Update app.py
Browse files
app.py
CHANGED
|
@@ -1,27 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import pandas as pd
|
| 3 |
|
| 4 |
-
# Load
|
| 5 |
-
|
|
|
|
| 6 |
|
| 7 |
-
# Define
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torchvision import models, transforms
|
| 3 |
+
from torch import nn, optim
|
| 4 |
+
from PIL import Image
|
| 5 |
import gradio as gr
|
|
|
|
| 6 |
|
| 7 |
+
# Load a pre-trained model (e.g., ResNet50)
|
| 8 |
+
model = models.resnet50(pretrained=True)
|
| 9 |
+
model.fc = nn.Linear(model.fc.in_features, 2) # For binary classification (Thyroid: Positive/Negative)
|
| 10 |
|
| 11 |
+
# Define image transformation
|
| 12 |
+
transform = transforms.Compose([
|
| 13 |
+
transforms.Resize((224, 224)),
|
| 14 |
+
transforms.ToTensor(),
|
| 15 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 16 |
+
])
|
| 17 |
+
|
| 18 |
+
# Example function to classify images
|
| 19 |
+
def classify_thyroid_image(image):
|
| 20 |
+
image = Image.open(image).convert("RGB")
|
| 21 |
+
image = transform(image).unsqueeze(0) # Add batch dimension
|
| 22 |
+
model.eval() # Set the model to evaluation mode
|
| 23 |
|
| 24 |
+
with torch.no_grad():
|
| 25 |
+
output = model(image)
|
| 26 |
+
_, predicted = torch.max(output, 1)
|
| 27 |
+
|
| 28 |
+
diagnosis = "Thyroid Disease Detected" if predicted.item() == 1 else "No Thyroid Disease"
|
| 29 |
+
return diagnosis
|
| 30 |
|
| 31 |
+
# Create a Gradio interface for image upload and camera input
|
| 32 |
+
gr.Interface(fn=classify_thyroid_image, inputs="image", outputs="text").launch()
|