|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
import shutil |
|
|
import base64 |
|
|
import re |
|
|
import json |
|
|
import pytesseract |
|
|
import openpyxl |
|
|
import fitz |
|
|
from zai import ZhipuAiClient |
|
|
from PIL import Image |
|
|
from mimetypes import guess_type |
|
|
from openpyxl.styles import numbers |
|
|
from datetime import datetime |
|
|
import gradio as gr |
|
|
import tempfile |
|
|
from pathlib import Path |
|
|
import asyncio |
|
|
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor |
|
|
import functools |
|
|
import traceback |
|
|
|
|
|
import pytesseract |
|
|
import os |
|
|
import shutil |
|
|
|
|
|
|
|
|
def setup_tesseract(): |
|
|
|
|
|
possible_paths = [ |
|
|
'/usr/bin/tesseract', |
|
|
'/usr/local/bin/tesseract', |
|
|
'/opt/homebrew/bin/tesseract', |
|
|
'/opt/tesseract/bin/tesseract', |
|
|
'tesseract', |
|
|
] |
|
|
|
|
|
|
|
|
tesseract_path = shutil.which('tesseract') |
|
|
if tesseract_path: |
|
|
pytesseract.pytesseract.tesseract_cmd = tesseract_path |
|
|
print(f"Found Tesseract at: {tesseract_path}") |
|
|
return |
|
|
|
|
|
|
|
|
for path in possible_paths: |
|
|
if path != 'tesseract' and os.path.exists(path): |
|
|
pytesseract.pytesseract.tesseract_cmd = path |
|
|
print(f"Found Tesseract at: {path}") |
|
|
return |
|
|
|
|
|
|
|
|
if 'tesseract' in possible_paths: |
|
|
pytesseract.pytesseract.tesseract_cmd = 'tesseract' |
|
|
print("Using 'tesseract' from system PATH") |
|
|
return |
|
|
|
|
|
|
|
|
print("Tesseract not found in any of the expected locations:") |
|
|
for path in possible_paths: |
|
|
print(f" - {path}") |
|
|
print("\nTroubleshooting steps:") |
|
|
print("1. Ensure packages.txt contains 'tesseract-ocr'") |
|
|
print("2. Try rebuilding the Space") |
|
|
print("3. Check if the base image supports apt packages") |
|
|
|
|
|
|
|
|
pytesseract.pytesseract.tesseract_cmd = 'tesseract' |
|
|
|
|
|
|
|
|
setup_tesseract() |
|
|
|
|
|
|
|
|
class PDFImageToMarkdown: |
|
|
def __init__(self, zhipu_client): |
|
|
self.client = zhipu_client |
|
|
|
|
|
def detect_text_direction(self, image): |
|
|
"""使用 OCR 检测图片中文本的方向。""" |
|
|
ocr_result = pytesseract.image_to_osd(image) |
|
|
rotation_match = re.search(r'Rotate:\s+(\d+)', ocr_result) |
|
|
if rotation_match: |
|
|
return int(rotation_match.group(1)) |
|
|
return 0 |
|
|
|
|
|
def correct_image_orientation(self, image_path): |
|
|
"""读取图片,根据 OCR 检测的方向信息摆正图片,并保存到指定路径。""" |
|
|
image = Image.open(image_path) |
|
|
rotation = self.detect_text_direction(image) |
|
|
if rotation != 0: |
|
|
while rotation != 0: |
|
|
image = image.rotate(rotation, expand=True) |
|
|
rotation = self.detect_text_direction(image) |
|
|
image.save(image_path) |
|
|
print(f"{image_path}: image corrected to the right direction") |
|
|
|
|
|
def extract_imginfo_from_zhipu(self, file_path): |
|
|
"""通过模型获取图片信息""" |
|
|
with open(file_path, 'rb') as img_file: |
|
|
file_base = base64.b64encode(img_file.read()).decode('utf-8') |
|
|
|
|
|
