Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeKidSat: satellite imagery to map childhood poverty dataset and benchmark
Satellite imagery has emerged as an important tool to analyse demographic, health, and development indicators. While various deep learning models have been built for these tasks, each is specific to a particular problem, with few standard benchmarks available. We propose a new dataset pairing satellite imagery and high-quality survey data on child poverty to benchmark satellite feature representations. Our dataset consists of 33,608 images, each 10 km times 10 km, from 19 countries in Eastern and Southern Africa in the time period 1997-2022. As defined by UNICEF, multidimensional child poverty covers six dimensions and it can be calculated from the face-to-face Demographic and Health Surveys (DHS) Program . As part of the benchmark, we test spatial as well as temporal generalization, by testing on unseen locations, and on data after the training years. Using our dataset we benchmark multiple models, from low-level satellite imagery models such as MOSAIKS , to deep learning foundation models, which include both generic vision models such as Self-Distillation with no Labels (DINOv2) models and specific satellite imagery models such as SatMAE. We provide open source code for building the satellite dataset, obtaining ground truth data from DHS and running various models assessed in our work.
OpenSatMap: A Fine-grained High-resolution Satellite Dataset for Large-scale Map Construction
In this paper, we propose OpenSatMap, a fine-grained, high-resolution satellite dataset for large-scale map construction. Map construction is one of the foundations of the transportation industry, such as navigation and autonomous driving. Extracting road structures from satellite images is an efficient way to construct large-scale maps. However, existing satellite datasets provide only coarse semantic-level labels with a relatively low resolution (up to level 19), impeding the advancement of this field. In contrast, the proposed OpenSatMap (1) has fine-grained instance-level annotations; (2) consists of high-resolution images (level 20); (3) is currently the largest one of its kind; (4) collects data with high diversity. Moreover, OpenSatMap covers and aligns with the popular nuScenes dataset and Argoverse 2 dataset to potentially advance autonomous driving technologies. By publishing and maintaining the dataset, we provide a high-quality benchmark for satellite-based map construction and downstream tasks like autonomous driving.
Landslide Detection and Mapping Using Deep Learning Across Multi-Source Satellite Data and Geographic Regions
Landslides pose severe threats to infrastructure, economies, and human lives, necessitating accurate detection and predictive mapping across diverse geographic regions. With advancements in deep learning and remote sensing, automated landslide detection has become increasingly effective. This study presents a comprehensive approach integrating multi-source satellite imagery and deep learning models to enhance landslide identification and prediction. We leverage Sentinel-2 multispectral data and ALOS PALSAR-derived slope and Digital Elevation Model (DEM) layers to capture critical environmental features influencing landslide occurrences. Various geospatial analysis techniques are employed to assess the impact of terra in characteristics, vegetation cover, and rainfall on detection accuracy. Additionally, we evaluate the performance of multiple stateof-the-art deep learning segmentation models, including U-Net, DeepLabV3+, and Res-Net, to determine their effectiveness in landslide detection. The proposed framework contributes to the development of reliable early warning systems, improved disaster risk management, and sustainable land-use planning. Our findings provide valuable insights into the potential of deep learning and multi-source remote sensing in creating robust, scalable, and transferable landslide prediction models.
OPTIMUS: Observing Persistent Transformations in Multi-temporal Unlabeled Satellite-data
In the face of pressing environmental issues in the 21st century, monitoring surface changes on Earth is more important than ever. Large-scale remote sensing, such as satellite imagery, is an important tool for this task. However, using supervised methods to detect changes is difficult because of the lack of satellite data annotated with change labels, especially for rare categories of change. Annotation proves challenging due to the sparse occurrence of changes in satellite images. Even within a vast collection of images, only a small fraction may exhibit persistent changes of interest. To address this challenge, we introduce OPTIMUS, a self-supervised learning method based on an intuitive principle: if a model can recover information about the relative order of images in the time series, then that implies that there are long-lasting changes in the images. OPTIMUS demonstrates this principle by using change point detection methods on model outputs in a time series. We demonstrate that OPTIMUS can directly detect interesting changes in satellite images, achieving an improvement in AUROC score from 56.3% to 87.6% at distinguishing changed time series from unchanged ones compared to baselines. Our code and dataset are available at https://huggingface.co/datasets/optimus-change/optimus-dataset/.
Kuro Siwo: 33 billion $m^2$ under the water. A global multi-temporal satellite dataset for rapid flood mapping
Global floods, exacerbated by climate change, pose severe threats to human life, infrastructure, and the environment. Recent catastrophic events in Pakistan and New Zealand underscore the urgent need for precise flood mapping to guide restoration efforts, understand vulnerabilities, and prepare for future occurrences. While Synthetic Aperture Radar (SAR) remote sensing offers day-and-night, all-weather imaging capabilities, its application in deep learning for flood segmentation is limited by the lack of large annotated datasets. To address this, we introduce Kuro Siwo, a manually annotated multi-temporal dataset, spanning 43 flood events globally. Our dataset maps more than 338 billion m^2 of land, with 33 billion designated as either flooded areas or permanent water bodies. Kuro Siwo includes a highly processed product optimized for flood mapping based on SAR Ground Range Detected, and a primal SAR Single Look Complex product with minimal preprocessing, designed to promote research on the exploitation of both the phase and amplitude information and to offer maximum flexibility for downstream task preprocessing. To leverage advances in large scale self-supervised pretraining methods for remote sensing data, we augment Kuro Siwo with a large unlabeled set of SAR samples. Finally, we provide an extensive benchmark, namely BlackBench, offering strong baselines for a diverse set of flood events from Europe, America, Africa, Asia and Australia.
LandCover.ai: Dataset for Automatic Mapping of Buildings, Woodlands, Water and Roads from Aerial Imagery
Monitoring of land cover and land use is crucial in natural resources management. Automatic visual mapping can carry enormous economic value for agriculture, forestry, or public administration. Satellite or aerial images combined with computer vision and deep learning enable precise assessment and can significantly speed up change detection. Aerial imagery usually provides images with much higher pixel resolution than satellite data allowing more detailed mapping. However, there is still a lack of aerial datasets made for the segmentation, covering rural areas with a resolution of tens centimeters per pixel, manual fine labels, and highly publicly important environmental instances like buildings, woods, water, or roads. Here we introduce LandCover.ai (Land Cover from Aerial Imagery) dataset for semantic segmentation. We collected images of 216.27 sq. km rural areas across Poland, a country in Central Europe, 39.51 sq. km with resolution 50 cm per pixel and 176.76 sq. km with resolution 25 cm per pixel and manually fine annotated four following classes of objects: buildings, woodlands, water, and roads. Additionally, we report simple benchmark results, achieving 85.56% of mean intersection over union on the test set. It proves that the automatic mapping of land cover is possible with a relatively small, cost-efficient, RGB-only dataset. The dataset is publicly available at https://landcover.ai.linuxpolska.com/
High-Resolution Live Fuel Moisture Content (LFMC) Maps for Wildfire Risk from Multimodal Earth Observation Data
Wildfires are increasing in intensity and severity at an alarming rate. Recent advances in AI and publicly available satellite data enable monitoring critical wildfire risk factors globally, at high resolution and low latency. Live Fuel Moisture Content (LFMC) is a critical wildfire risk factor and is valuable for both wildfire research and operational response. However, ground-based LFMC samples are both labor intensive and costly to acquire, resulting in sparse and infrequent updates. In this work, we explore the use of a pretrained, highly-multimodal earth-observation model for generating large-scale spatially complete (wall-to-wall) LFMC maps. Our approach achieves significant improvements over previous methods using randomly initialized models (20 reduction in RMSE). We provide an automated pipeline that enables rapid generation of these LFMC maps across the United States, and demonstrate its effectiveness in two regions recently impacted by wildfire (Eaton and Palisades).
Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts
Air pollution poses a significant threat to public health and well-being, particularly in urban areas. This study introduces a series of machine-learning models that integrate data from the Sentinel-5P satellite, meteorological conditions, and topological characteristics to forecast future levels of five major pollutants. The investigation delineates the process of data collection, detailing the combination of diverse data sources utilized in the study. Through experiments conducted in the Milan metropolitan area, the models demonstrate their efficacy in predicting pollutant levels for the forthcoming day, achieving a percentage error of around 30%. The proposed models are advantageous as they are independent of monitoring stations, facilitating their use in areas without existing infrastructure. Additionally, we have released the collected dataset to the public, aiming to stimulate further research in this field. This research contributes to advancing our understanding of urban air quality dynamics and emphasizes the importance of amalgamating satellite, meteorological, and topographical data to develop robust pollution forecasting models.
KAO: Kernel-Adaptive Optimization in Diffusion for Satellite Image
Satellite image inpainting is a crucial task in remote sensing, where accurately restoring missing or occluded regions is essential for robust image analysis. In this paper, we propose KAO, a novel framework that utilizes Kernel-Adaptive Optimization within diffusion models for satellite image inpainting. KAO is specifically designed to address the challenges posed by very high-resolution (VHR) satellite datasets, such as DeepGlobe and the Massachusetts Roads Dataset. Unlike existing methods that rely on preconditioned models requiring extensive retraining or postconditioned models with significant computational overhead, KAO introduces a Latent Space Conditioning approach, optimizing a compact latent space to achieve efficient and accurate inpainting. Furthermore, we incorporate Explicit Propagation into the diffusion process, facilitating forward-backward fusion, which improves the stability and precision of the method. Experimental results demonstrate that KAO sets a new benchmark for VHR satellite image restoration, providing a scalable, high-performance solution that balances the efficiency of preconditioned models with the flexibility of postconditioned models.
FuXi Weather: A data-to-forecast machine learning system for global weather
Weather forecasting traditionally relies on numerical weather prediction (NWP) systems that integrates global observational systems, data assimilation (DA), and forecasting models. Despite steady improvements in forecast accuracy over recent decades, further advances are increasingly constrained by high computational costs, the underutilization of vast observational datasets, and the challenges of obtaining finer resolution. These limitations, alongside the uneven distribution of observational networks, result in global disparities in forecast accuracy, leaving some regions vulnerable to extreme weather. Recent advances in machine learning present a promising alternative, providing more efficient and accurate forecasts using the same initial conditions as NWP. However, current machine learning models still depend on the initial conditions generated by NWP systems, which require extensive computational resources and expertise. Here we introduce FuXi Weather, a machine learning weather forecasting system that assimilates data from multiple satellites. Operating on a 6-hourly DA and forecast cycle, FuXi Weather generates reliable and accurate 10-day global weather forecasts at a spatial resolution of 0.25^circ. FuXi Weather is the first system to achieve all-grid, all-surface, all-channel, and all-sky DA and forecasting, extending skillful forecast lead times beyond those of the European Centre for Medium-range Weather Forecasts (ECMWF) high-resolution forecasts (HRES) while using significantly fewer observations. FuXi Weather consistently outperforms ECMWF HRES in observation-sparse regions, such as central Africa, demonstrating its potential to improve forecasts where observational infrastructure is limited.
Geospecific View Generation -- Geometry-Context Aware High-resolution Ground View Inference from Satellite Views
Predicting realistic ground views from satellite imagery in urban scenes is a challenging task due to the significant view gaps between satellite and ground-view images. We propose a novel pipeline to tackle this challenge, by generating geospecifc views that maximally respect the weak geometry and texture from multi-view satellite images. Different from existing approaches that hallucinate images from cues such as partial semantics or geometry from overhead satellite images, our method directly predicts ground-view images at geolocation by using a comprehensive set of information from the satellite image, resulting in ground-level images with a resolution boost at a factor of ten or more. We leverage a novel building refinement method to reduce geometric distortions in satellite data at ground level, which ensures the creation of accurate conditions for view synthesis using diffusion networks. Moreover, we proposed a novel geospecific prior, which prompts distribution learning of diffusion models to respect image samples that are closer to the geolocation of the predicted images. We demonstrate our pipeline is the first to generate close-to-real and geospecific ground views merely based on satellite images.
Fourier-Modulated Implicit Neural Representation for Multispectral Satellite Image Compression
Multispectral satellite images play a vital role in agriculture, fisheries, and environmental monitoring. However, their high dimensionality, large data volumes, and diverse spatial resolutions across multiple channels pose significant challenges for data compression and analysis. This paper presents ImpliSat, a unified framework specifically designed to address these challenges through efficient compression and reconstruction of multispectral satellite data. ImpliSat leverages Implicit Neural Representations (INR) to model satellite images as continuous functions over coordinate space, capturing fine spatial details across varying spatial resolutions. Furthermore, we introduce a Fourier modulation algorithm that dynamically adjusts to the spectral and spatial characteristics of each band, ensuring optimal compression while preserving critical image details.
SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery
Geographic location is essential for modeling tasks in fields ranging from ecology to epidemiology to the Earth system sciences. However, extracting relevant and meaningful characteristics of a location can be challenging, often entailing expensive data fusion or data distillation from global imagery datasets. To address this challenge, we introduce Satellite Contrastive Location-Image Pretraining (SatCLIP), a global, general-purpose geographic location encoder that learns an implicit representation of locations from openly available satellite imagery. Trained location encoders provide vector embeddings summarizing the characteristics of any given location for convenient usage in diverse downstream tasks. We show that SatCLIP embeddings, pretrained on globally sampled multi-spectral Sentinel-2 satellite data, can be used in various predictive tasks that depend on location information but not necessarily satellite imagery, including temperature prediction, animal recognition in imagery, and population density estimation. Across tasks, SatCLIP embeddings consistently outperform embeddings from existing pretrained location encoders, ranging from models trained on natural images to models trained on semantic context. SatCLIP embeddings also help to improve geographic generalization. This demonstrates the potential of general-purpose location encoders and opens the door to learning meaningful representations of our planet from the vast, varied, and largely untapped modalities of geospatial data.
STHN: Deep Homography Estimation for UAV Thermal Geo-localization with Satellite Imagery
Accurate geo-localization of Unmanned Aerial Vehicles (UAVs) is crucial for outdoor applications including search and rescue operations, power line inspections, and environmental monitoring. The vulnerability of Global Navigation Satellite Systems (GNSS) signals to interference and spoofing necessitates the development of additional robust localization methods for autonomous navigation. Visual Geo-localization (VG), leveraging onboard cameras and reference satellite maps, offers a promising solution for absolute localization. Specifically, Thermal Geo-localization (TG), which relies on image-based matching between thermal imagery with satellite databases, stands out by utilizing infrared cameras for effective nighttime localization. However, the efficiency and effectiveness of current TG approaches, are hindered by dense sampling on satellite maps and geometric noises in thermal query images. To overcome these challenges, we introduce STHN, a novel UAV thermal geo-localization approach that employs a coarse-to-fine deep homography estimation method. This method attains reliable thermal geo-localization within a 512-meter radius of the UAV's last known location even with a challenging 11\% size ratio between thermal and satellite images, despite the presence of indistinct textures and self-similar patterns. We further show how our research significantly enhances UAV thermal geo-localization performance and robustness against geometric noises under low-visibility conditions in the wild. The code is made publicly available.
Effect Heterogeneity with Earth Observation in Randomized Controlled Trials: Exploring the Role of Data, Model, and Evaluation Metric Choice
Many social and environmental phenomena are associated with macroscopic changes in the built environment, captured by satellite imagery on a global scale and with daily temporal resolution. While widely used for prediction, these images and especially image sequences remain underutilized for causal inference, especially in the context of randomized controlled trials (RCTs), where causal identification is established by design. In this paper, we develop and compare a set of general tools for analyzing Conditional Average Treatment Effects (CATEs) from temporal satellite data that can be applied to any RCT where geographical identifiers are available. Through a simulation study, we analyze different modeling strategies for estimating CATE in sequences of satellite images. We find that image sequence representation models with more parameters generally yield a greater ability to detect heterogeneity. To explore the role of model and data choice in practice, we apply the approaches to two influential RCTs -- Banerjee et al. (2015), a poverty study in Cusco, Peru, and Bolsen et al. (2014), a water conservation experiment in Georgia, USA. We benchmark our image sequence models against image-only, tabular-only, and combined image-tabular data sources, summarizing practical implications for investigators in a multivariate analysis. Land cover classifications over satellite images facilitate interpretation of what image features drive heterogeneity. We also show robustness to data and model choice of satellite-based generalization of the RCT results to larger geographical areas outside the original. Overall, this paper shows how satellite sequence data can be incorporated into the analysis of RCTs, and provides evidence about the implications of data, model, and evaluation metric choice for causal analysis.
