File size: 16,338 Bytes
9b3d9a0
95bbd6d
4bcc686
78f9096
4bcc686
6524787
78f9096
 
 
ef144b9
4bcc686
78f9096
 
6524787
ef144b9
78f9096
ef144b9
78f9096
4bcc686
e521f8a
6524787
7a5eb22
e521f8a
960fabc
7a5eb22
 
e521f8a
 
95bbd6d
 
ef144b9
 
 
 
 
 
4bcc686
 
ef144b9
95bbd6d
36baf26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95bbd6d
 
7a5eb22
71845c1
7a5eb22
 
 
4bcc686
7a5eb22
95bbd6d
4bcc686
95bbd6d
 
4bcc686
95bbd6d
4bcc686
7a5eb22
 
 
36baf26
95bbd6d
36baf26
 
7a5eb22
 
95bbd6d
4bcc686
95bbd6d
 
 
7a5eb22
95bbd6d
95cc7e5
 
4bcc686
e521f8a
4bcc686
e521f8a
4bcc686
e521f8a
4bcc686
7a5eb22
4bcc686
 
 
 
 
95bbd6d
4bcc686
 
e521f8a
95bbd6d
ef144b9
4bcc686
ef144b9
4bcc686
ef144b9
 
56c4a12
ef144b9
 
 
 
 
 
 
 
2b1b1b6
ef144b9
 
 
 
 
 
 
 
 
 
 
4bcc686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b1b1b6
4bcc686
 
 
 
 
56c4a12
 
 
 
 
 
 
 
 
 
 
4bcc686
 
 
 
 
 
 
 
 
a2fac34
 
 
 
 
 
 
 
 
4bcc686
a2fac34
 
 
 
 
 
4bcc686
 
ef144b9
4bcc686
ef144b9
c921174
ef144b9
 
56c4a12
 
ef144b9
 
 
4bcc686
a2fac34
 
 
c921174
a2fac34
 
 
c921174
 
 
 
a2fac34
 
 
 
 
 
 
 
 
36baf26
4bcc686
ef144b9
 
36baf26
ef144b9
 
 
 
 
 
36baf26
a2fac34
 
 
4bcc686
 
 
 
56c4a12
a2fac34
 
 
 
 
 
 
56c4a12
a2fac34
 
56c4a12
a2fac34
 
 
 
 
 
 
 
 
 
56c4a12
 
 
 
 
ef144b9
36baf26
ef144b9
 
56c4a12
2b1b1b6
 
 
56c4a12
2b1b1b6
 
 
 
 
56c4a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2fac34
c921174
a2fac34
 
 
 
 
 
56c4a12
ef144b9
 
 
2b1b1b6
 
 
ef144b9
a2fac34
 
56c4a12
 
ef144b9
4bcc686
ef144b9
4bcc686
ef144b9
 
 
4bcc686
ef144b9
4bcc686
 
 
ef144b9
 
 
56c4a12
 
ef144b9
95bbd6d
ef144b9
 
 
95bbd6d
7a5eb22
95bbd6d
36baf26
ef144b9
95bbd6d
7a5eb22
a2fac34
 
 
 
f32805f
a2fac34
 
 
 
c921174
a2fac34
 
95bbd6d
c921174
 
 
 
 
 
 
 
 
 
 
 
95bbd6d
 
4bcc686
2b1b1b6
 
 
95bbd6d
56c4a12
 
 
 
a2fac34
 
 
 
56c4a12
 
 
 
 
 
95bbd6d
7a5eb22
95bbd6d
c921174
56c4a12
95bbd6d
95cc7e5
 
95bbd6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import os
import sys
import traceback
from pathlib import Path
from typing import List, Tuple, Any

import duckdb
import pandas as pd
import numpy as np
import matplotlib
matplotlib.use("Agg")  # headless for Spaces
import matplotlib.pyplot as plt
import gradio as gr

# =========================
# Basic configuration
# =========================
APP_TITLE = "ALCO Liquidity & Interest-Rate Risk Dashboard"
TABLE_FQN = "my_db.main.masterdataset_v"   # source table
VIEW_FQN = "my_db.main.positions_v"        # normalized view created by this app

PRODUCT_ASSETS = [
    "loan", "overdraft", "advances", "bills", "bill",
    "tbond", "t-bond", "tbill", "t-bill", "repo_asset", "assets"
]
PRODUCT_SOF = [
    "fd", "term_deposit", "td", "savings", "current",
    "call", "repo_liab"
]