prompt_txt = "Precisely identify the content within an image, specifically extracting all information and table content from an invoice. Convert the extracted information into Markdown format, and ensure the output is in Chinese." |
|
|
|
|
|
response = self.client.chat.completions.create( |
|
|
model="glm-4.5v", |
|
|
temperature=0, |
|
|
messages=[ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{ |
|
|
"type": "image_url", |
|
|
"image_url": { |
|
|
"url": f"data:image/png;base64,{file_base}" |
|
|
} |
|
|
}, |
|
|
{ |
|
|
"type": "text", |
|
|
"text": prompt_txt |
|
|
} |
|
|
] |
|
|
} |
|
|
] |
|
|
) |
|
|
return response.choices[0].message.content |
|
|
|
|
|
def remove_empty_lines(self, input_file): |
|
|
"""删除 markdown 中的空行和 markdown 标记""" |
|
|
temp_file = input_file + '.tmp' |
|
|
with open(input_file, 'r', encoding='utf-8') as infile, open(temp_file, 'w', encoding='utf-8') as outfile: |
|
|
for line in infile: |
|
|
clean_line = line.replace('```markdown', '').replace('```', '') |
|
|
if clean_line.strip(): |
|
|
outfile.write(clean_line) |
|
|
os.replace(temp_file, input_file) |
|
|
|
|
|
def detect_file_type(self, file_path): |
|
|
"""检测文件类型,返回主要类型和子类型""" |
|
|
mime_type, _ = guess_type(file_path) |
|
|
if mime_type: |
|
|
return mime_type.split('/') |
|
|
ext = os.path.splitext(file_path)[1].lower() |
|
|
if ext in ['.pdf']: |
|
|
return ('application', 'pdf') |
|
|
elif ext in ['.jpg', '.jpeg']: |
|
|
return ('image', 'jpeg') |
|
|
elif ext in ['.png']: |
|
|
return ('image', 'png') |
|
|
else: |
|
|
raise ValueError(f"Unsupported file format: {file_path}") |
|
|
|
|
|
def process_image_file(self, image_path): |
|
|
"""处理单个图片文件,校正方向并提取信息""" |
|
|
self.correct_image_orientation(image_path) |
|
|
return self.extract_imginfo_from_zhipu(image_path) |
|
|
|
|
|
def pdf_to_md(self, pdf_path, image_folder, finish_folder, dpi=300): |
|
|
"""处理PDF文件,转换为Markdown文本""" |
|
|
pdf_document = fitz.open(pdf_path) |
|
|
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0] |
|
|
all_text = "" |
|
|
|
|
|
for page_num in range(len(pdf_document)): |
|
|
page = pdf_document.load_page(page_num) |
|
|
zoom = dpi / 72.0 |
|
|
mat = fitz.Matrix(zoom, zoom) |
|
|
pix = page.get_pixmap(matrix=mat) |
|
|
image_filename = f"{pdf_name}_page_{page_num + 1}.png" |
|
|
image_path = os.path.join(image_folder, image_filename) |
|
|
pix.save(image_path) |
|
|
image_text = self.process_image_file(image_path) |
|
|
all_text += image_text + '\n' |
|
|
shutil.move(image_path, os.path.join(finish_folder, image_filename)) |
|
|
|
|
|
return all_text |
|
|
|
|
|
def file_to_md(self, input_path, image_folder, md_folder, finish_folder, dpi=300): |
|
|
"""主处理函数,支持多种输入文件格式""" |
|
|
file_type, file_subtype = self.detect_file_type(input_path) |
|
|
base_name = os.path.splitext(os.path.basename(input_path))[0] |
|
|
markdown_file_path = os.path.join(md_folder, f"{base_name}.md") |
|
|
|
|
|
if file_type == 'application' and file_subtype == 'pdf': |
|
|
all_text = self.pdf_to_md(input_path, image_folder, finish_folder, dpi) |
