COS30082 / app.py
FrAnKu34t23's picture
Update app.py
88a7516 verified
raw
history blame
4.65 kB
import gradio as gr
# --- 1. Import Existing Baselines ---
# Wrapped in try-except so the app doesn't crash if files are temporarily missing
try:
from baseline.baseline_convnext import predict_convnext
except ImportError:
def predict_convnext(image): return {"Error": "ConvNeXt module missing"}
try:
from baseline.baseline_infer import predict_baseline
except ImportError:
def predict_baseline(image): return {"Error": "Baseline module missing"}
# --- 2. Import NEW SPA Approach ---
# This imports the function from: new_approach/spa_ensemble.py
try:
from new_approach.spa_ensemble import predict_spa
except ImportError:
def predict_spa(image): return {"Error": "SPA module missing. Check 'new_approach' folder."}
# --- Placeholder models (for future extensions) ---
def predict_placeholder_2(image):
if image is None:
return "Please upload an image."
return "Model 4 is not available yet. Please check back later."
# --- Main Prediction Logic ---
def predict(model_choice, image):
if image is None: return None
if model_choice == "Herbarium Species Classifier":
# Friend's ConvNeXt mix-stream CNN baseline
return predict_convnext(image)
elif model_choice == "Baseline (DINOv2 + LogReg)":
# Original baseline
return predict_baseline(image)
elif model_choice == "SPA Ensemble (New Approach)":
# YOUR NEW CODE: DINOv2 + BioCLIP + Handcrafted + SPA
return predict_spa(image)
elif model_choice == "Future Model 2 (Placeholder)":
return predict_placeholder_2(image)
else:
return "Invalid model selected."
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
with gr.Column(elem_id="app-wrapper"):
# Header
gr.Markdown(
"""
<div id="app-header">
<h1>🌿 Plant Species Classification</h1>
<h3>AML Group Project – PsychicFireSong</h3>
</div>
""",
elem_id="app-header",
)
# Badges row
gr.Markdown(
"""
<div id="badge-row">
<span class="badge">Herbarium + Field images</span>
<span class="badge">ConvNeXtV2</span>
<span class="badge">SPA Ensemble</span>
</div>
""",
elem_id="badge-row",
)
# Main card
with gr.Row(elem_id="main-card"):
# Left side: model + image
with gr.Column(scale=1, elem_id="left-panel"):
model_selector = gr.Dropdown(
label="Select model",
choices=[
"Herbarium Species Classifier",
"Baseline (DINOv2 + LogReg)",
"SPA Ensemble (New Approach)",
"Future Model 2 (Placeholder)",
],
value="SPA Ensemble (New Approach)", # Default to your new model
)
gr.Markdown(
"""
<div id="model-help">
<b>Herbarium Classifier</b> – ConvNeXtV2 CNN.<br>
<b>Baseline</b> – Simple DINOv2 + LogReg.<br>
<b>SPA Ensemble</b> – <i>(New)</i> DINOv2 + BioCLIP-2 + Handcrafted features.
</div>
""",
elem_id="model-help",
)
image_input = gr.Image(
type="pil",
label="Upload plant image",
)
submit_button = gr.Button("Classify 🌱", variant="primary")
# Right side: predictions
with gr.Column(scale=1, elem_id="right-panel"):
output_label = gr.Label(
label="Top 5 predictions",
num_top_classes=5,
)
submit_button.click(
fn=predict,
inputs=[model_selector, image_input],
outputs=output_label,
)
# Optional examples
gr.Examples(
examples=[],
inputs=image_input,
outputs=output_label,
fn=lambda img: predict("SPA Ensemble (New Approach)", img),
cache_examples=False,
)
gr.Markdown(
"Built for the AML course – compare CNN vs. DINOv2 feature-extractor baselines.",
elem_id="footer",
)
if __name__ == "__main__":
demo.launch()