Update README.md
Browse files
README.md
CHANGED
|
@@ -12,31 +12,24 @@ widget:
|
|
| 12 |
example_title: Airport
|
| 13 |
---
|
| 14 |
|
| 15 |
-
|
| 16 |
# The Illustrated Image Captioning using transformers
|
| 17 |
|
| 18 |

|
| 19 |
|
| 20 |
-
|
| 21 |
|
| 22 |
|
| 23 |
# Sample running code
|
| 24 |
|
| 25 |
```python
|
| 26 |
-
|
| 27 |
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
| 28 |
import torch
|
| 29 |
from PIL import Image
|
| 30 |
-
|
| 31 |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 32 |
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 33 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 34 |
-
|
| 35 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 36 |
model.to(device)
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
max_length = 16
|
| 41 |
num_beams = 4
|
| 42 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
|
@@ -46,36 +39,21 @@ def predict_step(image_paths):
|
|
| 46 |
i_image = Image.open(image_path)
|
| 47 |
if i_image.mode != "RGB":
|
| 48 |
i_image = i_image.convert(mode="RGB")
|
| 49 |
-
|
| 50 |
images.append(i_image)
|
| 51 |
-
|
| 52 |
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
|
| 53 |
pixel_values = pixel_values.to(device)
|
| 54 |
-
|
| 55 |
output_ids = model.generate(pixel_values, **gen_kwargs)
|
| 56 |
-
|
| 57 |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 58 |
preds = [pred.strip() for pred in preds]
|
| 59 |
return preds
|
| 60 |
-
|
| 61 |
-
|
| 62 |
predict_step(['doctor.e16ba4e4.jpg']) # ['a woman in a hospital bed with a woman in a hospital bed']
|
| 63 |
-
|
| 64 |
```
|
| 65 |
|
| 66 |
# Sample running code using transformers pipeline
|
| 67 |
|
| 68 |
```python
|
| 69 |
-
|
| 70 |
from transformers import pipeline
|
| 71 |
-
|
| 72 |
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
| 73 |
-
|
| 74 |
image_to_text("https://ankur3107.github.io/assets/images/image-captioning-example.png")
|
| 75 |
-
|
| 76 |
# [{'generated_text': 'a soccer game with a player jumping to catch the ball '}]
|
| 77 |
-
|
| 78 |
-
|
| 79 |
```
|
| 80 |
-
|
| 81 |
-
|
|
|
|
| 12 |
example_title: Airport
|
| 13 |
---
|
| 14 |
|
|
|
|
| 15 |
# The Illustrated Image Captioning using transformers
|
| 16 |
|
| 17 |

|
| 18 |
|
| 19 |
+
* https://ankur3107.github.io/blogs/the-illustrated-image-captioning-using-transformers/
|
| 20 |
|
| 21 |
|
| 22 |
# Sample running code
|
| 23 |
|
| 24 |
```python
|
|
|
|
| 25 |
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
| 26 |
import torch
|
| 27 |
from PIL import Image
|
|
|
|
| 28 |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 29 |
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 30 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
|
|
|
| 31 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 32 |
model.to(device)
|
|
|
|
|
|
|
|
|
|
| 33 |
max_length = 16
|
| 34 |
num_beams = 4
|
| 35 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
|
|
|
| 39 |
i_image = Image.open(image_path)
|
| 40 |
if i_image.mode != "RGB":
|
| 41 |
i_image = i_image.convert(mode="RGB")
|
|
|
|
| 42 |
images.append(i_image)
|
|
|
|
| 43 |
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
|
| 44 |
pixel_values = pixel_values.to(device)
|
|
|
|
| 45 |
output_ids = model.generate(pixel_values, **gen_kwargs)
|
|
|
|
| 46 |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 47 |
preds = [pred.strip() for pred in preds]
|
| 48 |
return preds
|
|
|
|
|
|
|
| 49 |
predict_step(['doctor.e16ba4e4.jpg']) # ['a woman in a hospital bed with a woman in a hospital bed']
|
|
|
|
| 50 |
```
|
| 51 |
|
| 52 |
# Sample running code using transformers pipeline
|
| 53 |
|
| 54 |
```python
|
|
|
|
| 55 |
from transformers import pipeline
|
|
|
|
| 56 |
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
|
|
|
| 57 |
image_to_text("https://ankur3107.github.io/assets/images/image-captioning-example.png")
|
|
|
|
| 58 |
# [{'generated_text': 'a soccer game with a player jumping to catch the ball '}]
|
|
|
|
|
|
|
| 59 |
```
|
|
|
|
|
|