|
|
elif file_type == 'image': |
|
|
all_text = self.process_image_file(input_path) |
|
|
else: |
|
|
raise ValueError(f"Unsupported file type: {file_type}/{file_subtype}") |
|
|
|
|
|
with open(markdown_file_path, 'w', encoding='utf-8') as f: |
|
|
f.write(all_text) |
|
|
self.remove_empty_lines(markdown_file_path) |
|
|
print(f"File {input_path} converted to markdown successfully.") |
|
|
return markdown_file_path |
|
|
|
|
|
|
|
|
class MarkdownToJSON: |
|
|
DEFAULT_PROMPT = """ |
|
|
请将以下 Markdown 格式的发票内容转换为 JSON 格式。要求如下: |
|
|
1. **提取以下字段**: |
|
|
- 发票代码(invoice_code) |
|
|
- 开票日期(invoice_date) |
|
|
- 购买方信息(buyer):包含名称(name)和统一社会信用代码/纳税人识别号(tax_id) |
|
|
- 销售方信息(seller):包含名称(name)和统一社会信用代码/纳税人识别号(tax_id) |
|
|
- 发票项目(items):每个项目包含以下字段: |
|
|
- 项目名称(item_name) |
|
|
- 规格型号(specification) |
|
|
- 单位(unit) |
|
|
- 数量(quantity) |
|
|
- 单价(unit_price) |
|
|
- 金额(amount) |
|
|
- 税率/征收率(tax_rate) |
|
|
- 税额(tax_amount) |
|
|
- 合计金额(total_amount) |
|
|
- 合计税额(total_tax) |
|
|
- 价税合计(total_including_tax):包含大写金额(capitalized)和小写金额(numeric) |
|
|
- 备注(remarks):以列表形式存储 |
|
|
- 开票人(issuer) |
|
|
2. **JSON 格式要求**: |
|
|
- 字段名称必须与上述要求一致。 |
|
|
- 金额和税额字段的值应为字符串类型。 |
|
|
- 发票项目(items)应为数组,每个项目为一个对象。 |
|
|
- 备注(remarks)应为数组,每个备注为字符串。 |
|
|
""" |
|
|
|
|
|
def __init__(self, zhipu_client): |
|
|
self.client = zhipu_client |
|
|
|
|
|
def extract_mdinfo_from_zhipu(self, content_md, prompt_txt=None): |
|
|
"""调用智谱AI API,将 Markdown 内容转换为 JSON 格式""" |
|
|
if prompt_txt is None: |
|
|
prompt_txt = self.DEFAULT_PROMPT |
|
|
|
|
|
messages_to_zhipu = [ |
|
|
{"role": "system", "content": prompt_txt}, |
|
|
{"role": "user", "content": content_md} |
|
|
] |
|
|
|
|
|
try: |
|
|
response = self.client.chat.completions.create( |
|
|
model="glm-4.6", |
|
|
temperature=0, |
|
|
top_p=0.1, |
|
|
max_tokens=4095, |
|
|
messages=messages_to_zhipu, |
|
|
) |
|
|
|
|
|
content_from_glm = response.choices[0].message.content |
|
|
print(f"API返回原始内容:\n{content_from_glm}") |
|
|
|
|
|
|
|
|
json_str = content_from_glm.strip() |
|
|
if '```json' in json_str: |
|
|
json_str = json_str.split('```json')[1].split('```')[0].strip() |
|
|
elif '```' in json_str: |
|
|
json_str = json_str.split('```')[1].strip() |
|
|
|
|
|
|
|
|
try: |
|
|
json_data = json.loads(json_str) |
|
|
return json_data |
|
|
except json.JSONDecodeError as e: |
|
|
print(f"JSON解析错误,尝试修复格式: {e}") |
|
|
|
|
|
json_str = re.sub(r',\s*}', '}', json_str) |
|
|
json_str = re.sub(r',\s*]', ']', json_str) |
|
|
json_str = re.sub(r'([{,]\s*)(\w+)(\s*:)', r'\1"\2"\3', json_str) |
|
|
return json.loads(json_str) |
|
|
|
|
|
except Exception as e: |
|
|
print(f"Error during API call or JSON parsing: {e}") |
|
|
print(f"Problematic content:\n{content_from_glm}") |
|
|
raise ValueError(f"无法解析API返回的JSON数据: {str(e)}") |
|
|
|
|
|
def clean_numeric_string(self, value: str) -> str: |
|
|
"""清理含货币符号、千位分隔符和空格的字符串""" |
|
|
return value.replace('¥', '').replace(',', '').strip() |
|
|
|
|
|
def remove_symbols(self, data): |
|
|