# =========================
# Helpers
# =========================
def connect_md() -> duckdb.DuckDBPyConnection:
    token = os.environ.get("MOTHERDUCK_TOKEN", "")
    if not token:
        raise RuntimeError("MOTHERDUCK_TOKEN is not set. Add it in Space β†’ Settings β†’ Secrets.")
    return duckdb.connect(f"md:?motherduck_token={token}")

def discover_columns(conn: duckdb.DuckDBPyConnection, table_fqn: str) -> List[str]:
    # Try DESCRIBE first (fast), fall back to information_schema
    try:
        df = conn.execute(f"DESCRIBE {table_fqn};").fetchdf()
        name_col = "column_name" if "column_name" in df.columns else df.columns[0]
        return [str(c).lower() for c in df[name_col].tolist()]
    except Exception:
        df = conn.execute(
            f"""
            SELECT lower(column_name) AS col
            FROM information_schema.columns
            WHERE table_catalog = split_part('{table_fqn}', '.', 1)
              AND table_schema  = split_part('{table_fqn}', '.', 2)
              AND table_name    = split_part('{table_fqn}', '.', 3)
            """
        ).fetchdf()
        return df["col"].tolist()

def build_view_sql(existing_cols: List[str]) -> str:
    wanted = [
        "as_of_date", "product", "months", "segments",
        "currency", "Portfolio_value", "Interest_rate",
        "days_to_maturity"
    ]
    sel = []
    for c in wanted:
        if c.lower() in existing_cols:
            sel.append(c)
        else:
            if c in ("Portfolio_value", "Interest_rate", "days_to_maturity", "months"):
                sel.append(f"CAST(NULL AS DOUBLE) AS {c}")
            else:
                sel.append(f"CAST(NULL AS VARCHAR) AS {c}")

    sof_list = ", ".join([f"'{p}'" for p in PRODUCT_SOF])
    asset_list = ", ".join([f"'{p}'" for p in PRODUCT_ASSETS])

    bucket_case = (
        f"CASE "
        f"WHEN lower(product) IN ({sof_list}) THEN 'SoF' "
        f"WHEN lower(product) IN ({asset_list}) THEN 'Assets' "
        f"ELSE 'Unknown' END AS bucket"
    )
    select_sql = ",\n  ".join(sel + [bucket_case])
    return f"""
    CREATE OR REPLACE VIEW {VIEW_FQN} AS
    SELECT
      {select_sql}
    FROM {TABLE_FQN};
    """

def ensure_view(conn: duckdb.DuckDBPyConnection, cols: List[str]) -> None:
    required = {"product", "portfolio_value", "days_to_maturity"}
    if not required.issubset(set(cols)):
        raise RuntimeError(
            f"Source table {TABLE_FQN} must contain columns {sorted(required)}; found {sorted(cols)}"
        )
    conn.execute(build_view_sql(cols))

def safe_num(x) -> float:
    try:
        return float(0.0 if x is None or (isinstance(x, float) and np.isnan(x)) else x)
    except Exception:
        return 0.0

def zeros_like_index(index) -> pd.Series:
    return pd.Series([0] * len(index), index=index)

def plot_ladder(df: pd.DataFrame):
    try:
        if df is None or df.empty:
            fig, ax = plt.subplots(figsize=(7, 3))
            ax.text(0.5, 0.5, "No data", ha="center", va="center")
            ax.axis("off")
            return fig
        pivot = df.pivot(index="time_bucket", columns="bucket", values="Amount (LKR Mn)").fillna(0)
        order = ["T+1", "T+2..7", "T+8..30", "T+31+"]
        pivot = pivot.reindex(order)
        fig, ax = plt.subplots(figsize=(7, 4))
        assets = pivot["Assets"] if "Assets" in pivot.columns else zeros_like_index(pivot.index)
        sof = pivot["SoF"] if "SoF" in pivot.columns else zeros_like_index(pivot.index)
        ax.bar(pivot.index, assets, label="Assets")
        ax.bar(pivot.index, -sof, label="SoF")
        ax.axhline(0, color="gray", lw=1)
        ax.set_ylabel("LKR (Mn)")
        ax.set_title("Maturity Ladder (Assets vs SoF)")
        ax.legend()
        fig.tight_layout()
        return fig
    except Exception as e:
        fig, ax = plt.subplots(figsize=(7, 3))
        ax.text(0.01, 0.8, "Chart Error:", fontsize=12, ha="left")
        ax.text(0.01, 0.5, str(e), fontsize=10, ha="left", wrap=True)
        ax.axis("off")
        return fig