Learned Image Reasoning Prior Penetrates Deep Unfolding Network for Panchromatic and Multi-Spectral Image Fusion
The success of deep neural networks for pan-sharpening is commonly in a form of black box, lacking transparency and interpretability. To alleviate this issue, we propose a novel model-driven deep unfolding framework with image reasoning prior tailored for the pan-sharpening task. Different from existing unfolding solutions that deliver the proximal operator networks as the uncertain and vague priors, our framework is motivated by the content reasoning ability of masked autoencoders (MAE) with insightful designs. Specifically, the pre-trained MAE with spatial masking strategy, acting as intrinsic reasoning prior, is embedded into unfolding architecture. Meanwhile, the pre-trained MAE with spatial-spectral masking strategy is treated as the regularization term within loss function to constrain the spatial-spectral consistency. Such designs penetrate the image reasoning prior into deep unfolding networks while improving its interpretability and representation capability. The uniqueness of our framework is that the holistic learning process is explicitly integrated with the inherent physical mechanism underlying the pan-sharpening task. Extensive experiments on multiple satellite datasets demonstrate the superiority of our method over the existing state-of-the-art approaches. Code will be released at https://manman1995.github.io/.
Multi-Label Guided Soft Contrastive Learning for Efficient Earth Observation Pretraining
Self-supervised pretraining on large-scale satellite data has raised great interest in building Earth observation (EO) foundation models. However, many important resources beyond pure satellite imagery, such as land-cover-land-use products that provide free global semantic information, as well as vision foundation models that hold strong knowledge of the natural world, tend to be overlooked. In this work, we show these free additional resources not only help resolve common contrastive learning bottlenecks, but also significantly boost the efficiency and effectiveness of EO pretraining. Specifically, we first propose soft contrastive learning that optimizes cross-scene soft similarity based on land-cover-generated multi-label supervision, naturally solving the issue of multiple positive samples and too strict positive matching in complex scenes. Second, we explore cross-domain continual pretraining for both multispectral and SAR imagery, building efficient EO foundation models from strongest vision models such as DINOv2. Integrating simple weight-initialization and Siamese masking strategies into our soft contrastive learning framework, we demonstrate impressive continual pretraining performance even when the input channels and modalities are not aligned. Without prohibitive training, we produce multispectral and SAR foundation models that achieve significantly better results in 9 out of 10 downstream tasks than most existing SOTA models. For example, our ResNet50/ViT-S achieve 84.8/85.0 linear probing mAP scores on BigEarthNet-10\% which are better than most existing ViT-L models; under the same setting, our ViT-B sets a new record of 86.8 in multispectral, and 82.5 in SAR, the latter even better than many multispectral models. Dataset and models are available at https://github.com/zhu-xlab/softcon.
GAIA: A Foundation Model for Operational Atmospheric Dynamics
We present the GAIA (Geospatial Artificial Intelligence for Atmospheres) Foundation Model, a novel model that combines masked autoencoders (MAE) and self-DIstillation with NO labels (DINO) for analyzing global atmospheric patterns in satellite imagery. By integrating these complementary self-supervised learning approaches, our model simultaneously captures both local features and global dependencies. We address two critical challenges in satellite data analysis: reconstructing missing regions and estimating precipitation patterns as our first downstream tasks. The model demonstrates superior temporal pattern capture compared to standard MAE approaches, while maintaining robust performance in downstream tasks. Our experimental results show strong gap-filling capabilities across varying mask ratios and accurate precipitation estimation with limited training data, achieving a false alarm ratio of 0.088 and structural similarity of 0.881. This work represents an advancement in self-supervised learning for atmospheric science, providing a foundation for improved weather monitoring and climate analysis. The trained model weights and accompanying code are publicly available as open-source on Hugging Face here: https://huggingface.co/bcg-usra-nasa-gaia/GAIA-v1.
XAI-Guided Enhancement of Vegetation Indices for Crop Mapping
Vegetation indices allow to efficiently monitor vegetation growth and agricultural activities. Previous generations of satellites were capturing a limited number of spectral bands, and a few expert-designed vegetation indices were sufficient to harness their potential. New generations of multi- and hyperspectral satellites can however capture additional bands, but are not yet efficiently exploited. In this work, we propose an explainable-AI-based method to select and design suitable vegetation indices. We first train a deep neural network using multispectral satellite data, then extract feature importance to identify the most influential bands. We subsequently select suitable existing vegetation indices or modify them to incorporate the identified bands and retrain our model. We validate our approach on a crop classification task. Our results indicate that models trained on individual indices achieve comparable results to the baseline model trained on all bands, while the combination of two indices surpasses the baseline in certain cases.
Towards a Unified Copernicus Foundation Model for Earth Vision
Advances in Earth observation (EO) foundation models have unlocked the potential of big satellite data to learn generic representations from space, benefiting a wide range of downstream applications crucial to our planet. However, most existing efforts remain limited to fixed spectral sensors, focus solely on the Earth's surface, and overlook valuable metadata beyond imagery. In this work, we take a step towards next-generation EO foundation models with three key components: 1) Copernicus-Pretrain, a massive-scale pretraining dataset that integrates 18.7M aligned images from all major Copernicus Sentinel missions, spanning from the Earth's surface to its atmosphere; 2) Copernicus-FM, a unified foundation model capable of processing any spectral or non-spectral sensor modality using extended dynamic hypernetworks and flexible metadata encoding; and 3) Copernicus-Bench, a systematic evaluation benchmark with 15 hierarchical downstream tasks ranging from preprocessing to specialized applications for each Sentinel mission. Our dataset, model, and benchmark greatly improve the scalability, versatility, and multimodal adaptability of EO foundation models, while also creating new opportunities to connect EO, weather, and climate research. Codes, datasets and models are available at https://github.com/zhu-xlab/Copernicus-FM.
PanFlowNet: A Flow-Based Deep Network for Pan-sharpening
Pan-sharpening aims to generate a high-resolution multispectral (HRMS) image by integrating the spectral information of a low-resolution multispectral (LRMS) image with the texture details of a high-resolution panchromatic (PAN) image. It essentially inherits the ill-posed nature of the super-resolution (SR) task that diverse HRMS images can degrade into an LRMS image. However, existing deep learning-based methods recover only one HRMS image from the LRMS image and PAN image using a deterministic mapping, thus ignoring the diversity of the HRMS image. In this paper, to alleviate this ill-posed issue, we propose a flow-based pan-sharpening network (PanFlowNet) to directly learn the conditional distribution of HRMS image given LRMS image and PAN image instead of learning a deterministic mapping. Specifically, we first transform this unknown conditional distribution into a given Gaussian distribution by an invertible network, and the conditional distribution can thus be explicitly defined. Then, we design an invertible Conditional Affine Coupling Block (CACB) and further build the architecture of PanFlowNet by stacking a series of CACBs. Finally, the PanFlowNet is trained by maximizing the log-likelihood of the conditional distribution given a training set and can then be used to predict diverse HRMS images. The experimental results verify that the proposed PanFlowNet can generate various HRMS images given an LRMS image and a PAN image. Additionally, the experimental results on different kinds of satellite datasets also demonstrate the superiority of our PanFlowNet compared with other state-of-the-art methods both visually and quantitatively.
Sheaf Theory through Examples (Abridged Version)
This book provides an inviting tour through sheaf theory, from the perspective of applied category theory and pitched at a less specialized audience than is typical with introductions to sheaves. The book makes it as easy as possible for the reader new to sheaves, by motivating and developing the theory via a broad range of concrete examples and explicit constructions, including applications to n-colorings of graphs, satellite data, chess problems, Bayes nets, musical performance, complexes, and more. Included is an extended first chapter introducing and motivating all the necessary category-theoretical background, again with a strong emphasis on concrete examples. A new and unabridged version (including a fifth chapter on more advanced topics and a conclusion) will be available with MIT Press.
Variational Autoencoding Neural Operators
Unsupervised learning with functional data is an emerging paradigm of machine learning research with applications to computer vision, climate modeling and physical systems. A natural way of modeling functional data is by learning operators between infinite dimensional spaces, leading to discretization invariant representations that scale independently of the sample grid resolution. Here we present Variational Autoencoding Neural Operators (VANO), a general strategy for making a large class of operator learning architectures act as variational autoencoders. For this purpose, we provide a novel rigorous mathematical formulation of the variational objective in function spaces for training. VANO first maps an input function to a distribution over a latent space using a parametric encoder and then decodes a sample from the latent distribution to reconstruct the input, as in classic variational autoencoders. We test VANO with different model set-ups and architecture choices for a variety of benchmarks. We start from a simple Gaussian random field where we can analytically track what the model learns and progressively transition to more challenging benchmarks including modeling phase separation in Cahn-Hilliard systems and real world satellite data for measuring Earth surface deformation.
Hard-Constrained Deep Learning for Climate Downscaling
The availability of reliable, high-resolution climate and weather data is important to inform long-term decisions on climate adaptation and mitigation and to guide rapid responses to extreme events. Forecasting models are limited by computational costs and, therefore, often generate coarse-resolution predictions. Statistical downscaling, including super-resolution methods from deep learning, can provide an efficient method of upsampling low-resolution data. However, despite achieving visually compelling results in some cases, such models frequently violate conservation laws when predicting physical variables. In order to conserve physical quantities, here we introduce methods that guarantee statistical constraints are satisfied by a deep learning downscaling model, while also improving their performance according to traditional metrics. We compare different constraining approaches and demonstrate their applicability across different neural architectures as well as a variety of climate and weather data sets. Besides enabling faster and more accurate climate predictions through downscaling, we also show that our novel methodologies can improve super-resolution for satellite data and natural images data sets.
Unsupervised Change Detection of Extreme Events Using ML On-Board
In this paper, we introduce RaVAEn, a lightweight, unsupervised approach for change detection in satellite data based on Variational Auto-Encoders (VAEs) with the specific purpose of on-board deployment. Applications such as disaster management enormously benefit from the rapid availability of satellite observations. Traditionally, data analysis is performed on the ground after all data is transferred - downlinked - to a ground station. Constraint on the downlink capabilities therefore affects any downstream application. In contrast, RaVAEn pre-processes the sampled data directly on the satellite and flags changed areas to prioritise for downlink, shortening the response time. We verified the efficacy of our system on a dataset composed of time series of catastrophic events - which we plan to release alongside this publication - demonstrating that RaVAEn outperforms pixel-wise baselines. Finally we tested our approach on resource-limited hardware for assessing computational and memory limitations.
Mapping Global Floods with 10 Years of Satellite Radar Data
Floods cause extensive global damage annually, making effective monitoring essential. While satellite observations have proven invaluable for flood detection and tracking, comprehensive global flood datasets spanning extended time periods remain scarce. In this study, we introduce a novel deep learning flood detection model that leverages the cloud-penetrating capabilities of Sentinel-1 Synthetic Aperture Radar (SAR) satellite imagery, enabling consistent flood extent mapping in any weather condition. By applying this model to nearly 10 years of SAR data, we create a unique, longitudinal global flood extent dataset with predictions unaffected by cloud coverage, offering comprehensive and consistent insights into historically flood-prone areas over the past decade. We use our model predictions to identify historically flood-prone areas in Ethiopia and demonstrate real-time disaster response capabilities during the May 2024 floods in Kenya. Additionally, our longitudinal analysis reveals potential increasing trends in global flood extent over time, although further validation is required to explore links to climate change. To maximize impact, we provide public access to both our model predictions and a code repository, empowering researchers and practitioners worldwide to advance flood monitoring and enhance disaster response strategies.
Satellite to GroundScape -- Large-scale Consistent Ground View Generation from Satellite Views
Generating consistent ground-view images from satellite imagery is challenging, primarily due to the large discrepancies in viewing angles and resolution between satellite and ground-level domains. Previous efforts mainly concentrated on single-view generation, often resulting in inconsistencies across neighboring ground views. In this work, we propose a novel cross-view synthesis approach designed to overcome these challenges by ensuring consistency across ground-view images generated from satellite views. Our method, based on a fixed latent diffusion model, introduces two conditioning modules: satellite-guided denoising, which extracts high-level scene layout to guide the denoising process, and satellite-temporal denoising, which captures camera motion to maintain consistency across multiple generated views. We further contribute a large-scale satellite-ground dataset containing over 100,000 perspective pairs to facilitate extensive ground scene or video generation. Experimental results demonstrate that our approach outperforms existing methods on perceptual and temporal metrics, achieving high photorealism and consistency in multi-view outputs.
BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 12 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
Game4Loc: A UAV Geo-Localization Benchmark from Game Data
The vision-based geo-localization technology for UAV, serving as a secondary source of GPS information in addition to the global navigation satellite systems (GNSS), can still operate independently in the GPS-denied environment. Recent deep learning based methods attribute this as the task of image matching and retrieval. By retrieving drone-view images in geo-tagged satellite image database, approximate localization information can be obtained. However, due to high costs and privacy concerns, it is usually difficult to obtain large quantities of drone-view images from a continuous area. Existing drone-view datasets are mostly composed of small-scale aerial photography with a strong assumption that there exists a perfect one-to-one aligned reference image for any query, leaving a significant gap from the practical localization scenario. In this work, we construct a large-range contiguous area UAV geo-localization dataset named GTA-UAV, featuring multiple flight altitudes, attitudes, scenes, and targets using modern computer games. Based on this dataset, we introduce a more practical UAV geo-localization task including partial matches of cross-view paired data, and expand the image-level retrieval to the actual localization in terms of distance (meters). For the construction of drone-view and satellite-view pairs, we adopt a weight-based contrastive learning approach, which allows for effective learning while avoiding additional post-processing matching steps. Experiments demonstrate the effectiveness of our data and training method for UAV geo-localization, as well as the generalization capabilities to real-world scenarios.
xView: Objects in Context in Overhead Imagery
We introduce a new large-scale dataset for the advancement of object detection techniques and overhead object detection research. This satellite imagery dataset enables research progress pertaining to four key computer vision frontiers. We utilize a novel process for geospatial category detection and bounding box annotation with three stages of quality control. Our data is collected from WorldView-3 satellites at 0.3m ground sample distance, providing higher resolution imagery than most public satellite imagery datasets. We compare xView to other object detection datasets in both natural and overhead imagery domains and then provide a baseline analysis using the Single Shot MultiBox Detector. xView is one of the largest and most diverse publicly available object-detection datasets to date, with over 1 million objects across 60 classes in over 1,400 km^2 of imagery.
Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation
The development of foundation models has revolutionized our ability to interpret the Earth's surface using satellite observational data. Traditional models have been siloed, tailored to specific sensors or data types like optical, radar, and hyperspectral, each with its own unique characteristics. This specialization hinders the potential for a holistic analysis that could benefit from the combined strengths of these diverse data sources. Our novel approach introduces the Dynamic One-For-All (DOFA) model, leveraging the concept of neural plasticity in brain science to integrate various data modalities into a single framework adaptively. This dynamic hypernetwork, adjusting to different wavelengths, enables a single versatile Transformer jointly trained on data from five sensors to excel across 12 distinct Earth observation tasks, including sensors never seen during pretraining. DOFA's innovative design offers a promising leap towards more accurate, efficient, and unified Earth observation analysis, showcasing remarkable adaptability and performance in harnessing the potential of multimodal Earth observation data.