"""将空字符串、空格、无效值强制转换为 0.0""" |
|
|
if 'items' in data: |
|
|
for item in data['items']: |
|
|
for key in ['unit_price', 'amount', 'tax_amount']: |
|
|
if key in item and isinstance(item[key], str): |
|
|
cleaned_value = self.clean_numeric_string(item[key]) |
|
|
if cleaned_value and cleaned_value.replace('.', '', 1).isdigit(): |
|
|
item[key] = float(cleaned_value) |
|
|
else: |
|
|
item[key] = 0.0 |
|
|
|
|
|
for key in ['total_amount', 'total_tax']: |
|
|
if key in data and isinstance(data[key], str): |
|
|
cleaned_value = self.clean_numeric_string(data[key]) |
|
|
if cleaned_value and cleaned_value.replace('.', '', 1).isdigit(): |
|
|
data[key] = float(cleaned_value) |
|
|
else: |
|
|
data[key] = 0.0 |
|
|
|
|
|
if 'total_including_tax' in data and isinstance(data['total_including_tax'], dict): |
|
|
numeric_value = data['total_including_tax'].get('numeric') |
|
|
if isinstance(numeric_value, str): |
|
|
cleaned_value = self.clean_numeric_string(numeric_value) |
|
|
if cleaned_value and cleaned_value.replace('.', '', 1).isdigit(): |
|
|
data['total_including_tax']['numeric'] = float(cleaned_value) |
|
|
else: |
|
|
data['total_including_tax']['numeric'] = 0.0 |
|
|
|
|
|
return data |
|
|
|
|
|
def md_to_json(self, md_dir, json_dir, finish_folder, prompt_text=None): |
|
|
"""将指定目录下的 Markdown 文件转换为 JSON 文件""" |
|
|
for filename in os.listdir(md_dir): |
|
|
if filename.endswith(".md"): |
|
|
filepath = os.path.join(md_dir, filename) |
|
|
try: |
|
|
with open(filepath, 'r', encoding='utf-8') as file: |
|
|
markdown_content = file.read() |
|
|
|
|
|
|
|
|
print(f"处理文件: {filename}") |
|
|
print(f"Markdown内容预览:\n{markdown_content[:500]}...") |
|
|
|
|
|
extracted_info = self.extract_mdinfo_from_zhipu(markdown_content, prompt_text) |
|
|
extracted_info = self.remove_symbols(extracted_info) |
|
|
|
|
|
json_filename = os.path.splitext(filename)[0] + ".json" |
|
|
json_filepath = os.path.join(json_dir, json_filename) |
|
|
|
|
|
with open(json_filepath, 'w', encoding='utf-8') as json_file: |
|
|
json.dump(extracted_info, json_file, indent=4, ensure_ascii=False) |
|
|
|
|
|
print(f"JSON文件保存成功: {json_filepath}") |
|
|
shutil.move(filepath, os.path.join(finish_folder, filename)) |
|
|
|
|
|
except Exception as e: |
|
|
print(f"处理文件 {filename} 失败: {str(e)}") |
|
|
|
|
|
error_folder = os.path.join(os.path.dirname(finish_folder), "errors") |
|
|
os.makedirs(error_folder, exist_ok=True) |
|
|
shutil.move(filepath, os.path.join(error_folder, filename)) |
|
|
continue |
|
|
|
|
|
|
|
|
class JSONToExcel: |
|
|
def json_to_exl(self, json_folder, output_folder): |
|
|
"""从指定文件夹中读取 JSON 文件,并将所有相关信息填入新建的 Excel 表格中""" |
|
|
workbook = openpyxl.Workbook() |
|
|
sheet = workbook.active |
|
|
sheet.title = "发票信息" |
|
|
|
|
|
headers = [ |
|
|
"发票代码", "开票日期", "项目名称", "规格型号", "单位", "数量", "单价", |
|
|
"金额", "税率", "税额", "金额+税额", "卖方名称", "卖方税号", "买方名称", |
|
|
"买方税号", "发票总额", "总税额", "价税合计(大写)", "价税合计(数值)", |
|
|
"备注", "开票人", "来源文件" |
|
|
] |
|
|
|
|
|
for col, header in enumerate(headers, start=1): |