# =========================
# Query fragments
# =========================
KPI_SQL = f"""
SELECT
  COALESCE(SUM(CASE WHEN bucket='Assets' AND days_to_maturity<=1 THEN Portfolio_value END),0) AS assets_t1,
  COALESCE(SUM(CASE WHEN bucket='SoF'    AND days_to_maturity<=1 THEN Portfolio_value END),0) AS sof_t1,
  COALESCE(SUM(CASE WHEN bucket='Assets' AND days_to_maturity<=1 THEN Portfolio_value END),0)
  - COALESCE(SUM(CASE WHEN bucket='SoF'  AND days_to_maturity<=1 THEN Portfolio_value END),0) AS net_gap_t1
FROM {VIEW_FQN};
"""

LADDER_SQL = f"""
SELECT
  CASE
    WHEN days_to_maturity <= 1 THEN 'T+1'
    WHEN days_to_maturity BETWEEN 2 AND 7 THEN 'T+2..7'
    WHEN days_to_maturity BETWEEN 8 AND 30 THEN 'T+8..30'
    ELSE 'T+31+'
  END AS time_bucket,
  bucket,
  SUM(Portfolio_value) / 1000000.0 AS "Amount (LKR Mn)"
FROM {VIEW_FQN}
GROUP BY 1,2
ORDER BY 1,2;
"""

GAP_DRIVERS_SQL = f"""
SELECT
  product,
  bucket,
  SUM(Portfolio_value) / 1000000.0 AS "Amount (LKR Mn)"
FROM {VIEW_FQN}
WHERE days_to_maturity <= 1
GROUP BY 1, 2
ORDER BY 3 DESC;
"""

def irr_sql(cols: List[str]) -> str:
    has_months = "months" in cols
    has_ir = "interest_rate" in cols
    t_expr = "CASE WHEN days_to_maturity IS NOT NULL THEN days_to_maturity/365.0"
    if has_months:
        t_expr += " WHEN months IS NOT NULL THEN months/12.0"
    t_expr += " ELSE NULL END"
    y_expr = "(Interest_rate/100.0)" if has_ir else "0.0"
    return f"""
    WITH irr_calcs AS (
        SELECT
            bucket,
            Portfolio_value AS pv,
            -- Modified Duration = Macaulay Duration / (1 + yield)
            -- We approximate Macaulay Duration with time-to-maturity in years (t_expr)
            ({t_expr}) / (1 + {y_expr}) AS mod_dur
        FROM {VIEW_FQN}
    )
    SELECT
        bucket,
        SUM(pv) / 1000000.0 AS "Portfolio Value (LKR Mn)",
        -- BPV (DV01) = SUM(Portfolio Value * Modified Duration * 0.0001)
        SUM(pv * mod_dur * 0.0001) AS "BPV (DV01)"
    FROM irr_calcs
    GROUP BY bucket;
    """

# =========================
# Dashboard callback
# =========================
def run_dashboard(scenario: str, runoff_pct: float, rate_shock_bps_input: float) -> Tuple[str, str, str, str, str, Any, pd.DataFrame, pd.DataFrame, str, pd.DataFrame]:
    """
    Returns:
      status, as_of, a1_text, a2_text, a3_text, figure, ladder_df, irr_df,
      explain_text, drivers_df
    """
    try:
        conn = connect_md()

        # --- Scenario Application ---
        # Create a temporary view with scenario adjustments.
        # Subsequent queries will use this stressed view.
        stressed_view_fqn = "positions_v_stressed"
        runoff_factor = 1.0
        rate_shock_bps = 0.0

        if scenario == "Liquidity Stress: High Deposit Runoff" and runoff_pct > 0:
            runoff_factor = (100.0 - runoff_pct) / 100.0
        elif scenario == "IRR Stress: Rate Shock" and rate_shock_bps_input != 0:
            rate_shock_bps = rate_shock_bps_input

        scenario_sql = f"""
        CREATE OR REPLACE TEMP VIEW {stressed_view_fqn} AS
        SELECT *,
            CASE WHEN lower(product) IN ('savings', 'fd', 'td', 'term_deposit') THEN Portfolio_value * {runoff_factor} ELSE Portfolio_value END AS stressed_pv
        FROM {VIEW_FQN};
        """
        conn.execute(scenario_sql)