Vision-Based Terrain Relative Navigation on High-Altitude Balloon and Sub-Orbital Rocket
We present an experimental analysis on the use of a camera-based approach for high-altitude navigation by associating mapped landmarks from a satellite image database to camera images, and by leveraging inertial sensors between camera frames. We evaluate performance of both a sideways-tilted and downward-facing camera on data collected from a World View Enterprises high-altitude balloon with data beginning at an altitude of 33 km and descending to near ground level (4.5 km) with 1.5 hours of flight time. We demonstrate less than 290 meters of average position error over a trajectory of more than 150 kilometers. In addition to showing performance across a range of altitudes, we also demonstrate the robustness of the Terrain Relative Navigation (TRN) method to rapid rotations of the balloon, in some cases exceeding 20 degrees per second, and to camera obstructions caused by both cloud coverage and cords swaying underneath the balloon. Additionally, we evaluate performance on data collected by two cameras inside the capsule of Blue Origin's New Shepard rocket on payload flight NS-23, traveling at speeds up to 880 km/hr, and demonstrate less than 55 meters of average position error.
OmniEarth-Bench: Towards Holistic Evaluation of Earth's Six Spheres and Cross-Spheres Interactions with Multimodal Observational Earth Data
Existing benchmarks for Earth science multimodal learning exhibit critical limitations in systematic coverage of geosystem components and cross-sphere interactions, often constrained to isolated subsystems (only in Human-activities sphere or atmosphere) with limited evaluation dimensions (less than 16 tasks). To address these gaps, we introduce OmniEarth-Bench, the first comprehensive multimodal benchmark spanning all six Earth science spheres (atmosphere, lithosphere, Oceansphere, cryosphere, biosphere and Human-activities sphere) and cross-spheres with one hundred expert-curated evaluation dimensions. Leveraging observational data from satellite sensors and in-situ measurements, OmniEarth-Bench integrates 29,779 annotations across four tiers: perception, general reasoning, scientific knowledge reasoning and chain-of-thought (CoT) reasoning. This involves the efforts of 2-5 experts per sphere to establish authoritative evaluation dimensions and curate relevant observational datasets, 40 crowd-sourcing annotators to assist experts for annotations, and finally, OmniEarth-Bench is validated via hybrid expert-crowd workflows to reduce label ambiguity. Experiments on 9 state-of-the-art MLLMs reveal that even the most advanced models struggle with our benchmarks, where none of them reach 35\% accuracy. Especially, in some cross-spheres tasks, the performance of leading models like GPT-4o drops to 0.0\%. OmniEarth-Bench sets a new standard for geosystem-aware AI, advancing both scientific discovery and practical applications in environmental monitoring and disaster prediction. The dataset, source code, and trained models were released.
Rapid Wildfire Hotspot Detection Using Self-Supervised Learning on Temporal Remote Sensing Data
Rapid detection and well-timed intervention are essential to mitigate the impacts of wildfires. Leveraging remote sensed data from satellite networks and advanced AI models to automatically detect hotspots (i.e., thermal anomalies caused by active fires) is an effective way to build wildfire monitoring systems. In this work, we propose a novel dataset containing time series of remotely sensed data related to European fire events and a Self-Supervised Learning (SSL)-based model able to analyse multi-temporal data and identify hotspots in potentially near real time. We train and evaluate the performance of our model using our dataset and Thraws, a dataset of thermal anomalies including several fire events, obtaining an F1 score of 63.58.
Satellite Sunroof: High-res Digital Surface Models and Roof Segmentation for Global Solar Mapping
The transition to renewable energy, particularly solar, is key to mitigating climate change. Google's Solar API aids this transition by estimating solar potential from aerial imagery, but its impact is constrained by geographical coverage. This paper proposes expanding the API's reach using satellite imagery, enabling global solar potential assessment. We tackle challenges involved in building a Digital Surface Model (DSM) and roof instance segmentation from lower resolution and single oblique views using deep learning models. Our models, trained on aligned satellite and aerial datasets, produce 25cm DSMs and roof segments. With ~1m DSM MAE on buildings, ~5deg roof pitch error and ~56% IOU on roof segmentation, they significantly enhance the Solar API's potential to promote solar adoption.
Multi-Modal Temporal Attention Models for Crop Mapping from Satellite Time Series
Optical and radar satellite time series are synergetic: optical images contain rich spectral information, while C-band radar captures useful geometrical information and is immune to cloud cover. Motivated by the recent success of temporal attention-based methods across multiple crop mapping tasks, we propose to investigate how these models can be adapted to operate on several modalities. We implement and evaluate multiple fusion schemes, including a novel approach and simple adjustments to the training procedure, significantly improving performance and efficiency with little added complexity. We show that most fusion schemes have advantages and drawbacks, making them relevant for specific settings. We then evaluate the benefit of multimodality across several tasks: parcel classification, pixel-based segmentation, and panoptic parcel segmentation. We show that by leveraging both optical and radar time series, multimodal temporal attention-based models can outmatch single-modality models in terms of performance and resilience to cloud cover. To conduct these experiments, we augment the PASTIS dataset with spatially aligned radar image time series. The resulting dataset, PASTIS-R, constitutes the first large-scale, multimodal, and open-access satellite time series dataset with semantic and instance annotations.
Shaded Route Planning Using Active Segmentation and Identification of Satellite Images
Heatwaves pose significant health risks, particularly due to prolonged exposure to high summer temperatures. Vulnerable groups, especially pedestrians and cyclists on sun-exposed sidewalks, motivate the development of a route planning method that incorporates somatosensory temperature effects through shade ratio consideration. This paper is the first to introduce a pipeline that utilizes segmentation foundation models to extract shaded areas from high-resolution satellite images. These areas are then integrated into a multi-layered road map, enabling users to customize routes based on a balance between distance and shade exposure, thereby enhancing comfort and health during outdoor activities. Specifically, we construct a graph-based representation of the road map, where links indicate connectivity and are updated with shade ratio data for dynamic route planning. This system is already implemented online, with a video demonstration, and will be specifically adapted to assist travelers during the 2024 Olympic Games in Paris.
Recent global temperature surge amplified by record-low planetary albedo
In 2023, the global mean temperature soared to 1.48K above the pre-industrial level, surpassing the previous record by 0.17K. Previous best-guess estimates of known drivers including anthropogenic warming and the El Nino onset fall short by about 0.2K in explaining the temperature rise. Utilizing satellite and reanalysis data, we identify a record-low planetary albedo as the primary factor bridging this gap. The decline is caused largely by a reduced low-cloud cover in the northern mid-latitudes and tropics, in continuation of a multi-annual trend. Understanding how much of the low-cloud trend is due to internal variability, reduced aerosol concentrations, or a possibly emerging low-cloud feedback will be crucial for assessing the current and expected future warming.
ChA-MAEViT: Unifying Channel-Aware Masked Autoencoders and Multi-Channel Vision Transformers for Improved Cross-Channel Learning
Prior work using Masked Autoencoders (MAEs) typically relies on random patch masking based on the assumption that images have significant redundancies across different channels, allowing for the reconstruction of masked content using cross-channel correlations. However, this assumption does not hold in Multi-Channel Imaging (MCI), where channels may provide complementary information with minimal feature overlap. Thus, these MAEs primarily learn local structures within individual channels from patch reconstruction, failing to fully leverage cross-channel interactions and limiting their MCI effectiveness. In this paper, we present ChA-MAEViT, an MAE-based method that enhances feature learning across MCI channels via four key strategies: (1) dynamic channel-patch masking, which compels the model to reconstruct missing channels in addition to masked patches, thereby enhancing cross-channel dependencies and improving robustness to varying channel configurations; (2) memory tokens, which serve as long-term memory aids to promote information sharing across channels, addressing the challenges of reconstructing structurally diverse channels; (3) hybrid token fusion module, which merges fine-grained patch tokens with a global class token to capture richer representations; and (4) Channel-Aware Decoder, a lightweight decoder utilizes channel tokens to effectively reconstruct image patches. Experiments on satellite and microscopy datasets, CHAMMI, JUMP-CP, and So2Sat, show that ChA-MAEViT significantly outperforms state-of-the-art MCI-ViTs by 3.0-21.5%, highlighting the importance of cross-channel interactions in MCI. Our code is publicly available at https://github.com/chaudatascience/cha_mae_vit.
CanadaFireSat: Toward high-resolution wildfire forecasting with multiple modalities
Canada experienced in 2023 one of the most severe wildfire seasons in recent history, causing damage across ecosystems, destroying communities, and emitting large quantities of CO2. This extreme wildfire season is symptomatic of a climate-change-induced increase in the length and severity of the fire season that affects the boreal ecosystem. Therefore, it is critical to empower wildfire management in boreal communities with better mitigation solutions. Wildfire probability maps represent an important tool for understanding the likelihood of wildfire occurrence and the potential severity of future wildfires. The massive increase in the availability of Earth observation data has enabled the development of deep learning-based wildfire forecasting models, aiming at providing precise wildfire probability maps at different spatial and temporal scales. A main limitation of such methods is their reliance on coarse-resolution environmental drivers and satellite products, leading to wildfire occurrence prediction of reduced resolution, typically around sim 0.1{\deg}. This paper presents a benchmark dataset: CanadaFireSat, and baseline methods for high-resolution: 100 m wildfire forecasting across Canada, leveraging multi-modal data from high-resolution multi-spectral satellite images (Sentinel-2 L1C), mid-resolution satellite products (MODIS), and environmental factors (ERA5 reanalysis data). Our experiments consider two major deep learning architectures. We observe that using multi-modal temporal inputs outperforms single-modal temporal inputs across all metrics, achieving a peak performance of 60.3% in F1 score for the 2023 wildfire season, a season never seen during model training. This demonstrates the potential of multi-modal deep learning models for wildfire forecasting at high-resolution and continental scale.
SemSpaceFL: A Collaborative Hierarchical Federated Learning Framework for Semantic Communication in 6G LEO Satellites
The advent of the sixth-generation (6G) wireless networks, enhanced by artificial intelligence, promises ubiquitous connectivity through Low Earth Orbit (LEO) satellites. These satellites are capable of collecting vast amounts of geographically diverse and real-time data, which can be immensely valuable for training intelligent models. However, limited inter-satellite communication and data privacy constraints hinder data collection on a single server for training. Therefore, we propose SemSpaceFL, a novel hierarchical federated learning (HFL) framework for LEO satellite networks, with integrated semantic communication capabilities. Our framework introduces a two-tier aggregation architecture where satellite models are first aggregated at regional gateways before final consolidation at a cloud server, which explicitly accounts for satellite mobility patterns and energy constraints. The key innovation lies in our novel aggregation approach, which dynamically adjusts the contribution of each satellite based on its trajectory and association with different gateways, which ensures stable model convergence despite the highly dynamic nature of LEO constellations. To further enhance communication efficiency, we incorporate semantic encoding-decoding techniques trained through the proposed HFL framework, which enables intelligent data compression while maintaining signal integrity. Our experimental results demonstrate that the proposed aggregation strategy achieves superior performance and faster convergence compared to existing benchmarks, while effectively managing the challenges of satellite mobility and energy limitations in dynamic LEO networks.
A Deep Learning Earth System Model for Efficient Simulation of the Observed Climate
A key challenge for computationally intensive state-of-the-art Earth System models is to distinguish global warming signals from interannual variability. Here we introduce DLESyM, a parsimonious deep learning model that accurately simulates the Earth's current climate over 1000-year periods with no smoothing or drift. DLESyM simulations equal or exceed key metrics of seasonal and interannual variability--such as tropical cyclogenesis over the range of observed intensities, the cycle of the Indian Summer monsoon, and the climatology of mid-latitude blocking events--when compared to historical simulations from four leading models from the 6th Climate Model Intercomparison Project. DLESyM, trained on both historical reanalysis data and satellite observations, is an accurate, highly efficient model of the coupled Earth system, empowering long-range sub-seasonal and seasonal forecasts while using a fraction of the energy and computational time required by traditional models.
Open-Canopy: A Country-Scale Benchmark for Canopy Height Estimation at Very High Resolution
Estimating canopy height and canopy height change at meter resolution from satellite imagery has numerous applications, such as monitoring forest health, logging activities, wood resources, and carbon stocks. However, many existing forest datasets are based on commercial or closed data sources, restricting the reproducibility and evaluation of new approaches. To address this gap, we introduce Open-Canopy, the first open-access and country-scale benchmark for very high resolution (1.5 m) canopy height estimation. Covering more than 87,000 km^2 across France, Open-Canopy combines SPOT satellite imagery with high resolution aerial LiDAR data. We also propose Open-Canopy-Delta, the first benchmark for canopy height change detection between two images taken at different years, a particularly challenging task even for recent models. To establish a robust foundation for these benchmarks, we evaluate a comprehensive list of state-of-the-art computer vision models for canopy height estimation. The dataset and associated codes can be accessed at https://github.com/fajwel/Open-Canopy.
VITA: Variational Pretraining of Transformers for Climate-Robust Crop Yield Forecasting
Accurate crop yield forecasting is essential for global food security. However, current AI models systematically underperform when yields deviate from historical trends. We attribute this to the lack of rich, physically grounded datasets directly linking atmospheric states to yields. To address this, we introduce VITA (Variational Inference Transformer for Asymmetric data), a variational pretraining framework that learns representations from large satellite-based weather datasets and transfers to the ground-based limited measurements available for yield prediction. VITA is trained using detailed meteorological variables as proxy targets during pretraining and learns to predict latent atmospheric states under a seasonality-aware sinusoidal prior. This allows the model to be fine-tuned using limited weather statistics during deployment. Applied to 763 counties in the U.S. Corn Belt, VITA achieves state-of-the-art performance in predicting corn and soybean yields across all evaluation scenarios, particularly during extreme years, with statistically significant improvements (paired t-test, p < 0.0001). Importantly, VITA outperforms prior frameworks like GNN-RNN without soil data, and bigger foundational models (e.g., Chronos-Bolt) with less compute, making it practical for real-world use--especially in data-scarce regions. This work highlights how domain-aware AI design can overcome data limitations and support resilient agricultural forecasting in a changing climate.
EarthSynth: Generating Informative Earth Observation with Diffusion Models
Remote sensing image (RSI) interpretation typically faces challenges due to the scarcity of labeled data, which limits the performance of RSI interpretation tasks. To tackle this challenge, we propose EarthSynth, a diffusion-based generative foundation model that enables synthesizing multi-category, cross-satellite labeled Earth observation for downstream RSI interpretation tasks. To the best of our knowledge, EarthSynth is the first to explore multi-task generation for remote sensing, tackling the challenge of limited generalization in task-oriented synthesis for RSI interpretation. EarthSynth, trained on the EarthSynth-180K dataset, employs the Counterfactual Composition training strategy with a three-dimensional batch-sample selection mechanism to improve training data diversity and enhance category control. Furthermore, a rule-based method of R-Filter is proposed to filter more informative synthetic data for downstream tasks. We evaluate our EarthSynth on scene classification, object detection, and semantic segmentation in open-world scenarios. There are significant improvements in open-vocabulary understanding tasks, offering a practical solution for advancing RSI interpretation.
Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks
The Copernicus Sentinel-2 program now provides multispectral images at a global scale with a high revisit rate. In this paper we explore the usage of convolutional neural networks for urban change detection using such multispectral images. We first present the new change detection dataset that was used for training the proposed networks, which will be openly available to serve as a benchmark. The Onera Satellite Change Detection (OSCD) dataset is composed of pairs of multispectral aerial images, and the changes were manually annotated at pixel level. We then propose two architectures to detect changes, Siamese and Early Fusion, and compare the impact of using different numbers of spectral channels as inputs. These architectures are trained from scratch using the provided dataset.