|
|
sheet.cell(row=1, column=col, value=header) |
|
|
|
|
|
for filename in os.listdir(json_folder): |
|
|
if filename.endswith(".json"): |
|
|
filepath = os.path.join(json_folder, filename) |
|
|
with open(filepath, 'r', encoding='utf-8') as json_file: |
|
|
data = json.load(json_file) |
|
|
|
|
|
invoice_code = data.get("invoice_code", "") |
|
|
invoice_date = data.get("invoice_date", "") |
|
|
buyer = data.get("buyer", {}) |
|
|
seller = data.get("seller", {}) |
|
|
remarks = "\n".join(data.get("remarks", [])) if data.get("remarks") else "" |
|
|
issuer = data.get("issuer", "") |
|
|
|
|
|
items = data.get("items", []) |
|
|
for item in items: |
|
|
row = sheet.max_row + 1 |
|
|
|
|
|
sheet.cell(row=row, column=1, value=invoice_code) |
|
|
sheet.cell(row=row, column=2, value=invoice_date) |
|
|
sheet.cell(row=row, column=3, value=item.get("item_name", "")) |
|
|
sheet.cell(row=row, column=4, value=item.get("specification", "")) |
|
|
sheet.cell(row=row, column=5, value=item.get("unit", "")) |
|
|
sheet.cell(row=row, column=6, value=item.get("quantity", "")) |
|
|
|
|
|
sheet.cell(row=row, column=7, value=item.get("unit_price", 0)) |
|
|
sheet.cell(row=row, column=7).number_format = numbers.FORMAT_NUMBER_00 |
|
|
|
|
|
sheet.cell(row=row, column=8, value=item.get("amount", 0)) |
|
|
sheet.cell(row=row, column=8).number_format = numbers.FORMAT_NUMBER_00 |
|
|
|
|
|
sheet.cell(row=row, column=9, value=item.get("tax_rate", "")) |
|
|
|
|
|
sheet.cell(row=row, column=10, value=item.get("tax_amount", 0)) |
|
|
sheet.cell(row=row, column=10).number_format = numbers.FORMAT_NUMBER_00 |
|
|
|
|
|
total_amount = item.get("amount", 0) + item.get("tax_amount", 0) |
|
|
sheet.cell(row=row, column=11, value=total_amount) |
|
|
sheet.cell(row=row, column=11).number_format = numbers.FORMAT_NUMBER_00 |
|
|
|
|
|
sheet.cell(row=row, column=12, value=seller.get("name", "")) |
|
|
sheet.cell(row=row, column=13, value=seller.get("tax_id", "")) |
|
|
|
|
|
sheet.cell(row=row, column=14, value=buyer.get("name", "")) |
|
|
sheet.cell(row=row, column=15, value=buyer.get("tax_id", "")) |
|
|
|
|
|
sheet.cell(row=row, column=16, value=data.get("total_amount", 0)) |
|
|
sheet.cell(row=row, column=16).number_format = numbers.FORMAT_NUMBER_00 |
|
|
|
|
|
sheet.cell(row=row, column=17, value=data.get("total_tax", 0)) |
|
|
sheet.cell(row=row, column=17).number_format = numbers.FORMAT_NUMBER_00 |
|
|
|
|
|
total_including_tax = data.get("total_including_tax", {}) |
|
|
sheet.cell(row=row, column=18, value=total_including_tax.get("capitalized", "")) |
|
|
sheet.cell(row=row, column=19, value=total_including_tax.get("numeric", 0)) |
|
|
sheet.cell(row=row, column=19).number_format = numbers.FORMAT_NUMBER_00 |
|
|
|
|
|
sheet.cell(row=row, column=20, value=remarks) |
|
|
sheet.cell(row=row, column=21, value=issuer) |
|
|
sheet.cell(row=row, column=22, value=os.path.splitext(filename)[0]) |
|
|
|
|
|
for column in sheet.columns: |
|
|
max_length = 0 |
|
|