        # 1) Discover columns & build view
        cols = discover_columns(conn, TABLE_FQN)
        ensure_view(conn, cols)

        # 2) As-of (optional)
        as_of = "N/A"
        if "as_of_date" in cols:
            tmp = conn.execute(f"SELECT max(as_of_date) AS d FROM {VIEW_FQN}").fetchdf()
            if not tmp.empty and not pd.isna(tmp["d"].iloc[0]):
                as_of = str(tmp["d"].iloc[0])[:10]

        # 3) KPIs
        # Modify queries to use the stressed view and value column
        kpi_sql_stressed = KPI_SQL.replace(f"FROM {VIEW_FQN}", f"FROM {stressed_view_fqn}").replace("Portfolio_value", "stressed_pv")
        kpi = conn.execute(kpi_sql_stressed).fetchdf()
        assets_t1 = safe_num(kpi["assets_t1"].iloc[0]) if not kpi.empty else 0.0
        sof_t1    = safe_num(kpi["sof_t1"].iloc[0]) if not kpi.empty else 0.0
        net_gap   = safe_num(kpi["net_gap_t1"].iloc[0]) if not kpi.empty else 0.0

        # 4) Ladder, IRR, and Gap Drivers
        ladder_sql_stressed = LADDER_SQL.replace(f"FROM {VIEW_FQN}", f"FROM {stressed_view_fqn}").replace("Portfolio_value", "stressed_pv")
        drivers_sql_stressed = GAP_DRIVERS_SQL.replace(f"FROM {VIEW_FQN}", f"FROM {stressed_view_fqn}").replace("Portfolio_value", "stressed_pv")
        irr_sql_stressed = irr_sql(cols).replace(f"FROM {VIEW_FQN}", f"FROM {stressed_view_fqn}").replace("Portfolio_value", "stressed_pv")

        ladder = conn.execute(ladder_sql_stressed).fetchdf()
        irr    = conn.execute(irr_sql_stressed).fetchdf()
        drivers = conn.execute(drivers_sql_stressed).fetchdf()

        # Create display copies of dataframes and format them for the UI
        ladder_display = ladder.copy()
        if "Amount (LKR Mn)" in ladder.columns:
            ladder_display["Amount (LKR Mn)"] = ladder_display["Amount (LKR Mn)"].map('{:,.2f}'.format)
        else:
            ladder_display = pd.DataFrame()

        # Format IRR table
        irr_display = irr.copy()
        if not irr_display.empty:
            irr_display["Portfolio Value (LKR Mn)"] = irr_display["Portfolio Value (LKR Mn)"].map('{:,.2f}'.format)
            irr_display["BPV (DV01)"] = irr_display["BPV (DV01)"].map('{:,.2f}'.format)

        if "Amount (LKR Mn)" in drivers.columns:
            drivers_display = drivers.copy()
            drivers_display["Amount (LKR Mn)"] = drivers_display["Amount (LKR Mn)"].map('{:,.2f}'.format)
        else:
            drivers_display = pd.DataFrame()

        # 5) Chart
        fig = plot_ladder(ladder)

        # 6) Explanations
        assets_t1_mn_str = f"{(assets_t1 / 1_000_000):,.2f}"
        sof_t1_mn_str = f"{(sof_t1 / 1_000_000):,.2f}"
        net_gap_mn_str = f"{(net_gap / 1_000_000):,.2f}"
        gap_sign_str = "positive" if net_gap >= 0 else "negative"

        a1_text = f"The amount of Assets maturing tomorrow (T+1) is **LKR {assets_t1_mn_str} Mn**."
        a2_text = f"The amount of Sources of Funds (SoF) maturing tomorrow (T+1) is **LKR {sof_t1_mn_str} Mn**."
        a3_text = f"The resulting Net Liquidity Gap for tomorrow (T+1) is **LKR {net_gap_mn_str} Mn**."

        # Build "Why" text
        sof_drivers = drivers[drivers["bucket"] == "SoF"]
        asset_drivers = drivers[drivers["bucket"] == "Assets"]
        top_sof_prod = sof_drivers.iloc[0] if not sof_drivers.empty else None
        top_asset_prod = asset_drivers.iloc[0] if not asset_drivers.empty else None

        explain_text = f"### Why is the T+1 Gap {gap_sign_str}?\n\n"
        if top_sof_prod is not None:
            explain_text += f"*   **Largest Liability Maturity:** The largest outflow comes from `{top_sof_prod['product']}`, with **LKR {top_sof_prod['Amount (LKR Mn)']:,.2f} Mn** maturing.\n"
        else:
            explain_text += "*   **Largest Liability Maturity:** No significant liabilities are maturing tomorrow.\n"

        if top_asset_prod is not None:
             explain_text += f"*   **Largest Asset Inflow:** The largest inflow comes from `{top_asset_prod['product']}`, with **LKR {top_asset_prod['Amount (LKR Mn)']:,.2f} Mn** maturing.\n"
        else:
            explain_text += "*   **Largest Asset Inflow:** No significant assets are maturing to provide inflows tomorrow.\n"

        # Note: The data source does not contain features for seasonal analysis (e.g., day_of_week, is_month_end).
        explain_text += "*   **Seasonal Pattern:** Analysis not possible without relevant time-series features in the source data."