A Novel Dataset for Flood Detection Robust to Seasonal Changes in Satellite Imagery
This study introduces a novel dataset for segmenting flooded areas in satellite images. After reviewing 77 existing benchmarks utilizing satellite imagery, we identified a shortage of suitable datasets for this specific task. To fill this gap, we collected satellite imagery of the 2019 Midwestern USA floods from Planet Explorer by Planet Labs (Image opyright 2024 Planet Labs PBC). The dataset consists of 10 satellite images per location, each containing both flooded and non-flooded areas. We selected ten locations from each of the five states: Iowa, Kansas, Montana, Nebraska, and South Dakota. The dataset ensures uniform resolution and resizing during data processing. For evaluating semantic segmentation performance, we tested state-of-the-art models in computer vision and remote sensing on our dataset. Additionally, we conducted an ablation study varying window sizes to capture temporal characteristics. Overall, the models demonstrated modest results, suggesting a requirement for future multimodal and temporal learning strategies. The dataset will be publicly available on <https://github.com/youngsunjang/SDSU_MidWest_Flood_2019>.
California Crop Yield Benchmark: Combining Satellite Image, Climate, Evapotranspiration, and Soil Data Layers for County-Level Yield Forecasting of Over 70 Crops
California is a global leader in agricultural production, contributing 12.5% of the United States total output and ranking as the fifth-largest food and cotton supplier in the world. Despite the availability of extensive historical yield data from the USDA National Agricultural Statistics Service, accurate and timely crop yield forecasting remains a challenge due to the complex interplay of environmental, climatic, and soil-related factors. In this study, we introduce a comprehensive crop yield benchmark dataset covering over 70 crops across all California counties from 2008 to 2022. The benchmark integrates diverse data sources, including Landsat satellite imagery, daily climate records, monthly evapotranspiration, and high-resolution soil properties. To effectively learn from these heterogeneous inputs, we develop a multi-modal deep learning model tailored for county-level, crop-specific yield forecasting. The model employs stratified feature extraction and a timeseries encoder to capture spatial and temporal dynamics during the growing season. Static inputs such as soil characteristics and crop identity inform long-term variability. Our approach achieves an overall R2 score of 0.76 across all crops of unseen test dataset, highlighting strong predictive performance across California diverse agricultural regions. This benchmark and modeling framework offer a valuable foundation for advancing agricultural forecasting, climate adaptation, and precision farming. The full dataset and codebase are publicly available at our GitHub repository.
SatDepth: A Novel Dataset for Satellite Image Matching
Recent advances in deep-learning based methods for image matching have demonstrated their superiority over traditional algorithms, enabling correspondence estimation in challenging scenes with significant differences in viewing angles, illumination and weather conditions. However, the existing datasets, learning frameworks, and evaluation metrics for the deep-learning based methods are limited to ground-based images recorded with pinhole cameras and have not been explored for satellite images. In this paper, we present ``SatDepth'', a novel dataset that provides dense ground-truth correspondences for training image matching frameworks meant specifically for satellite images. Satellites capture images from various viewing angles and tracks through multiple revisits over a region. To manage this variability, we propose a dataset balancing strategy through a novel image rotation augmentation procedure. This procedure allows for the discovery of corresponding pixels even in the presence of large rotational differences between the images. We benchmark four existing image matching frameworks using our dataset and carry out an ablation study that confirms that the models trained with our dataset with rotation augmentation outperform (up to 40% increase in precision) the models trained with other datasets, especially when there exist large rotational differences between the images.
AllClear: A Comprehensive Dataset and Benchmark for Cloud Removal in Satellite Imagery
Clouds in satellite imagery pose a significant challenge for downstream applications. A major challenge in current cloud removal research is the absence of a comprehensive benchmark and a sufficiently large and diverse training dataset. To address this problem, we introduce the largest public dataset -- AllClear for cloud removal, featuring 23,742 globally distributed regions of interest (ROIs) with diverse land-use patterns, comprising 4 million images in total. Each ROI includes complete temporal captures from the year 2022, with (1) multi-spectral optical imagery from Sentinel-2 and Landsat 8/9, (2) synthetic aperture radar (SAR) imagery from Sentinel-1, and (3) auxiliary remote sensing products such as cloud masks and land cover maps. We validate the effectiveness of our dataset by benchmarking performance, demonstrating the scaling law -- the PSNR rises from 28.47 to 33.87 with 30times more data, and conducting ablation studies on the temporal length and the importance of individual modalities. This dataset aims to provide comprehensive coverage of the Earth's surface and promote better cloud removal results.
Alberta Wells Dataset: Pinpointing Oil and Gas Wells from Satellite Imagery
Millions of abandoned oil and gas wells are scattered across the world, leaching methane into the atmosphere and toxic compounds into the groundwater. Many of these locations are unknown, preventing the wells from being plugged and their polluting effects averted. Remote sensing is a relatively unexplored tool for pinpointing abandoned wells at scale. We introduce the first large-scale benchmark dataset for this problem, leveraging medium-resolution multi-spectral satellite imagery from Planet Labs. Our curated dataset comprises over 213,000 wells (abandoned, suspended, and active) from Alberta, a region with especially high well density, sourced from the Alberta Energy Regulator and verified by domain experts. We evaluate baseline algorithms for well detection and segmentation, showing the promise of computer vision approaches but also significant room for improvement.
CloudTracks: A Dataset for Localizing Ship Tracks in Satellite Images of Clouds
Clouds play a significant role in global temperature regulation through their effect on planetary albedo. Anthropogenic emissions of aerosols can alter the albedo of clouds, but the extent of this effect, and its consequent impact on temperature change, remains uncertain. Human-induced clouds caused by ship aerosol emissions, commonly referred to as ship tracks, provide visible manifestations of this effect distinct from adjacent cloud regions and therefore serve as a useful sandbox to study human-induced clouds. However, the lack of large-scale ship track data makes it difficult to deduce their general effects on cloud formation. Towards developing automated approaches to localize ship tracks at scale, we present CloudTracks, a dataset containing 3,560 satellite images labeled with more than 12,000 ship track instance annotations. We train semantic segmentation and instance segmentation model baselines on our dataset and find that our best model substantially outperforms previous state-of-the-art for ship track localization (61.29 vs. 48.65 IoU). We also find that the best instance segmentation model is able to identify the number of ship tracks in each image more accurately than the previous state-of-the-art (1.64 vs. 4.99 MAE). However, we identify cases where the best model struggles to accurately localize and count ship tracks, so we believe CloudTracks will stimulate novel machine learning approaches to better detect elongated and overlapping features in satellite images. We release our dataset openly at {zenodo.org/records/10042922}.
Fuxi-DA: A Generalized Deep Learning Data Assimilation Framework for Assimilating Satellite Observations
Data assimilation (DA), as an indispensable component within contemporary Numerical Weather Prediction (NWP) systems, plays a crucial role in generating the analysis that significantly impacts forecast performance. Nevertheless, the development of an efficient DA system poses significant challenges, particularly in establishing intricate relationships between the background data and the vast amount of multi-source observation data within limited time windows in operational settings. To address these challenges, researchers design complex pre-processing methods for each observation type, leveraging approximate modeling and the power of super-computing clusters to expedite solutions. The emergence of deep learning (DL) models has been a game-changer, offering unified multi-modal modeling, enhanced nonlinear representation capabilities, and superior parallelization. These advantages have spurred efforts to integrate DL models into various domains of weather modeling. Remarkably, DL models have shown promise in matching, even surpassing, the forecast accuracy of leading operational NWP models worldwide. This success motivates the exploration of DL-based DA frameworks tailored for weather forecasting models. In this study, we introduces FuxiDA, a generalized DL-based DA framework for assimilating satellite observations. By assimilating data from Advanced Geosynchronous Radiation Imager (AGRI) aboard Fengyun-4B, FuXi-DA consistently mitigates analysis errors and significantly improves forecast performance. Furthermore, through a series of single-observation experiments, Fuxi-DA has been validated against established atmospheric physics, demonstrating its consistency and reliability.
STAR: A First-Ever Dataset and A Large-Scale Benchmark for Scene Graph Generation in Large-Size Satellite Imagery
Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it attractive to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, there lack such SGG datasets. Due to the complexity of large-size SAI, mining triplets <subject, relationship, object> heavily relies on long-range contextual reasoning. Consequently, SGG models designed for small-size natural imagery are not directly applicable to large-size SAI. This paper constructs a large-scale dataset for SGG in large-size VHR SAI with image sizes ranging from 512 x 768 to 27,860 x 31,096 pixels, named STAR (Scene graph generaTion in lArge-size satellite imageRy), encompassing over 210K objects and over 400K triplets. To realize SGG in large-size SAI, we propose a context-aware cascade cognition (CAC) framework to understand SAI regarding object detection (OBD), pair pruning and relationship prediction for SGG. We also release a SAI-oriented SGG toolkit with about 30 OBD and 10 SGG methods which need further adaptation by our devised modules on our challenging STAR dataset. The dataset and toolkit are available at: https://linlin-dev.github.io/project/STAR.
From LAION-5B to LAION-EO: Filtering Billions of Images Using Anchor Datasets for Satellite Image Extraction
Large datasets, such as LAION-5B, contain a diverse distribution of images shared online. However, extraction of domain-specific subsets of large image corpora is challenging. The extraction approach based on an anchor dataset, combined with further filtering, is proposed here and demonstrated for the domain of satellite imagery. This results in the release of LAION-EO, a dataset sourced from the web containing pairs of text and satellite images in high (pixel-wise) resolution. The paper outlines the acquisition procedure as well as some of the features of the dataset.
xBD: A Dataset for Assessing Building Damage from Satellite Imagery
We present xBD, a new, large-scale dataset for the advancement of change detection and building damage assessment for humanitarian assistance and disaster recovery research. Natural disaster response requires an accurate understanding of damaged buildings in an affected region. Current response strategies require in-person damage assessments within 24-48 hours of a disaster. Massive potential exists for using aerial imagery combined with computer vision algorithms to assess damage and reduce the potential danger to human life. In collaboration with multiple disaster response agencies, xBD provides pre- and post-event satellite imagery across a variety of disaster events with building polygons, ordinal labels of damage level, and corresponding satellite metadata. Furthermore, the dataset contains bounding boxes and labels for environmental factors such as fire, water, and smoke. xBD is the largest building damage assessment dataset to date, containing 850,736 building annotations across 45,362 km2 of imagery.
Debiasing Machine Learning Predictions for Causal Inference Without Additional Ground Truth Data: "One Map, Many Trials" in Satellite-Driven Poverty Analysis
Machine learning models trained on Earth observation data, such as satellite imagery, have demonstrated significant promise in predicting household-level wealth indices, enabling the creation of high-resolution wealth maps that can be leveraged across multiple causal trials. However, because standard training objectives prioritize overall predictive accuracy, these predictions inherently suffer from shrinkage toward the mean, leading to attenuated estimates of causal treatment effects and limiting their utility in policy. Existing debiasing methods, such as Prediction-Powered Inference, can handle this attenuation bias but require additional fresh ground-truth data at the downstream stage of causal inference, which restricts their applicability in data-scarce environments. Here, we introduce and evaluate two correction methods -- linear calibration correction and Tweedie's correction -- that substantially reduce prediction bias without relying on newly collected labeled data. Linear calibration corrects bias through a straightforward linear transformation derived from held-out calibration data, whereas Tweedie's correction leverages empirical Bayes principles to directly address shrinkage-induced biases by exploiting score functions derived from the model's learning patterns. Through analytical exercises and experiments using Demographic and Health Survey data, we demonstrate that the proposed methods meet or outperform existing approaches that either require (a) adjustments to training pipelines or (b) additional labeled data. These approaches may represent a promising avenue for improving the reliability of causal inference when direct outcome measures are limited or unavailable, enabling a "one map, many trials" paradigm where a single upstream data creation team produces predictions usable by many downstream teams across diverse ML pipelines.
Harnessing Massive Satellite Imagery with Efficient Masked Image Modeling
Masked Image Modeling (MIM) has become an essential method for building foundational visual models in remote sensing (RS). However, the limitations in size and diversity of existing RS datasets restrict the ability of MIM methods to learn generalizable representations. Additionally, conventional MIM techniques, which require reconstructing all tokens, introduce unnecessary computational overhead. To address these issues, we present a new pre-training pipeline for RS models, featuring the creation of a large-scale RS dataset and an efficient MIM approach. We curated a high-quality dataset named OpticalRS-13M by collecting publicly available RS datasets and processing them through exclusion, slicing, and deduplication. OpticalRS-13M comprises 13 million optical images covering various RS tasks, such as object detection and pixel segmentation. To enhance efficiency, we propose SelectiveMAE, a pre-training method that dynamically encodes and reconstructs semantically rich patch tokens, thereby reducing the inefficiencies of traditional MIM models caused by redundant background pixels in RS images. Extensive experiments show that OpticalRS-13M significantly improves classification, detection, and segmentation performance, while SelectiveMAE increases training efficiency over 2times times. This highlights the effectiveness and scalability of our pipeline in developing RS foundational models. The dataset, source code, and trained models will be released at https://github.com/MiliLab/SelectiveMAE.
Euclid Quick Data Release (Q1): From images to multiwavelength catalogues: the Euclid MERge Processing Function
The Euclid satellite is an ESA mission that was launched in July 2023. \Euclid is working in its regular observing mode with the target of observing an area of 14,000~deg^2 with two instruments, the Visible Camera (VIS) and the Near IR Spectrometer and Photometer (NISP) down to I_{rm E} = 24.5~mag (10, sigma) in the Euclid Wide Survey. Ground-based imaging data in the ugriz bands complement the \Euclid data to enable photo-z determination and VIS PSF modeling for week lensing analysis. Euclid investigates the distance-redshift relation and the evolution of cosmic structures by measuring shapes and redshifts of galaxies and clusters of galaxies out to zsim 2. Generating the multi-wavelength catalogues from \Euclid and ground-based data is an essential part of the \Euclid data processing system. In the framework of the \Euclid Science Ground Segment (SGS), the aim of the MER Processing Function (PF) pipeline is to detect objects in the \Euclid imaging data, measure their properties, and MERge them into a single multi-wavelength catalogue. The MER PF pipeline performs source detection on both visible (VIS) and near-infrared (NIR) images and offers four different photometric measurements: Kron total flux, aperture photometry on PSF-matched images, template fitting photometry, and S\'ersic fitting photometry. Furthermore, the MER PF pipeline measures a set of ancillary quantities, spanning from morphology to quality flags, to better characterise all detected sources. In this paper, we show how the MER PF pipeline is designed, detailing its main steps, and we show that the pipeline products meet the tight requirements that Euclid aims to achieve on photometric accuracy. We also present the other measurements (e.g. morphology) that are included in the OU-MER output catalogues and we list all output products coming out of the MER PF pipeline.
ODS: A self-reporting system for radio telescopes to coexist with adaptive satellite constellations
Low Earth orbit (LEO) satellite constellations bring broadband internet and cellular service to the most remote locations on the planet. Unfortunately, many of these locations also host some of the world's best optical and radio astronomy (RA) observatories. With the number of LEO satellites expected to increase by an order of magnitude in the upcoming decade, satellite downlink radio frequency interference (RFI) is a growing concern in protected radio-quiet areas like the United States National Radio Quiet Zone. When these satellites transmit in the spectrum near protected RA bands, undesired out-of-band emission can leak into these protected bands and impact scientific observations. In this paper, we present a self-reporting system - Operational Data Sharing (ODS) - which enables mutual awareness by publishing radio telescopes' operational information to a protected database that is available to satellite operators through a representational state transfer application programming interface (REST API). Satellite operators can use the ODS data to adapt their downlink tasking algorithms in real time to avoid overwhelming sensitive RA facilities, particularly, through the novel Telescope Boresight Avoidance (TBA) technique. Preliminary results from recent experiments between the NRAO and the SpaceX Starlink teams demonstrate the effectiveness of the ODS and TBA in reducing downlink RFI in the Karl G. Jansky Very Large Array's observations in the 1990-1995 MHz and 10.7-12.7 GHz bands. This automated ODS system is beginning to be implemented by other RA facilities and could be utilized by other satellite operators in the near future.