column_letter = column[0].column_letter |
|
|
for cell in column: |
|
|
try: |
|
|
if len(str(cell.value)) > max_length: |
|
|
max_length = len(str(cell.value)) |
|
|
except: |
|
|
pass |
|
|
adjusted_width = (max_length + 2) * 1.2 |
|
|
sheet.column_dimensions[column_letter].width = adjusted_width |
|
|
|
|
|
os.makedirs(output_folder, exist_ok=True) |
|
|
|
|
|
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
|
excel_filename = f"发票信息汇总_{timestamp}.xlsx" |
|
|
excel_path = os.path.join(output_folder, excel_filename) |
|
|
|
|
|
workbook.save(excel_path) |
|
|
print(f"数据已成功写入新建的 Excel 文件: {excel_path}") |
|
|
return excel_path |
|
|
|
|
|
|
|
|
|
|
|
async def process_single_file(file_path, client, image_folder, md_folder, finish_folder): |
|
|
"""异步处理单个文件""" |
|
|
pdf_to_md = PDFImageToMarkdown(client) |
|
|
try: |
|
|
|
|
|
md_path = pdf_to_md.file_to_md(file_path, image_folder, md_folder, finish_folder) |
|
|
return md_path |
|
|
except Exception as e: |
|
|
print(f"Error processing file {file_path}: {e}") |
|
|
return None |
|
|
|
|
|
async def process_md_to_json(md_path, client, json_folder, finish_folder): |
|
|
"""异步处理Markdown转JSON""" |
|
|
md_to_json = MarkdownToJSON(client) |
|
|
try: |
|
|
md_to_json.md_to_json(os.path.dirname(md_path), json_folder, finish_folder) |
|
|
return True |
|
|
except Exception as e: |
|
|
print(f"Error converting {md_path} to JSON: {e}") |
|
|
return False |
|
|
|
|
|
async def process_invoices(api_key, files, progress=gr.Progress()): |
|
|
"""修改后的批量处理函数,支持并发""" |
|
|
|
|
|
progress(0, desc="开始处理") |
|
|
|
|
|
if not api_key: |
|
|
raise gr.Error("请输入智谱 API Key") |
|
|
|
|
|
try: |
|
|
client = ZhipuAiClient(api_key=api_key) |
|
|
|
|
|
test_response = client.chat.completions.create( |
|
|
model="glm-4.6", |
|
|
messages=[{"role": "user", "content": "test"}], |
|
|
temperature=0 |
|
|
) |
|
|
print(f"API测试响应: {test_response}") |
|
|
except Exception as e: |
|
|
raise gr.Error(f"API Key 无效或验证失败: {str(e)}") |
|
|
|
|
|
|
|
|
try: |
|
|
temp_dir = tempfile.mkdtemp(prefix="invoice_processing_") |
|
|
print(f"临时目录创建成功: {temp_dir}") |
|
|
|
|
|
image_folder = os.path.join(temp_dir, "images") |
|
|
md_folder = os.path.join(temp_dir, "markdown") |
|
|
json_folder = os.path.join(temp_dir, "json") |
|
|
finish_folder = os.path.join(temp_dir, "finished") |
|
|
|
|
|
for folder in [image_folder, md_folder, json_folder, finish_folder]: |
|
|
os.makedirs(folder, exist_ok=True) |
|
|
print(f"创建文件夹: {folder}") |
|
|
|
|
|
|
|
|
test_file = os.path.join(folder, "test.txt") |
|
|
with open(test_file, "w") as f: |
|
|
f.write("test") |
|
|
os.remove(test_file) |
|
|
except Exception as e: |
|
|
raise gr.Error(f"无法创建临时目录: {str(e)}") |
|
|
|
|
|
try: |
|
|
progress(0.05, desc="准备并发处理...") |
|
|
|
|
|
|
|
|
pdf_to_md = PDFImageToMarkdown(client) |
|
|
md_to_json = MarkdownToJSON(client) |
|
|
json_to_excel = JSONToExcel() |
|
|
|
|
|
|
|
|
test_success = False |
|
|
if files: |
|
|
first_file = files[0].name |
|
|
print(f"测试处理第一个文件: {first_file}") |