        # Add scenario explanation for IRR stress
        if scenario == "IRR Stress: Rate Shock" and rate_shock_bps != 0 and not irr.empty:
            net_bpv = irr["BPV (DV01)"].sum()
            eve_impact = net_bpv * rate_shock_bps
            eve_impact_mn = eve_impact / 1_000_000
            explain_text += f"\n\n### IRR Stress Scenario Impact\n*   A **+{rate_shock_bps:.0f} bps** rate shock is projected to change the portfolio's Economic Value by **LKR {eve_impact_mn:,.2f} Mn**."


        status = f"βœ… OK (as of {pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')})"
        return (
            status,
            as_of,
            a1_text,
            a2_text,
            a3_text,
            fig,
            ladder_display,
            irr_display,
            explain_text,
            drivers_display,
        )

    except Exception as e:
        tb = traceback.format_exc()
        empty_df = pd.DataFrame()
        fig = plot_ladder(empty_df)
        return (
            f"❌ Error: {e}\n\n{tb}",
            "N/A",
            "0",
            "0",
            "0",
            fig,
            empty_df,
            empty_df,
            "Analysis could not be performed.",
            empty_df,
        )

# =========================
# Build Gradio UI
# =========================
with gr.Blocks(title=APP_TITLE) as demo:
    gr.Markdown(f"# {APP_TITLE}\n_Source:_ `{TABLE_FQN}` β†’ `{VIEW_FQN}`")

    status = gr.Textbox(label="Status", interactive=False, lines=8)

    with gr.Row():
        refresh_btn = gr.Button("πŸ”„ Refresh", variant="primary")
        theme_btn = gr.Button("πŸŒ— Toggle Theme")
        theme_btn.click(
            None,
            None,
            js="() => { document.querySelector('html').classList.toggle('dark'); }"
        )

    scenario_dd = gr.Dropdown(
        label="Select Stress Scenario",
        choices=["Baseline", "Liquidity Stress: High Deposit Runoff", "IRR Stress: Rate Shock"],
        value="Baseline"
    )

    with gr.Accordion("Stress Scenario Parameters", open=False):
        runoff_slider = gr.Slider(
            label="Deposit Runoff (%)",
            minimum=0, maximum=100, step=1, value=20,
            info="For Liquidity Stress: Percentage of key deposits that run off."
        )
        shock_slider = gr.Slider(
            label="Rate Shock (bps)",
            minimum=-500, maximum=500, step=25, value=200,
            info="For IRR Stress: Parallel shift in the yield curve in basis points."
        )

    with gr.Row():
        as_of = gr.Textbox(label="As of date", interactive=False)

    a1 = gr.Markdown("The amount of Assets maturing tomorrow (T+1) is...")
    a2 = gr.Markdown("The amount of Sources of Funds (SoF) maturing tomorrow (T+1) is...")
    a3 = gr.Markdown("The resulting Net Liquidity Gap for tomorrow (T+1) is...")

    with gr.Row():
        with gr.Column(scale=2):
            chart = gr.Plot(label="Maturity Ladder")
            ladder_df = gr.Dataframe(label="Ladder Detail")
            irr_df = gr.Dataframe(
                label="Interest-Rate Risk (BPV/DV01)",
                headers=["Bucket", "Portfolio Value (LKR Mn)", "BPV (DV01)"]
            )
        with gr.Column(scale=1):
            explain_text = gr.Markdown("Analysis of the T+1 gap will appear here...")
            drivers_df = gr.Dataframe(
                label="T+1 Gap Drivers (Top Products)",
                headers=["Product", "Bucket", "Amount (LKR Mn)"],
            )

    refresh_btn.click(
        fn=run_dashboard,
        inputs=[scenario_dd, runoff_slider, shock_slider],
        outputs=[status, as_of, a1, a2, a3, chart, ladder_df, irr_df, explain_text, drivers_df],
    )

if __name__ == "__main__":
    demo.launch()