Generating Physically-Consistent Satellite Imagery for Climate Visualizations
Deep generative vision models are now able to synthesize realistic-looking satellite imagery. But, the possibility of hallucinations prevents their adoption for risk-sensitive applications, such as generating materials for communicating climate change. To demonstrate this issue, we train a generative adversarial network (pix2pixHD) to create synthetic satellite imagery of future flooding and reforestation events. We find that a pure deep learning-based model can generate photorealistic flood visualizations but hallucinates floods at locations that were not susceptible to flooding. To address this issue, we propose to condition and evaluate generative vision models on segmentation maps of physics-based flood models. We show that our physics-conditioned model outperforms the pure deep learning-based model and a handcrafted baseline. We evaluate the generalization capability of our method to different remote sensing data and different climate-related events (reforestation). We publish our code and dataset which includes the data for a third case study of melting Arctic sea ice and >30,000 labeled HD image triplets -- or the equivalent of 5.5 million images at 128x128 pixels -- for segmentation guided image-to-image translation in Earth observation. Code and data is available at https://github.com/blutjens/eie-earth-public.
AGBD: A Global-scale Biomass Dataset
Accurate estimates of Above Ground Biomass (AGB) are essential in addressing two of humanity's biggest challenges, climate change and biodiversity loss. Existing datasets for AGB estimation from satellite imagery are limited. Either they focus on specific, local regions at high resolution, or they offer global coverage at low resolution. There is a need for a machine learning-ready, globally representative, high-resolution benchmark. Our findings indicate significant variability in biomass estimates across different vegetation types, emphasizing the necessity for a dataset that accurately captures global diversity. To address these gaps, we introduce a comprehensive new dataset that is globally distributed, covers a range of vegetation types, and spans several years. This dataset combines AGB reference data from the GEDI mission with data from Sentinel-2 and PALSAR-2 imagery. Additionally, it includes pre-processed high-level features such as a dense canopy height map, an elevation map, and a land-cover classification map. We also produce a dense, high-resolution (10m) map of AGB predictions for the entire area covered by the dataset. Rigorously tested, our dataset is accompanied by several benchmark models and is publicly available. It can be easily accessed using a single line of code, offering a solid basis for efforts towards global AGB estimation. The GitHub repository github.com/ghjuliasialelli/AGBD serves as a one-stop shop for all code and data.
FLAIR: a Country-Scale Land Cover Semantic Segmentation Dataset From Multi-Source Optical Imagery
We introduce the French Land cover from Aerospace ImageRy (FLAIR), an extensive dataset from the French National Institute of Geographical and Forest Information (IGN) that provides a unique and rich resource for large-scale geospatial analysis. FLAIR contains high-resolution aerial imagery with a ground sample distance of 20 cm and over 20 billion individually labeled pixels for precise land-cover classification. The dataset also integrates temporal and spectral data from optical satellite time series. FLAIR thus combines data with varying spatial, spectral, and temporal resolutions across over 817 km2 of acquisitions representing the full landscape diversity of France. This diversity makes FLAIR a valuable resource for the development and evaluation of novel methods for large-scale land-cover semantic segmentation and raises significant challenges in terms of computer vision, data fusion, and geospatial analysis. We also provide powerful uni- and multi-sensor baseline models that can be employed to assess algorithm's performance and for downstream applications. Through its extent and the quality of its annotation, FLAIR aims to spur improvements in monitoring and understanding key anthropogenic development indicators such as urban growth, deforestation, and soil artificialization. Dataset and codes can be accessed at https://ignf.github.io/FLAIR/
Using remotely sensed data for air pollution assessment
Air pollution constitutes a global problem of paramount importance that affects not only human health, but also the environment. The existence of spatial and temporal data regarding the concentrations of pollutants is crucial for performing air pollution studies and monitor emissions. However, although observation data presents great temporal coverage, the number of stations is very limited and they are usually built in more populated areas. The main objective of this work is to create models capable of inferring pollutant concentrations in locations where no observation data exists. A machine learning model, more specifically the random forest model, was developed for predicting concentrations in the Iberian Peninsula in 2019 for five selected pollutants: NO_2, O_3 SO_2, PM10, and PM2.5. Model features include satellite measurements, meteorological variables, land use classification, temporal variables (month, day of year), and spatial variables (latitude, longitude, altitude). The models were evaluated using various methods, including station 10-fold cross-validation, in which in each fold observations from 10\% of the stations are used as testing data and the rest as training data. The R^2, RMSE and mean bias were determined for each model. The NO_2 and O_3 models presented good values of R^2, 0.5524 and 0.7462, respectively. However, the SO_2, PM10, and PM2.5 models performed very poorly in this regard, with R^2 values of -0.0231, 0.3722, and 0.3303, respectively. All models slightly overestimated the ground concentrations, except the O_3 model. All models presented acceptable cross-validation RMSE, except the O_3 and PM10 models where the mean value was a little higher (12.5934 mu g/m^3 and 10.4737 mu g/m^3, respectively).
Analyzing Data Quality and Decay in Mega-Constellations: A Physics-Informed Machine Learning Approach
In the era of mega-constellations, the need for accurate and publicly available information has become fundamental for satellite operators to guarantee the safety of spacecrafts and the Low Earth Orbit (LEO) space environment. This study critically evaluates the accuracy and reliability of publicly available ephemeris data for a LEO mega-constellation - Starlink. The goal of this work is twofold: (i) compare and analyze the quality of the data against high-precision numerical propagation. (ii) Leverage Physics-Informed Machine Learning to extract relevant satellite quantities, such as non-conservative forces, during the decay process. By analyzing two months of real orbital data for approximately 1500 Starlink satellites, we identify discrepancies between high precision numerical algorithms and the published ephemerides, recognizing the use of simplified dynamics at fixed thresholds, planned maneuvers, and limitations in uncertainty propagations. Furthermore, we compare data obtained from multiple sources to track and analyze deorbiting satellites over the same period. Empirically, we extract the acceleration profile of satellites during deorbiting and provide insights relating to the effects of non-conservative forces during reentry. For non-deorbiting satellites, the position Root Mean Square Error (RMSE) was approximately 300 m, while for deorbiting satellites it increased to about 600 m. Through this in-depth analysis, we highlight potential limitations in publicly available data for accurate and robust Space Situational Awareness (SSA), and importantly, we propose a data-driven model of satellite decay in mega-constellations.
Satellite Connectivity Prediction for Fast-Moving Platforms
Satellite connectivity is gaining increased attention as the demand for seamless internet access, especially in transportation and remote areas, continues to grow. For fast-moving objects such as aircraft, vehicles, or trains, satellite connectivity is critical due to their mobility and frequent presence in areas without terrestrial coverage. Maintaining reliable connectivity in these cases requires frequent switching between satellite beams, constellations, or orbits. To enhance user experience and address challenges like long switching times, Machine Learning (ML) algorithms can analyze historical connectivity data and predict network quality at specific locations. This allows for proactive measures, such as network switching before connectivity issues arise. In this paper, we analyze a real dataset of communication between a Geostationary Orbit (GEO) satellite and aircraft over multiple flights, using ML to predict signal quality. Our prediction model achieved an F1 score of 0.97 on the test data, demonstrating the accuracy of machine learning in predicting signal quality during flight. By enabling seamless broadband service, including roaming between different satellite constellations and providers, our model addresses the need for real-time predictions of signal quality. This approach can further be adapted to automate satellite and beam-switching mechanisms to improve overall communication efficiency. The model can also be retrained and applied to any moving object with satellite connectivity, using customized datasets, including connected vehicles and trains.
CaBuAr: California Burned Areas dataset for delineation
Forest wildfires represent one of the catastrophic events that, over the last decades, caused huge environmental and humanitarian damages. In addition to a significant amount of carbon dioxide emission, they are a source of risk to society in both short-term (e.g., temporary city evacuation due to fire) and long-term (e.g., higher risks of landslides) cases. Consequently, the availability of tools to support local authorities in automatically identifying burned areas plays an important role in the continuous monitoring requirement to alleviate the aftereffects of such catastrophic events. The great availability of satellite acquisitions coupled with computer vision techniques represents an important step in developing such tools. This paper introduces a novel open dataset that tackles the burned area delineation problem, a binary segmentation problem applied to satellite imagery. The presented resource consists of pre- and post-fire Sentinel-2 L2A acquisitions of California forest fires that took place starting in 2015. Raster annotations were generated from the data released by California's Department of Forestry and Fire Protection. Moreover, in conjunction with the dataset, we release three different baselines based on spectral indexes analyses, SegFormer, and U-Net models.
RoofNet: A Global Multimodal Dataset for Roof Material Classification
Natural disasters are increasing in frequency and severity, causing hundreds of billions of dollars in damage annually and posing growing threats to infrastructure and human livelihoods. Accurate data on roofing materials is critical for modeling building vulnerability to natural hazards such as earthquakes, floods, wildfires, and hurricanes, yet such data remain unavailable. To address this gap, we introduce RoofNet, the largest and most geographically diverse novel multimodal dataset to date, comprising over 51,500 samples from 184 geographically diverse sites pairing high-resolution Earth Observation (EO) imagery with curated text annotations for global roof material classification. RoofNet includes geographically diverse satellite imagery labeled with 14 key roofing types -- such as asphalt shingles, clay tiles, and metal sheets -- and is designed to enhance the fidelity of global exposure datasets through vision-language modeling (VLM). We sample EO tiles from climatically and architecturally distinct regions to construct a representative dataset. A subset of 6,000 images was annotated in collaboration with domain experts to fine-tune a VLM. We used geographic- and material-aware prompt tuning to enhance class separability. The fine-tuned model was then applied to the remaining EO tiles, with predictions refined through rule-based and human-in-the-loop verification. In addition to material labels, RoofNet provides rich metadata including roof shape, footprint area, solar panel presence, and indicators of mixed roofing materials (e.g., HVAC systems). RoofNet supports scalable, AI-driven risk assessment and serves as a downstream benchmark for evaluating model generalization across regions -- offering actionable insights for insurance underwriting, disaster preparedness, and infrastructure policy planning.
Benchmarking Object Detectors under Real-World Distribution Shifts in Satellite Imagery
Object detectors have achieved remarkable performance in many applications; however, these deep learning models are typically designed under the i.i.d. assumption, meaning they are trained and evaluated on data sampled from the same (source) distribution. In real-world deployment, however, target distributions often differ from source data, leading to substantial performance degradation. Domain Generalisation (DG) seeks to bridge this gap by enabling models to generalise to Out-Of-Distribution (OOD) data without access to target distributions during training, enhancing robustness to unseen conditions. In this work, we examine the generalisability and robustness of state-of-the-art object detectors under real-world distribution shifts, focusing particularly on spatial domain shifts. Despite the need, a standardised benchmark dataset specifically designed for assessing object detection under realistic DG scenarios is currently lacking. To address this, we introduce Real-World Distribution Shifts (RWDS), a suite of three novel DG benchmarking datasets that focus on humanitarian and climate change applications. These datasets enable the investigation of domain shifts across (i) climate zones and (ii) various disasters and geographic regions. To our knowledge, these are the first DG benchmarking datasets tailored for object detection in real-world, high-impact contexts. We aim for these datasets to serve as valuable resources for evaluating the robustness and generalisation of future object detection models. Our datasets and code are available at https://github.com/RWGAI/RWDS.
SA-Occ: Satellite-Assisted 3D Occupancy Prediction in Real World
Existing vision-based 3D occupancy prediction methods are inherently limited in accuracy due to their exclusive reliance on street-view imagery, neglecting the potential benefits of incorporating satellite views. We propose SA-Occ, the first Satellite-Assisted 3D occupancy prediction model, which leverages GPS & IMU to integrate historical yet readily available satellite imagery into real-time applications, effectively mitigating limitations of ego-vehicle perceptions, involving occlusions and degraded performance in distant regions. To address the core challenges of cross-view perception, we propose: 1) Dynamic-Decoupling Fusion, which resolves inconsistencies in dynamic regions caused by the temporal asynchrony between satellite and street views; 2) 3D-Proj Guidance, a module that enhances 3D feature extraction from inherently 2D satellite imagery; and 3) Uniform Sampling Alignment, which aligns the sampling density between street and satellite views. Evaluated on Occ3D-nuScenes, SA-Occ achieves state-of-the-art performance, especially among single-frame methods, with a 39.05% mIoU (a 6.97% improvement), while incurring only 6.93 ms of additional latency per frame. Our code and newly curated dataset are available at https://github.com/chenchen235/SA-Occ.
UAV-VisLoc: A Large-scale Dataset for UAV Visual Localization
The application of unmanned aerial vehicles (UAV) has been widely extended recently. It is crucial to ensure accurate latitude and longitude coordinates for UAVs, especially when the global navigation satellite systems (GNSS) are disrupted and unreliable. Existing visual localization methods achieve autonomous visual localization without error accumulation by matching the ground-down view image of UAV with the ortho satellite maps. However, collecting UAV ground-down view images across diverse locations is costly, leading to a scarcity of large-scale datasets for real-world scenarios. Existing datasets for UAV visual localization are often limited to small geographic areas or are focused only on urban regions with distinct textures. To address this, we define the UAV visual localization task by determining the UAV's real position coordinates on a large-scale satellite map based on the captured ground-down view. In this paper, we present a large-scale dataset, UAV-VisLoc, to facilitate the UAV visual localization task. This dataset comprises images from diverse drones across 11 locations in China, capturing a range of topographical features. The dataset features images from fixed-wing drones and multi-terrain drones, captured at different altitudes and orientations. Our dataset includes 6,742 drone images and 11 satellite maps, with metadata such as latitude, longitude, altitude, and capture date. Our dataset is tailored to support both the training and testing of models by providing a diverse and extensive data.
Generate Your Own Scotland: Satellite Image Generation Conditioned on Maps
Despite recent advancements in image generation, diffusion models still remain largely underexplored in Earth Observation. In this paper we show that state-of-the-art pretrained diffusion models can be conditioned on cartographic data to generate realistic satellite images. We provide two large datasets of paired OpenStreetMap images and satellite views over the region of Mainland Scotland and the Central Belt. We train a ControlNet model and qualitatively evaluate the results, demonstrating that both image quality and map fidelity are possible. Finally, we provide some insights on the opportunities and challenges of applying these models for remote sensing. Our model weights and code for creating the dataset are publicly available at https://github.com/miquel-espinosa/map-sat.
LandCoverNet: A global benchmark land cover classification training dataset
Regularly updated and accurate land cover maps are essential for monitoring 14 of the 17 Sustainable Development Goals. Multispectral satellite imagery provide high-quality and valuable information at global scale that can be used to develop land cover classification models. However, such a global application requires a geographically diverse training dataset. Here, we present LandCoverNet, a global training dataset for land cover classification based on Sentinel-2 observations at 10m spatial resolution. Land cover class labels are defined based on annual time-series of Sentinel-2, and verified by consensus among three human annotators.
SpaceNet: A Remote Sensing Dataset and Challenge Series
Foundational mapping remains a challenge in many parts of the world, particularly in dynamic scenarios such as natural disasters when timely updates are critical. Updating maps is currently a highly manual process requiring a large number of human labelers to either create features or rigorously validate automated outputs. We propose that the frequent revisits of earth imaging satellite constellations may accelerate existing efforts to quickly update foundational maps when combined with advanced machine learning techniques. Accordingly, the SpaceNet partners (CosmiQ Works, Radiant Solutions, and NVIDIA), released a large corpus of labeled satellite imagery on Amazon Web Services (AWS) called SpaceNet. The SpaceNet partners also launched a series of public prize competitions to encourage improvement of remote sensing machine learning algorithms. The first two of these competitions focused on automated building footprint extraction, and the most recent challenge focused on road network extraction. In this paper we discuss the SpaceNet imagery, labels, evaluation metrics, prize challenge results to date, and future plans for the SpaceNet challenge series.
EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification
In this paper, we address the challenge of land use and land cover classification using Sentinel-2 satellite images. The Sentinel-2 satellite images are openly and freely accessible provided in the Earth observation program Copernicus. We present a novel dataset based on Sentinel-2 satellite images covering 13 spectral bands and consisting out of 10 classes with in total 27,000 labeled and geo-referenced images. We provide benchmarks for this novel dataset with its spectral bands using state-of-the-art deep Convolutional Neural Network (CNNs). With the proposed novel dataset, we achieved an overall classification accuracy of 98.57%. The resulting classification system opens a gate towards a number of Earth observation applications. We demonstrate how this classification system can be used for detecting land use and land cover changes and how it can assist in improving geographical maps. The geo-referenced dataset EuroSAT is made publicly available at https://github.com/phelber/eurosat.
An Evolutionary Task Scheduling Algorithm Using Fuzzy Fitness Evaluation Method for Communication Satellite Network
Communications satellite network (CSN), as an integral component of the next generation of communication systems, has the capability to offer services globally. Data transmission in this network primarily relies on two modes: inter-satellite communication and satellite-to-ground station communication. The latter directly impacts the successful reception of data by users. However, due to resource and task limitations, finding a satisfactory solution poses a significant challenge. The communication satellite-ground station network scheduling problem (CS-GSNSP) aims to optimize CSN effectiveness by devising a plan that maximizes link construction time while considering constraints associated with satellite operation modes. The large number of tasks and numerous constraints in the problem result in a time-consuming evaluation of fitness function values. To address this issue, we propose a fuzzy fitness evaluation method (FFEM) that employs fuzzy or real evaluation methods based on individual similarity degrees. Additionally, we introduce an evolutionary algorithm based on FFEM, called evolutionary algorithm based on FFEM (FFEEA), for iteratively searching high-quality network construction schemes. In FFEEA, an adaptive crossover approach is used for efficient population search. Finally, extensive experiments are conducted to demonstrate that our proposed fuzzy fitness evaluation method and other improvement strategies significantly enhance satellite network service time. The study introduces a novel approach to enhance the efficiency of solving combinatorial optimization problems, such as CS-GSNSP, by mitigating the complexity associated with fitness evaluation.
SATIN: A Multi-Task Metadataset for Classifying Satellite Imagery using Vision-Language Models
Interpreting remote sensing imagery enables numerous downstream applications ranging from land-use planning to deforestation monitoring. Robustly classifying this data is challenging due to the Earth's geographic diversity. While many distinct satellite and aerial image classification datasets exist, there is yet to be a benchmark curated that suitably covers this diversity. In this work, we introduce SATellite ImageNet (SATIN), a metadataset curated from 27 existing remotely sensed datasets, and comprehensively evaluate the zero-shot transfer classification capabilities of a broad range of vision-language (VL) models on SATIN. We find SATIN to be a challenging benchmark-the strongest method we evaluate achieves a classification accuracy of 52.0%. We provide a https://satinbenchmark.github.io{public leaderboard} to guide and track the progress of VL models in this important domain.
SatMAE: Pre-training Transformers for Temporal and Multi-Spectral Satellite Imagery
Unsupervised pre-training methods for large vision models have shown to enhance performance on downstream supervised tasks. Developing similar techniques for satellite imagery presents significant opportunities as unlabelled data is plentiful and the inherent temporal and multi-spectral structure provides avenues to further improve existing pre-training strategies. In this paper, we present SatMAE, a pre-training framework for temporal or multi-spectral satellite imagery based on Masked Autoencoder (MAE). To leverage temporal information, we include a temporal embedding along with independently masking image patches across time. In addition, we demonstrate that encoding multi-spectral data as groups of bands with distinct spectral positional encodings is beneficial. Our approach yields strong improvements over previous state-of-the-art techniques, both in terms of supervised learning performance on benchmark datasets (up to uparrow 7%), and transfer learning performance on downstream remote sensing tasks, including land cover classification (up to uparrow 14%) and semantic segmentation. Code and data are available on the project website: https://sustainlab-group.github.io/SatMAE/
M3LEO: A Multi-Modal, Multi-Label Earth Observation Dataset Integrating Interferometric SAR and Multispectral Data
Satellite-based remote sensing has revolutionised the way we address global challenges. Huge quantities of Earth Observation (EO) data are generated by satellite sensors daily, but processing these large datasets for use in ML pipelines is technically and computationally challenging. While some preprocessed Earth observation datasets exist, their content is often limited to optical or near-optical wavelength data, which is ineffective at night or in adverse weather conditions. Synthetic Aperture Radar (SAR), an active sensing technique based on microwave length radiation, offers a viable alternative. However, the application of machine learning to SAR has been limited due to a lack of ML-ready data and pipelines, particularly for the full diversity of SAR data, including polarimetry, coherence and interferometry. In this work, we introduce M3LEO, a multi-modal, multi-label Earth observation dataset that includes polarimetric, interferometric, and coherence SAR data derived from Sentinel-1, alongside multispectral Sentinel-2 imagery and auxiliary data describing terrain properties such as land use. M3LEO spans approximately 17M 4x4 km data chips from six diverse geographic regions. The dataset is complemented by a flexible PyTorch Lightning framework configured using Hydra to accommodate its use across diverse ML applications in Earth observation. We provide tools to process any dataset available on popular platforms such as Google Earth Engine for seamless integration with our framework. We show that the distribution shift in self-supervised embeddings is substantial across geographic regions, even when controlling for terrain properties. Data: huggingface.co/M3LEO, Code: github.com/spaceml-org/M3LEO.
Rethinking Transformers Pre-training for Multi-Spectral Satellite Imagery
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks by pre-training on large amount of unlabelled data. Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data. Different from standard natural image datasets, remote sensing data is acquired from various sensor technologies and exhibit diverse range of scale variations as well as modalities. Existing satellite image pre-training methods either ignore the scale information present in the remote sensing imagery or restrict themselves to use only a single type of data modality. In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities. Our proposed approach, named SatMAE++, performs multi-scale pre-training and utilizes convolution based upsampling blocks to reconstruct the image at higher scales making it extensible to include more scales. Compared to existing works, the proposed SatMAE++ with multi-scale pre-training is equally effective for both optical as well as multi-spectral imagery. Extensive experiments on six datasets reveal the merits of proposed contributions, leading to state-of-the-art performance on all datasets. SatMAE++ achieves mean average precision (mAP) gain of 2.5\% for multi-label classification task on BigEarthNet dataset. Our code and pre-trained models are available at https://github.com/techmn/satmae_pp.
DengueNet: Dengue Prediction using Spatiotemporal Satellite Imagery for Resource-Limited Countries
Dengue fever presents a substantial challenge in developing countries where sanitation infrastructure is inadequate. The absence of comprehensive healthcare systems exacerbates the severity of dengue infections, potentially leading to life-threatening circumstances. Rapid response to dengue outbreaks is also challenging due to limited information exchange and integration. While timely dengue outbreak forecasts have the potential to prevent such outbreaks, the majority of dengue prediction studies have predominantly relied on data that impose significant burdens on individual countries for collection. In this study, our aim is to improve health equity in resource-constrained countries by exploring the effectiveness of high-resolution satellite imagery as a nontraditional and readily accessible data source. By leveraging the wealth of publicly available and easily obtainable satellite imagery, we present a scalable satellite extraction framework based on Sentinel Hub, a cloud-based computing platform. Furthermore, we introduce DengueNet, an innovative architecture that combines Vision Transformer, Radiomics, and Long Short-term Memory to extract and integrate spatiotemporal features from satellite images. This enables dengue predictions on an epi-week basis. To evaluate the effectiveness of our proposed method, we conducted experiments on five municipalities in Colombia. We utilized a dataset comprising 780 high-resolution Sentinel-2 satellite images for training and evaluation. The performance of DengueNet was assessed using the mean absolute error (MAE) metric. Across the five municipalities, DengueNet achieved an average MAE of 43.92. Our findings strongly support the efficacy of satellite imagery as a valuable resource for dengue prediction, particularly in informing public health policies within countries where manually collected data is scarce and dengue virus prevalence is severe.
Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion
Directly generating scenes from satellite imagery offers exciting possibilities for integration into applications like games and map services. However, challenges arise from significant view changes and scene scale. Previous efforts mainly focused on image or video generation, lacking exploration into the adaptability of scene generation for arbitrary views. Existing 3D generation works either operate at the object level or are difficult to utilize the geometry obtained from satellite imagery. To overcome these limitations, we propose a novel architecture for direct 3D scene generation by introducing diffusion models into 3D sparse representations and combining them with neural rendering techniques. Specifically, our approach generates texture colors at the point level for a given geometry using a 3D diffusion model first, which is then transformed into a scene representation in a feed-forward manner. The representation can be utilized to render arbitrary views which would excel in both single-frame quality and inter-frame consistency. Experiments in two city-scale datasets show that our model demonstrates proficiency in generating photo-realistic street-view image sequences and cross-view urban scenes from satellite imagery.
House Price Prediction using Satellite Imagery
In this paper we show how using satellite images can improve the accuracy of housing price estimation models. Using Los Angeles County's property assessment dataset, by transferring learning from an Inception-v3 model pretrained on ImageNet, we could achieve an improvement of ~10% in R-squared score compared to two baseline models that only use non-image features of the house.
ForestNet: Classifying Drivers of Deforestation in Indonesia using Deep Learning on Satellite Imagery
Characterizing the processes leading to deforestation is critical to the development and implementation of targeted forest conservation and management policies. In this work, we develop a deep learning model called ForestNet to classify the drivers of primary forest loss in Indonesia, a country with one of the highest deforestation rates in the world. Using satellite imagery, ForestNet identifies the direct drivers of deforestation in forest loss patches of any size. We curate a dataset of Landsat 8 satellite images of known forest loss events paired with driver annotations from expert interpreters. We use the dataset to train and validate the models and demonstrate that ForestNet substantially outperforms other standard driver classification approaches. In order to support future research on automated approaches to deforestation driver classification, the dataset curated in this study is publicly available at https://stanfordmlgroup.github.io/projects/forestnet .
Automatic Data Curation for Self-Supervised Learning: A Clustering-Based Approach
Self-supervised features are the cornerstone of modern machine learning systems. They are typically pre-trained on data collections whose construction and curation typically require extensive human effort. This manual process has some limitations similar to those encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and time-consuming, preventing scaling the dataset size. In this work, we consider the problem of automatic curation of high-quality datasets for self-supervised pre-training. We posit that such datasets should be large, diverse and balanced, and propose a clustering-based approach for building ones satisfying all these criteria. Our method involves successive and hierarchical applications of k-means on a large and diverse data repository to obtain clusters that distribute uniformly among data concepts, followed by a hierarchical, balanced sampling step from these clusters. Extensive experiments on three different data domains including web-based images, satellite images and text show that features trained on our automatically curated datasets outperform those trained on uncurated data while being on par or better than ones trained on manually curated data.
CrossViewDiff: A Cross-View Diffusion Model for Satellite-to-Street View Synthesis
Satellite-to-street view synthesis aims at generating a realistic street-view image from its corresponding satellite-view image. Although stable diffusion models have exhibit remarkable performance in a variety of image generation applications, their reliance on similar-view inputs to control the generated structure or texture restricts their application to the challenging cross-view synthesis task. In this work, we propose CrossViewDiff, a cross-view diffusion model for satellite-to-street view synthesis. To address the challenges posed by the large discrepancy across views, we design the satellite scene structure estimation and cross-view texture mapping modules to construct the structural and textural controls for street-view image synthesis. We further design a cross-view control guided denoising process that incorporates the above controls via an enhanced cross-view attention module. To achieve a more comprehensive evaluation of the synthesis results, we additionally design a GPT-based scoring method as a supplement to standard evaluation metrics. We also explore the effect of different data sources (e.g., text, maps, building heights, and multi-temporal satellite imagery) on this task. Results on three public cross-view datasets show that CrossViewDiff outperforms current state-of-the-art on both standard and GPT-based evaluation metrics, generating high-quality street-view panoramas with more realistic structures and textures across rural, suburban, and urban scenes. The code and models of this work will be released at https://opendatalab.github.io/CrossViewDiff/.
Reinforcement-based Display-size Selection for Frugal Satellite Image Change Detection
We introduce a novel interactive satellite image change detection algorithm based on active learning. The proposed method is iterative and consists in frugally probing the user (oracle) about the labels of the most critical images, and according to the oracle's annotations, it updates change detection results. First, we consider a probabilistic framework which assigns to each unlabeled sample a relevance measure modeling how critical is that sample when training change detection functions. We obtain these relevance measures by minimizing an objective function mixing diversity, representativity and uncertainty. These criteria when combined allow exploring different data modes and also refining change detections. Then, we further explore the potential of this objective function, by considering a reinforcement learning approach that finds the best combination of diversity, representativity and uncertainty as well as display-sizes through active learning iterations, leading to better generalization as shown through experiments in interactive satellite image change detection.
Long-range UAV Thermal Geo-localization with Satellite Imagery
Onboard sensors, such as cameras and thermal sensors, have emerged as effective alternatives to Global Positioning System (GPS) for geo-localization in Unmanned Aerial Vehicle (UAV) navigation. Since GPS can suffer from signal loss and spoofing problems, researchers have explored camera-based techniques such as Visual Geo-localization (VG) using satellite RGB imagery. Additionally, thermal geo-localization (TG) has become crucial for long-range UAV flights in low-illumination environments. This paper proposes a novel thermal geo-localization framework using satellite RGB imagery, which includes multiple domain adaptation methods to address the limited availability of paired thermal and satellite images. The experimental results demonstrate the effectiveness of the proposed approach in achieving reliable thermal geo-localization performance, even in thermal images with indistinct self-similar features. We evaluate our approach on real data collected onboard a UAV. We also release the code and Boson-nighttime, a dataset of paired satellite-thermal and unpaired satellite images for thermal geo-localization with satellite imagery. To the best of our knowledge, this work is the first to propose a thermal geo-localization method using satellite RGB imagery in long-range flights.
TorchGeo: Deep Learning With Geospatial Data
Remotely sensed geospatial data are critical for applications including precision agriculture, urban planning, disaster monitoring and response, and climate change research, among others. Deep learning methods are particularly promising for modeling many remote sensing tasks given the success of deep neural networks in similar computer vision tasks and the sheer volume of remotely sensed imagery available. However, the variance in data collection methods and handling of geospatial metadata make the application of deep learning methodology to remotely sensed data nontrivial. For example, satellite imagery often includes additional spectral bands beyond red, green, and blue and must be joined to other geospatial data sources that can have differing coordinate systems, bounds, and resolutions. To help realize the potential of deep learning for remote sensing applications, we introduce TorchGeo, a Python library for integrating geospatial data into the PyTorch deep learning ecosystem. TorchGeo provides data loaders for a variety of benchmark datasets, composable datasets for generic geospatial data sources, samplers for geospatial data, and transforms that work with multispectral imagery. TorchGeo is also the first library to provide pre-trained models for multispectral satellite imagery (e.g., models that use all bands from the Sentinel-2 satellites), allowing for advances in transfer learning on downstream remote sensing tasks with limited labeled data. We use TorchGeo to create reproducible benchmark results on existing datasets and benchmark our proposed method for preprocessing geospatial imagery on the fly. TorchGeo is open source and available on GitHub: https://github.com/microsoft/torchgeo.