|
|
|
|
|
try: |
|
|
|
|
|
md_path = pdf_to_md.file_to_md(first_file, image_folder, md_folder, finish_folder) |
|
|
print(f"成功生成Markdown: {md_path}") |
|
|
|
|
|
|
|
|
md_to_json.md_to_json(md_folder, json_folder, finish_folder) |
|
|
print(f"成功生成JSON文件在: {json_folder}") |
|
|
|
|
|
test_success = True |
|
|
except Exception as e: |
|
|
print(f"测试文件处理失败: {str(e)}") |
|
|
traceback.print_exc() |
|
|
|
|
|
if not test_success: |
|
|
raise gr.Error("测试文件处理失败,请检查文件格式是否正确") |
|
|
|
|
|
|
|
|
if len(files) > 1: |
|
|
with ThreadPoolExecutor(max_workers=4) as executor: |
|
|
loop = asyncio.get_event_loop() |
|
|
|
|
|
|
|
|
md_tasks = [] |
|
|
for i, file in enumerate(files[1:]): |
|
|
file_path = file.name |
|
|
task = loop.run_in_executor( |
|
|
executor, |
|
|
functools.partial( |
|
|
pdf_to_md.file_to_md, |
|
|
input_path=file_path, |
|
|
image_folder=image_folder, |
|
|
md_folder=md_folder, |
|
|
finish_folder=finish_folder |
|
|
) |
|
|
) |
|
|
md_tasks.append(task) |
|
|
progress(0.1 + 0.4*(i/len(files)), desc=f"处理文件中 ({i+2}/{len(files)})") |
|
|
|
|
|
await asyncio.gather(*md_tasks) |
|
|
|
|
|
|
|
|
progress(0.6, desc="转换JSON中...") |
|
|
md_to_json.md_to_json(md_folder, json_folder, finish_folder) |
|
|
|
|
|
|
|
|
progress(0.9, desc="生成Excel...") |
|
|
if len(os.listdir(json_folder)) > 0: |
|
|
excel_path = json_to_excel.json_to_exl(json_folder, temp_dir) |
|
|
print(f"处理完成,结果保存在: {excel_path}") |
|
|
progress(1.0, desc="处理完成") |
|
|
return excel_path, 100 |
|
|
else: |
|
|
raise gr.Error("没有生成有效的JSON文件") |
|
|
|
|
|
except Exception as e: |
|
|
print(f"处理过程中发生错误: {str(e)}") |
|
|
traceback.print_exc() |
|
|
raise gr.Error(f"处理失败: {str(e)}") |
|
|
finally: |
|
|
|
|
|
pass |
|
|
|
|
|
|
|
|
with gr.Blocks(title="发票识别系统") as demo: |
|
|
gr.Markdown("# 发票识别系统") |
|
|
gr.Markdown("上传PDF或图片格式的发票,系统将自动提取信息并生成Excel文件") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
api_key = gr.Textbox( |
|
|
label="输入智谱 API Key", |
|
|
placeholder="请输入您的智谱 API Key", |
|
|
type="password" |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
file_input = gr.File( |
|
|
label="上传发票文件(可多选)", |
|
|
file_types=[".pdf", ".jpg", ".jpeg", ".png"], |
|
|
file_count="multiple" |
|
|
) |
|
|
with gr.Column(): |
|
|
|
|
|
with gr.Group(): |
|
|
file_output = gr.File(label="下载Excel结果") |
|
|
progress_bar = gr.Slider( |
|
|
minimum=0, maximum=100, value=0, |
|
|
label="处理进度", |
|
|
interactive=False, |
|
|
visible=False, |
|
|
elem_classes=["compact-progress"] |
|
|
) |
|
|
|
|
|
submit_btn = gr.Button("开始处理", size="lg") |
|
|
|
|
|
|
|
|
demo.css = """ |
|
|
.compact-progress { |
|
|
margin-top: 8px; |
|
|
margin-bottom: 8px; |
|
|
} |
|
|
.compact-progress .wrap { |
|
|
padding: 0 !important; |
|
|
} |
|
|
""" |
|
|
|
|
|
submit_btn.click( |
|
|
fn=lambda api_key, files: asyncio.run(process_invoices(api_key, files, progress=gr.Progress())), |
|
|
inputs=[api_key, file_input], |
|
|
outputs=[file_output, progress_bar] |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|
|
|
|