File size: 7,460 Bytes
dff8d35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "db17f2cd",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/rameyjm7/workspace/TML/lpu/llm-preference-unlearning/lpu-env/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"`torch_dtype` is deprecated! Use `dtype` instead!\n",
"Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:01<00:00, 1.08it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[INFO] Loaded Qwen/Qwen2.5-3B-Instruct on cuda with 36 transformer layers.\n",
"[INFO] Saved activations for prompt 1: 36 layers Γ 2 versions (full & pooled)\n",
"[INFO] Saved activations for prompt 2: 36 layers Γ 2 versions (full & pooled)\n",
"[INFO] Saved activations for prompt 3: 36 layers Γ 2 versions (full & pooled)\n",
"[INFO] Saved activations for prompt 4: 36 layers Γ 2 versions (full & pooled)\n",
"[INFO] Saved activations for prompt 5: 36 layers Γ 2 versions (full & pooled)\n",
"[INFO] Activation extraction complete β activations/\n"
]
},
{
"ename": "",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
]
}
],
"source": [
"#!/usr/bin/env python3\n",
"\"\"\"\n",
"activation_probe_detailed.py β Phase 3.1β3.2 (Final)\n",
"Captures both full token-wise and mean-pooled activations\n",
"from all transformer layers of Qwen2.5-3B-Instruct.\n",
"\n",
"Output structure:\n",
"activations/\n",
" ββ prompt01/\n",
" β ββ layer00_full.npy\n",
" β ββ layer00_pooled.npy\n",
" β ββ ...\n",
" β ββ layer35_pooled.npy\n",
" ββ prompt02/\n",
" β ββ ...\n",
"\"\"\"\n",
"import os\n",
"import json\n",
"import torch\n",
"import numpy as np\n",
"from datetime import datetime\n",
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
"\n",
"\n",
"# ---------------------------------------------------------------------\n",
"# 1. Model Loading\n",
"# ---------------------------------------------------------------------\n",
"def load_model(model_name=\"Qwen/Qwen2.5-3B-Instruct\"):\n",
" device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
" tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
" model = AutoModelForCausalLM.from_pretrained(\n",
" model_name,\n",
" torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,\n",
" device_map=\"auto\"\n",
" )\n",
" model.eval()\n",
" n_layers = len(model.model.layers)\n",
" print(f\"[INFO] Loaded {model_name} on {device} with {n_layers} transformer layers.\")\n",
" return model, tokenizer, device, n_layers\n",
"\n",
"\n",
"# ---------------------------------------------------------------------\n",
"# 2. Hook registration (safe)\n",
"# ---------------------------------------------------------------------\n",
"def register_hooks(model, store):\n",
" \"\"\"Attach forward hooks that safely copy activations to CPU.\"\"\"\n",
" handles = []\n",
" for idx, layer in enumerate(model.model.layers):\n",
" def hook_fn(module, inp, out, layer_idx=idx):\n",
" store[layer_idx] = out[0].detach().cpu()\n",
" handles.append(layer.register_forward_hook(hook_fn))\n",
" return handles\n",
"\n",
"\n",
"# ---------------------------------------------------------------------\n",
"# 3. Activation Capture\n",
"# ---------------------------------------------------------------------\n",
"def capture_activations(model, tokenizer, device, prompts, save_dir=\"activations\"):\n",
" os.makedirs(save_dir, exist_ok=True)\n",
" store = {}\n",
" hooks = register_hooks(model, store)\n",
"\n",
" with torch.no_grad():\n",
" for i, prompt in enumerate(prompts, start=1):\n",
" store.clear()\n",
" inputs = tokenizer(prompt, return_tensors=\"pt\").to(device)\n",
" _ = model(**inputs)\n",
"\n",
" prompt_dir = os.path.join(save_dir, f\"prompt{i:02d}\")\n",
" os.makedirs(prompt_dir, exist_ok=True)\n",
"\n",
" for layer_idx, tensor in store.items():\n",
" # Save full token activations: (seq_len, hidden_dim)\n",
" full = tensor.squeeze(0).cpu().numpy()\n",
" np.save(f\"{prompt_dir}/layer{layer_idx:02d}_full.npy\", full)\n",
"\n",
" # Save mean-pooled activations: (hidden_dim,)\n",
" pooled = full.mean(axis=0)\n",
" np.save(f\"{prompt_dir}/layer{layer_idx:02d}_pooled.npy\", pooled)\n",
"\n",
" print(f\"[INFO] Saved activations for prompt {i}: \"\n",
" f\"{len(store)} layers Γ 2 versions (full & pooled)\")\n",
"\n",
" # Remove hooks after all prompts processed\n",
" for h in hooks:\n",
" h.remove()\n",
"\n",
" print(f\"[INFO] Activation extraction complete β {save_dir}/\")\n",
"\n",
"\n",
"# ---------------------------------------------------------------------\n",
"# 4. Main Entry\n",
"# ---------------------------------------------------------------------\n",
"def main():\n",
" # Load latest recommender JSON log\n",
" log_dir = \"logs\"\n",
" log_files = sorted([\n",
" f for f in os.listdir(log_dir)\n",
" if f.startswith(\"recommender_\") and f.endswith(\".json\")\n",
" ])\n",
" if not log_files:\n",
" raise FileNotFoundError(\"No recommender_*.json log found.\")\n",
" latest_log = os.path.join(log_dir, log_files[-1])\n",
"\n",
" with open(latest_log, \"r\", encoding=\"utf-8\") as f:\n",
" data = json.load(f)\n",
" prompts = [r[\"question\"] for r in data[\"records\"]]\n",
"\n",
" model, tokenizer, device, n_layers = load_model()\n",
" capture_activations(model, tokenizer, device, prompts)\n",
"\n",
"\n",
"if __name__ == \"__main__\":\n",
" main()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "lpu-env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.18"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|