InstaGeo: Compute-Efficient Geospatial Machine Learning from Data to Deployment
Open-access multispectral imagery from missions like Landsat 8-9 and Sentinel-2 has fueled the development of geospatial foundation models (GFMs) for humanitarian and environmental applications. Yet, their deployment remains limited by (i) the absence of automated geospatial data pipelines and (ii) the large size of fine-tuned models. Existing GFMs lack workflows for processing raw satellite imagery, and downstream adaptations often retain the full complexity of the original encoder. We present InstaGeo, an open-source, end-to-end framework that addresses these challenges by integrating: (1) automated data curation to transform raw imagery into model-ready datasets; (2) task-specific model distillation to derive compact, compute-efficient models; and (3) seamless deployment as interactive web-map applications. Using InstaGeo, we reproduced datasets from three published studies and trained models with marginal mIoU differences of -0.73 pp for flood mapping, -0.20 pp for crop segmentation, and +1.79 pp for desert locust prediction. The distilled models are up to 8x smaller than standard fine-tuned counterparts, reducing FLOPs and CO2 emissions with minimal accuracy loss. Leveraging InstaGeo's streamlined data pipeline, we also curated a larger crop segmentation dataset, achieving a state-of-the-art mIoU of 60.65%, a 12 pp improvement over prior baselines. Moreover, InstaGeo enables users to progress from raw data to model deployment within a single working day. By unifying data preparation, model compression, and deployment, InstaGeo transforms research-grade GFMs into practical, low-carbon tools for real-time, large-scale Earth observation. This approach shifts geospatial AI toward data quality and application-driven innovation. Source code, datasets, and model checkpoints are available at: https://github.com/instadeepai/InstaGeo-E2E-Geospatial-ML.git
Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data
Geospatial raster data, such as that collected by satellite-based imaging systems at different times and spectral bands, hold immense potential for enabling a wide range of high-impact applications. This potential stems from the rich information that is spatially and temporally contextualized across multiple channels and sensing modalities. Recent work has adapted existing self-supervised learning approaches for such geospatial data. However, they fall short of scalable model architectures, leading to inflexibility and computational inefficiencies when faced with an increasing number of channels and modalities. To address these limitations, we introduce Low-rank Efficient Spatial-Spectral Vision Transformer with three key innovations: i) the LESS Attention Block that approximates high-dimensional spatial-spectral attention through Kronecker's product of the low-dimensional spatial and spectral attention components; ii) the Continuous Positional-Channel Embedding Layer that preserves both the continuity and physical characteristics of each spatial-spectral patch; and iii) the Perception Field Mask that exploits local spatial dependencies by constraining attention to neighboring patches. To evaluate the proposed innovations, we construct GFM-Bench, which serves as a comprehensive benchmark for such geospatial raster data. We pretrain LESS ViT using a Hyperspectral Masked Autoencoder framework with integrated positional and channel masking strategies. Experimental results demonstrate that our proposed method achieves competitive performance against state-of-the-art multi-modal geospatial foundation models while outperforming them on cross-satellite generalization tasks with higher computational efficiency. The flexibility and extensibility of our framework make it a promising direction for future geospatial data analysis tasks that involve a wide range of modalities and channels.
AeroGen: Enhancing Remote Sensing Object Detection with Diffusion-Driven Data Generation
Remote sensing image object detection (RSIOD) aims to identify and locate specific objects within satellite or aerial imagery. However, there is a scarcity of labeled data in current RSIOD datasets, which significantly limits the performance of current detection algorithms. Although existing techniques, e.g., data augmentation and semi-supervised learning, can mitigate this scarcity issue to some extent, they are heavily dependent on high-quality labeled data and perform worse in rare object classes. To address this issue, this paper proposes a layout-controllable diffusion generative model (i.e. AeroGen) tailored for RSIOD. To our knowledge, AeroGen is the first model to simultaneously support horizontal and rotated bounding box condition generation, thus enabling the generation of high-quality synthetic images that meet specific layout and object category requirements. Additionally, we propose an end-to-end data augmentation framework that integrates a diversity-conditioned generator and a filtering mechanism to enhance both the diversity and quality of generated data. Experimental results demonstrate that the synthetic data produced by our method are of high quality and diversity. Furthermore, the synthetic RSIOD data can significantly improve the detection performance of existing RSIOD models, i.e., the mAP metrics on DIOR, DIOR-R, and HRSC datasets are improved by 3.7%, 4.3%, and 2.43%, respectively. The code is available at https://github.com/Sonettoo/AeroGen.
Improving satellite imagery segmentation using multiple Sentinel-2 revisits
In recent years, analysis of remote sensing data has benefited immensely from borrowing techniques from the broader field of computer vision, such as the use of shared models pre-trained on large and diverse datasets. However, satellite imagery has unique features that are not accounted for in traditional computer vision, such as the existence of multiple revisits of the same location. Here, we explore the best way to use revisits in the framework of fine-tuning pre-trained remote sensing models. We focus on an applied research question of relevance to climate change mitigation -- power substation segmentation -- that is representative of applied uses of pre-trained models more generally. Through extensive tests of different multi-temporal input schemes across diverse model architectures, we find that fusing representations from multiple revisits in the model latent space is superior to other methods of using revisits, including as a form of data augmentation. We also find that a SWIN Transformer-based architecture performs better than U-nets and ViT-based models. We verify the generality of our results on a separate building density estimation task.
A Multimodal Supervised Machine Learning Approach for Satellite-based Wildfire Identification in Europe
The increasing frequency of catastrophic natural events, such as wildfires, calls for the development of rapid and automated wildfire detection systems. In this paper, we propose a wildfire identification solution to improve the accuracy of automated satellite-based hotspot detection systems by leveraging multiple information sources. We cross-reference the thermal anomalies detected by the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) hotspot services with the European Forest Fire Information System (EFFIS) database to construct a large-scale hotspot dataset for wildfire-related studies in Europe. Then, we propose a novel multimodal supervised machine learning approach to disambiguate hotspot detections, distinguishing between wildfires and other events. Our methodology includes the use of multimodal data sources, such as the ERSI annual Land Use Land Cover (LULC) and the Copernicus Sentinel-3 data. Experimental results demonstrate the effectiveness of our approach in the task of wildfire identification.
Integrating Earth Observation Data into Causal Inference: Challenges and Opportunities
Observational studies require adjustment for confounding factors that are correlated with both the treatment and outcome. In the setting where the observed variables are tabular quantities such as average income in a neighborhood, tools have been developed for addressing such confounding. However, in many parts of the developing world, features about local communities may be scarce. In this context, satellite imagery can play an important role, serving as a proxy for the confounding variables otherwise unobserved. In this paper, we study confounder adjustment in this non-tabular setting, where patterns or objects found in satellite images contribute to the confounder bias. Using the evaluation of anti-poverty aid programs in Africa as our running example, we formalize the challenge of performing causal adjustment with such unstructured data -- what conditions are sufficient to identify causal effects, how to perform estimation, and how to quantify the ways in which certain aspects of the unstructured image object are most predictive of the treatment decision. Via simulation, we also explore the sensitivity of satellite image-based observational inference to image resolution and to misspecification of the image-associated confounder. Finally, we apply these tools in estimating the effect of anti-poverty interventions in African communities from satellite imagery.
Building Damage Annotation on Post-Hurricane Satellite Imagery Based on Convolutional Neural Networks
After a hurricane, damage assessment is critical to emergency managers for efficient response and resource allocation. One way to gauge the damage extent is to quantify the number of flooded/damaged buildings, which is traditionally done by ground survey. This process can be labor-intensive and time-consuming. In this paper, we propose to improve the efficiency of building damage assessment by applying image classification algorithms to post-hurricane satellite imagery. At the known building coordinates (available from public data), we extract square-sized images from the satellite imagery to create training, validation, and test datasets. Each square-sized image contains a building to be classified as either 'Flooded/Damaged' (labeled by volunteers in a crowd-sourcing project) or 'Undamaged'. We design and train a convolutional neural network from scratch and compare it with an existing neural network used widely for common object classification. We demonstrate the promise of our damage annotation model (over 97% accuracy) in the case study of building damage assessment in the Greater Houston area affected by 2017 Hurricane Harvey.
Delineate Anything: Resolution-Agnostic Field Boundary Delineation on Satellite Imagery
The accurate delineation of agricultural field boundaries from satellite imagery is vital for land management and crop monitoring. However, current methods face challenges due to limited dataset sizes, resolution discrepancies, and diverse environmental conditions. We address this by reformulating the task as instance segmentation and introducing the Field Boundary Instance Segmentation - 22M dataset (FBIS-22M), a large-scale, multi-resolution dataset comprising 672,909 high-resolution satellite image patches (ranging from 0.25 m to 10 m) and 22,926,427 instance masks of individual fields, significantly narrowing the gap between agricultural datasets and those in other computer vision domains. We further propose Delineate Anything, an instance segmentation model trained on our new FBIS-22M dataset. Our proposed model sets a new state-of-the-art, achieving a substantial improvement of 88.5% in [email protected] and 103% in [email protected]:0.95 over existing methods, while also demonstrating significantly faster inference and strong zero-shot generalization across diverse image resolutions and unseen geographic regions. Code, pre-trained models, and the FBIS-22M dataset are available at https://lavreniuk.github.io/Delineate-Anything.
DisasterM3: A Remote Sensing Vision-Language Dataset for Disaster Damage Assessment and Response
Large vision-language models (VLMs) have made great achievements in Earth vision. However, complex disaster scenes with diverse disaster types, geographic regions, and satellite sensors have posed new challenges for VLM applications. To fill this gap, we curate a remote sensing vision-language dataset (DisasterM3) for global-scale disaster assessment and response. DisasterM3 includes 26,988 bi-temporal satellite images and 123k instruction pairs across 5 continents, with three characteristics: 1) Multi-hazard: DisasterM3 involves 36 historical disaster events with significant impacts, which are categorized into 10 common natural and man-made disasters. 2)Multi-sensor: Extreme weather during disasters often hinders optical sensor imaging, making it necessary to combine Synthetic Aperture Radar (SAR) imagery for post-disaster scenes. 3) Multi-task: Based on real-world scenarios, DisasterM3 includes 9 disaster-related visual perception and reasoning tasks, harnessing the full potential of VLM's reasoning ability with progressing from disaster-bearing body recognition to structural damage assessment and object relational reasoning, culminating in the generation of long-form disaster reports. We extensively evaluated 14 generic and remote sensing VLMs on our benchmark, revealing that state-of-the-art models struggle with the disaster tasks, largely due to the lack of a disaster-specific corpus, cross-sensor gap, and damage object counting insensitivity. Focusing on these issues, we fine-tune four VLMs using our dataset and achieve stable improvements across all tasks, with robust cross-sensor and cross-disaster generalization capabilities.
Sat-DN: Implicit Surface Reconstruction from Multi-View Satellite Images with Depth and Normal Supervision
With advancements in satellite imaging technology, acquiring high-resolution multi-view satellite imagery has become increasingly accessible, enabling rapid and location-independent ground model reconstruction. However, traditional stereo matching methods struggle to capture fine details, and while neural radiance fields (NeRFs) achieve high-quality reconstructions, their training time is prohibitively long. Moreover, challenges such as low visibility of building facades, illumination and style differences between pixels, and weakly textured regions in satellite imagery further make it hard to reconstruct reasonable terrain geometry and detailed building facades. To address these issues, we propose Sat-DN, a novel framework leveraging a progressively trained multi-resolution hash grid reconstruction architecture with explicit depth guidance and surface normal consistency constraints to enhance reconstruction quality. The multi-resolution hash grid accelerates training, while the progressive strategy incrementally increases the learning frequency, using coarse low-frequency geometry to guide the reconstruction of fine high-frequency details. The depth and normal constraints ensure a clear building outline and correct planar distribution. Extensive experiments on the DFC2019 dataset demonstrate that Sat-DN outperforms existing methods, achieving state-of-the-art results in both qualitative and quantitative evaluations. The code is available at https://github.com/costune/SatDN.
GeoSynth: Contextually-Aware High-Resolution Satellite Image Synthesis
We present GeoSynth, a model for synthesizing satellite images with global style and image-driven layout control. The global style control is via textual prompts or geographic location. These enable the specification of scene semantics or regional appearance respectively, and can be used together. We train our model on a large dataset of paired satellite imagery, with automatically generated captions, and OpenStreetMap data. We evaluate various combinations of control inputs, including different types of layout controls. Results demonstrate that our model can generate diverse, high-quality images and exhibits excellent zero-shot generalization. The code and model checkpoints are available at https://github.com/mvrl/GeoSynth.
FlightScope: An Experimental Comparative Review of Aircraft Detection Algorithms in Satellite Imagery
Object detection in remotely sensed satellite pictures is fundamental in many fields such as biophysical, and environmental monitoring. While deep learning algorithms are constantly evolving, they have been mostly implemented and tested on popular ground-based taken photos. This paper critically evaluates and compares a suite of advanced object detection algorithms customized for the task of identifying aircraft within satellite imagery. Using the large HRPlanesV2 dataset, together with a rigorous validation with the GDIT dataset, this research encompasses an array of methodologies including YOLO versions 5 and 8, Faster RCNN, CenterNet, RetinaNet, RTMDet, and DETR, all trained from scratch. This exhaustive training and validation study reveal YOLOv5 as the preeminent model for the specific case of identifying airplanes from remote sensing data, showcasing high precision and adaptability across diverse imaging conditions. This research highlight the nuanced performance landscapes of these algorithms, with YOLOv5 emerging as a robust solution for aerial object detection, underlining its importance through superior mean average precision, Recall, and Intersection over Union scores. The findings described here underscore the fundamental role of algorithm selection aligned with the specific demands of satellite imagery analysis and extend a comprehensive framework to evaluate model efficacy. The benchmark toolkit and codes, available via https://github.com/toelt-llc/FlightScope_Bench, aims to further exploration and innovation in the realm of remote sensing object detection, paving the way for improved analytical methodologies in satellite imagery applications.
Starkiller: subtracting stars and other sources from IFU spectroscopic data through forward modeling
We present starkiller, an open-source Python package for forward-modeling flux retrieval from integral field unit spectrograph (IFU) datacubes. Starkiller simultaneously provides stellar spectral classification, relative velocity, and line-of-sight extinction for all sources in a catalog, alongside a source-subtracted datacube. It performs synthetic difference imaging by simulating all catalog sources in the field of view, using the catalog for positions and fluxes to scale stellar models, independent of the datacube. This differencing method is particularly powerful for subtracting both point-sources and trailed or even streaked sources from extended astronomical objects. We demonstrate starkiller's effectiveness in improving observations of extended sources in dense stellar fields for VLT/MUSE observations of comets, asteroids and nebulae. We also show that starkiller can treat satellite-impacted VLT/MUSE observations. The package could be applied to tasks as varied as dust extinction in clusters and stellar variability; the stellar modeling using Gaia fluxes is provided as a standalone function. The techniques can be expanded to imagers and to other IFUs.
DiffusionSat: A Generative Foundation Model for Satellite Imagery
Diffusion models have achieved state-of-the-art results on many modalities including images, speech, and video. However, existing models are not tailored to support remote sensing data, which is widely used in important applications including environmental monitoring and crop-yield prediction. Satellite images are significantly different from natural images -- they can be multi-spectral, irregularly sampled across time -- and existing diffusion models trained on images from the Web do not support them. Furthermore, remote sensing data is inherently spatio-temporal, requiring conditional generation tasks not supported by traditional methods based on captions or images. In this paper, we present DiffusionSat, to date the largest generative foundation model trained on a collection of publicly available large, high-resolution remote sensing datasets. As text-based captions are sparsely available for satellite images, we incorporate the associated metadata such as geolocation as conditioning information. Our method produces realistic samples and can be used to solve multiple generative tasks including temporal generation, superresolution given multi-spectral inputs and in-painting. Our method outperforms previous state-of-the-art methods for satellite image generation and is the first large-scale generative foundation model for satellite imagery.
