# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # // # // Licensed under the Apache License, Version 2.0 (the "License"); # // you may not use this file except in compliance with the License. # // You may obtain a copy of the License at # // # // http://www.apache.org/licenses/LICENSE-2.0 # // # // Unless required by applicable law or agreed to in writing, software # // distributed under the License is distributed on an "AS IS" BASIS, # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # // See the License for the specific language governing permissions and # // limitations under the License. from typing import Union import torch from PIL import Image from torchvision.transforms import functional as TVF class DivisibleCrop: def __init__(self, factor): if not isinstance(factor, tuple): factor = (factor, factor) self.height_factor, self.width_factor = factor[0], factor[1] def __call__(self, image: Union[torch.Tensor, Image.Image]): if isinstance(image, torch.Tensor): height, width = image.shape[-2:] elif isinstance(image, Image.Image): width, height = image.size else: raise NotImplementedError cropped_height = height - (height % self.height_factor) cropped_width = width - (width % self.width_factor) image = TVF.center_crop(img=image, output_size=(cropped_height, cropped_width)) return image