X-ray polarization observations made possible with the Imaging X-ray Polarimetry Explorer (IXPE) offer new ways of probing high-energy emission processes in astrophysical jets from blazars. Here we report on the first X-ray polarization observation of the blazar S4 0954+65 in a high optical and X-ray state. During our multi-wavelength campaign on the source, we detected an optical flare whose peak coincided with the peak of an X-ray flare. This optical-X-ray flare most likely took place in a feature moving along the parsec-scale jet, imaged at 43 GHz by the Very Long Baseline Array. The 43 GHz polarization angle of the moving component underwent a rotation near the time of the flare. In the optical band, prior to the IXPE observation, we measured the polarization angle to be aligned with the jet axis. In contrast, during the optical flare the optical polarization angle was perpendicular to the jet axis; after the flare, it reverted to being parallel to the jet axis. Due to the smooth behavior of the optical polarization angle during the flare, we favor shocks as the main acceleration mechanism. We also infer that the ambient magnetic field lines in the jet were parallel to the jet position angle. The average degree of optical polarization during the IXPE observation was (14.3pm4.1)%. Despite the flare, we only detected an upper limit of 14% (at 3sigma level) on the X-ray polarization degree; although a reasonable assumption on the X-ray polarization angle results in an upper limit of 8.8% (3sigma). We model the spectral energy distribution (SED) and spectral polarization distribution (SPD) of S4 0954+65 with leptonic (synchrotron self-Compton) and hadronic (proton and pair synchrotron) models. The constraints we obtain with our combined multi-wavelength polarization observations and SED modeling tentatively disfavor hadronic models for the X-ray emission in S4 0954+65. 137 authors · Nov 25, 2024
- Bridging Dictionary: AI-Generated Dictionary of Partisan Language Use Words often carry different meanings for people from diverse backgrounds. Today's era of social polarization demands that we choose words carefully to prevent miscommunication, especially in political communication and journalism. To address this issue, we introduce the Bridging Dictionary, an interactive tool designed to illuminate how words are perceived by people with different political views. The Bridging Dictionary includes a static, printable document featuring 796 terms with summaries generated by a large language model. These summaries highlight how the terms are used distinctively by Republicans and Democrats. Additionally, the Bridging Dictionary offers an interactive interface that lets users explore selected words, visualizing their frequency, sentiment, summaries, and examples across political divides. We present a use case for journalists and emphasize the importance of human agency and trust in further enhancing this tool. The deployed version of Bridging Dictionary is available at https://dictionary.ccc-mit.org/. 5 authors · Jul 12, 2024