Unfolding AIS transmission behavior for vessel movement modeling on noisy data leveraging machine learning
The oceans are a source of an impressive mixture of complex data that could be used to uncover relationships yet to be discovered. Such data comes from the oceans and their surface, such as Automatic Identification System (AIS) messages used for tracking vessels' trajectories. AIS messages are transmitted over radio or satellite at ideally periodic time intervals but vary irregularly over time. As such, this paper aims to model the AIS message transmission behavior through neural networks for forecasting upcoming AIS messages' content from multiple vessels, particularly in a simultaneous approach despite messages' temporal irregularities as outliers. We present a set of experiments comprising multiple algorithms for forecasting tasks with horizon sizes of varying lengths. Deep learning models (e.g., neural networks) revealed themselves to adequately preserve vessels' spatial awareness regardless of temporal irregularity. We show how convolutional layers, feed-forward networks, and recurrent neural networks can improve such tasks by working together. Experimenting with short, medium, and large-sized sequences of messages, our model achieved 36/37/38% of the Relative Percentage Difference - the lower, the better, whereas we observed 92/45/96% on the Elman's RNN, 51/52/40% on the GRU, and 129/98/61% on the LSTM. These results support our model as a driver for improving the prediction of vessel routes when analyzing multiple vessels of diverging types simultaneously under temporally noise data.
A Generalizable and Accessible Approach to Machine Learning with Global Satellite Imagery
Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibility and use. We show that a single encoding of satellite imagery can generalize across diverse prediction tasks (e.g. forest cover, house price, road length). Our method achieves accuracy competitive with deep neural networks at orders of magnitude lower computational cost, scales globally, delivers label super-resolution predictions, and facilitates characterizations of uncertainty. Since image encodings are shared across tasks, they can be centrally computed and distributed to unlimited researchers, who need only fit a linear regression to their own ground truth data in order to achieve state-of-the-art SIML performance.
AgriPotential: A Novel Multi-Spectral and Multi-Temporal Remote Sensing Dataset for Agricultural Potentials
Remote sensing has emerged as a critical tool for large-scale Earth monitoring and land management. In this paper, we introduce AgriPotential, a novel benchmark dataset composed of Sentinel-2 satellite imagery spanning multiple months. The dataset provides pixel-level annotations of agricultural potentials for three major crop types - viticulture, market gardening, and field crops - across five ordinal classes. AgriPotential supports a broad range of machine learning tasks, including ordinal regression, multi-label classification, and spatio-temporal modeling. The data covers diverse areas in Southern France, offering rich spectral information. AgriPotential is the first public dataset designed specifically for agricultural potential prediction, aiming to improve data-driven approaches to sustainable land use planning. The dataset and the code are freely accessible at: https://zenodo.org/records/15556484
LISAT: Language-Instructed Segmentation Assistant for Satellite Imagery
Segmentation models can recognize a pre-defined set of objects in images. However, models that can reason over complex user queries that implicitly refer to multiple objects of interest are still in their infancy. Recent advances in reasoning segmentation--generating segmentation masks from complex, implicit query text--demonstrate that vision-language models can operate across an open domain and produce reasonable outputs. However, our experiments show that such models struggle with complex remote-sensing imagery. In this work, we introduce LISAt, a vision-language model designed to describe complex remote-sensing scenes, answer questions about them, and segment objects of interest. We trained LISAt on a new curated geospatial reasoning-segmentation dataset, GRES, with 27,615 annotations over 9,205 images, and a multimodal pretraining dataset, PreGRES, containing over 1 million question-answer pairs. LISAt outperforms existing geospatial foundation models such as RS-GPT4V by over 10.04 % (BLEU-4) on remote-sensing description tasks, and surpasses state-of-the-art open-domain models on reasoning segmentation tasks by 143.36 % (gIoU). Our model, datasets, and code are available at https://lisat-bair.github.io/LISAt/
Plantation Monitoring Using Drone Images: A Dataset and Performance Review
Automatic monitoring of tree plantations plays a crucial role in agriculture. Flawless monitoring of tree health helps farmers make informed decisions regarding their management by taking appropriate action. Use of drone images for automatic plantation monitoring can enhance the accuracy of the monitoring process, while still being affordable to small farmers in developing countries such as India. Small, low cost drones equipped with an RGB camera can capture high-resolution images of agricultural fields, allowing for detailed analysis of the well-being of the plantations. Existing methods of automated plantation monitoring are mostly based on satellite images, which are difficult to get for the farmers. We propose an automated system for plantation health monitoring using drone images, which are becoming easier to get for the farmers. We propose a dataset of images of trees with three categories: ``Good health", ``Stunted", and ``Dead". We annotate the dataset using CVAT annotation tool, for use in research purposes. We experiment with different well-known CNN models to observe their performance on the proposed dataset. The initial low accuracy levels show the complexity of the proposed dataset. Further, our study revealed that, depth-wise convolution operation embedded in a deep CNN model, can enhance the performance of the model on drone dataset. Further, we apply state-of-the-art object detection models to identify individual trees to better monitor them automatically.
FUSU: A Multi-temporal-source Land Use Change Segmentation Dataset for Fine-grained Urban Semantic Understanding
Fine urban change segmentation using multi-temporal remote sensing images is essential for understanding human-environment interactions in urban areas. Although there have been advances in high-quality land cover datasets that reveal the physical features of urban landscapes, the lack of fine-grained land use datasets hinders a deeper understanding of how human activities are distributed across the landscape and the impact of these activities on the environment, thus constraining proper technique development. To address this, we introduce FUSU, the first fine-grained land use change segmentation dataset for Fine-grained Urban Semantic Understanding. FUSU features the most detailed land use classification system to date, with 17 classes and 30 billion pixels of annotations. It includes bi-temporal high-resolution satellite images with 0.2-0.5 m ground sample distance and monthly optical and radar satellite time series, covering 847 km^2 across five urban areas in the southern and northern of China with different geographical features. The fine-grained land use pixel-wise annotations and high spatial-temporal resolution data provide a robust foundation for developing proper deep learning models to provide contextual insights on human activities and urbanization. To fully leverage FUSU, we propose a unified time-series architecture for both change detection and segmentation. We benchmark FUSU on various methods for several tasks. Dataset and code are available at: https://github.com/yuanshuai0914/FUSU.
Detecting Cloud Presence in Satellite Images Using the RGB-based CLIP Vision-Language Model
This work explores capabilities of the pre-trained CLIP vision-language model to identify satellite images affected by clouds. Several approaches to using the model to perform cloud presence detection are proposed and evaluated, including a purely zero-shot operation with text prompts and several fine-tuning approaches. Furthermore, the transferability of the methods across different datasets and sensor types (Sentinel-2 and Landsat-8) is tested. The results that CLIP can achieve non-trivial performance on the cloud presence detection task with apparent capability to generalise across sensing modalities and sensing bands. It is also found that a low-cost fine-tuning stage leads to a strong increase in true negative rate. The results demonstrate that the representations learned by the CLIP model can be useful for satellite image processing tasks involving clouds.
FloodNet: A High Resolution Aerial Imagery Dataset for Post Flood Scene Understanding
Visual scene understanding is the core task in making any crucial decision in any computer vision system. Although popular computer vision datasets like Cityscapes, MS-COCO, PASCAL provide good benchmarks for several tasks (e.g. image classification, segmentation, object detection), these datasets are hardly suitable for post disaster damage assessments. On the other hand, existing natural disaster datasets include mainly satellite imagery which have low spatial resolution and a high revisit period. Therefore, they do not have a scope to provide quick and efficient damage assessment tasks. Unmanned Aerial Vehicle(UAV) can effortlessly access difficult places during any disaster and collect high resolution imagery that is required for aforementioned tasks of computer vision. To address these issues we present a high resolution UAV imagery, FloodNet, captured after the hurricane Harvey. This dataset demonstrates the post flooded damages of the affected areas. The images are labeled pixel-wise for semantic segmentation task and questions are produced for the task of visual question answering. FloodNet poses several challenges including detection of flooded roads and buildings and distinguishing between natural water and flooded water. With the advancement of deep learning algorithms, we can analyze the impact of any disaster which can make a precise understanding of the affected areas. In this paper, we compare and contrast the performances of baseline methods for image classification, semantic segmentation, and visual question answering on our dataset.
SIO-Mapper: A Framework for Lane-Level HD Map Construction Using Satellite Images and OpenStreetMap with No On-Site Visits
High-definition (HD) maps, particularly those containing lane-level information regarded as ground truth, are crucial for vehicle localization research. Traditionally, constructing HD maps requires highly accurate sensor measurements collection from the target area, followed by manual annotation to assign semantic information. Consequently, HD maps are limited in terms of geographic coverage. To tackle this problem, in this paper, we propose SIO-Mapper, a novel lane-level HD map construction framework that constructs city-scale maps without physical site visits by utilizing satellite images and OpenStreetmap data. One of the key contributions of SIO-Mapper is its ability to extract lane information more accurately by introducing SIO-Net, a novel deep learning network that integrates features from satellite image and OpenStreetmap using both Transformer-based and convolution-based encoders. Furthermore, to overcome challenges in merging lanes over large areas, we introduce a novel lane integration methodology that combines cluster-based and graph-based approaches. This algorithm ensures the seamless aggregation of lane segments with high accuracy and coverage, even in complex road environments. We validated SIO-Mapper on the Naver Labs Open Dataset and NuScenes dataset, demonstrating better performance in various environments including Korea, the United States, and Singapore compared to the state-of-the-art lane-level HD mapconstruction methods.
NightVision: Generating Nighttime Satellite Imagery from Infra-Red Observations
The recent explosion in applications of machine learning to satellite imagery often rely on visible images and therefore suffer from a lack of data during the night. The gap can be filled by employing available infra-red observations to generate visible images. This work presents how deep learning can be applied successfully to create those images by using U-Net based architectures. The proposed methods show promising results, achieving a structural similarity index (SSIM) up to 86\% on an independent test set and providing visually convincing output images, generated from infra-red observations.
Precipitation Nowcasting with Satellite Imagery
Precipitation nowcasting is a short-range forecast of rain/snow (up to 2 hours), often displayed on top of the geographical map by the weather service. Modern precipitation nowcasting algorithms rely on the extrapolation of observations by ground-based radars via optical flow techniques or neural network models. Dependent on these radars, typical nowcasting is limited to the regions around their locations. We have developed a method for precipitation nowcasting based on geostationary satellite imagery and incorporated the resulting data into the Yandex.Weather precipitation map (including an alerting service with push notifications for products in the Yandex ecosystem), thus expanding its coverage and paving the way to a truly global nowcasting service.
WeatherFormer: A Pretrained Encoder Model for Learning Robust Weather Representations from Small Datasets
This paper introduces WeatherFormer, a transformer encoder-based model designed to learn robust weather features from minimal observations. It addresses the challenge of modeling complex weather dynamics from small datasets, a bottleneck for many prediction tasks in agriculture, epidemiology, and climate science. WeatherFormer was pretrained on a large pretraining dataset comprised of 39 years of satellite measurements across the Americas. With a novel pretraining task and fine-tuning, WeatherFormer achieves state-of-the-art performance in county-level soybean yield prediction and influenza forecasting. Technical innovations include a unique spatiotemporal encoding that captures geographical, annual, and seasonal variations, adapting the transformer architecture to continuous weather data, and a pretraining strategy to learn representations that are robust to missing weather features. This paper for the first time demonstrates the effectiveness of pretraining large transformer encoder models for weather-dependent applications across multiple domains.
A Pipeline and NIR-Enhanced Dataset for Parking Lot Segmentation
Discussions of minimum parking requirement policies often include maps of parking lots, which are time consuming to construct manually. Open source datasets for such parking lots are scarce, particularly for US cities. This paper introduces the idea of using Near-Infrared (NIR) channels as input and several post-processing techniques to improve the prediction of off-street surface parking lots using satellite imagery. We constructed two datasets with 12,617 image-mask pairs each: one with 3-channel (RGB) and another with 4-channel (RGB + NIR). The datasets were used to train five deep learning models (OneFormer, Mask2Former, SegFormer, DeepLabV3, and FCN) for semantic segmentation, classifying images to differentiate between parking and non-parking pixels. Our results demonstrate that the NIR channel improved accuracy because parking lots are often surrounded by grass, even though the NIR channel needed to be upsampled from a lower resolution. Post-processing including eliminating erroneous holes, simplifying edges, and removing road and building footprints further improved the accuracy. Best model, OneFormer trained on 4-channel input and paired with post-processing techniques achieves a mean Intersection over Union (mIoU) of 84.9 percent and a pixel-wise accuracy of 96.3 percent.
GeoPlant: Spatial Plant Species Prediction Dataset
The difficulty of monitoring biodiversity at fine scales and over large areas limits ecological knowledge and conservation efforts. To fill this gap, Species Distribution Models (SDMs) predict species across space from spatially explicit features. Yet, they face the challenge of integrating the rich but heterogeneous data made available over the past decade, notably millions of opportunistic species observations and standardized surveys, as well as multi-modal remote sensing data. In light of that, we have designed and developed a new European-scale dataset for SDMs at high spatial resolution (10-50 m), including more than 10k species (i.e., most of the European flora). The dataset comprises 5M heterogeneous Presence-Only records and 90k exhaustive Presence-Absence survey records, all accompanied by diverse environmental rasters (e.g., elevation, human footprint, and soil) that are traditionally used in SDMs. In addition, it provides Sentinel-2 RGB and NIR satellite images with 10 m resolution, a 20-year time-series of climatic variables, and satellite time-series from the Landsat program. In addition to the data, we provide an openly accessible SDM benchmark (hosted on Kaggle), which has already attracted an active community and a set of strong baselines for single predictor/modality and multimodal approaches. All resources, e.g., the dataset, pre-trained models, and baseline methods (in the form of notebooks), are available on Kaggle, allowing one to start with our dataset literally with two mouse clicks.
CRASAR-U-DROIDs: A Large Scale Benchmark Dataset for Building Alignment and Damage Assessment in Georectified sUAS Imagery
This document presents the Center for Robot Assisted Search And Rescue - Uncrewed Aerial Systems - Disaster Response Overhead Inspection Dataset (CRASAR-U-DROIDs) for building damage assessment and spatial alignment collected from small uncrewed aerial systems (sUAS) geospatial imagery. This dataset is motivated by the increasing use of sUAS in disaster response and the lack of previous work in utilizing high-resolution geospatial sUAS imagery for machine learning and computer vision models, the lack of alignment with operational use cases, and with hopes of enabling further investigations between sUAS and satellite imagery. The CRASAR-U-DRIODs dataset consists of fifty-two (52) orthomosaics from ten (10) federally declared disasters (Hurricane Ian, Hurricane Ida, Hurricane Harvey, Hurricane Idalia, Hurricane Laura, Hurricane Michael, Musset Bayou Fire, Mayfield Tornado, Kilauea Eruption, and Champlain Towers Collapse) spanning 67.98 square kilometers (26.245 square miles), containing 21,716 building polygons and damage labels, and 7,880 adjustment annotations. The imagery was tiled and presented in conjunction with overlaid building polygons to a pool of 130 annotators who provided human judgments of damage according to the Joint Damage Scale. These annotations were then reviewed via a two-stage review process in which building polygon damage labels were first reviewed individually and then again by committee. Additionally, the building polygons have been aligned spatially to precisely overlap with the imagery to enable more performant machine learning models to be trained. It appears that CRASAR-U-DRIODs is the largest labeled dataset of sUAS orthomosaic imagery.
Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks
Unprecedented access to multi-temporal satellite imagery has opened new perspectives for a variety of Earth observation tasks. Among them, pixel-precise panoptic segmentation of agricultural parcels has major economic and environmental implications. While researchers have explored this problem for single images, we argue that the complex temporal patterns of crop phenology are better addressed with temporal sequences of images. In this paper, we present the first end-to-end, single-stage method for panoptic segmentation of Satellite Image Time Series (SITS). This module can be combined with our novel image sequence encoding network which relies on temporal self-attention to extract rich and adaptive multi-scale spatio-temporal features. We also introduce PASTIS, the first open-access SITS dataset with panoptic annotations. We demonstrate the superiority of our encoder for semantic segmentation against multiple competing architectures, and set up the first state-of-the-art of panoptic segmentation of SITS. Our implementation and PASTIS are publicly available.
