Spaces:
Configuration error
Configuration error
| import inspect | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| import torch.nn.functional as F | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| from diffusers.utils.import_utils import is_invisible_watermark_available | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.loaders import ( | |
| FromSingleFileMixin, | |
| IPAdapterMixin, | |
| StableDiffusionXLLoraLoaderMixin, | |
| TextualInversionLoaderMixin, | |
| ) | |
| from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel | |
| from diffusers.models.attention_processor import ( | |
| AttnProcessor2_0, | |
| LoRAAttnProcessor2_0, | |
| LoRAXFormersAttnProcessor, | |
| XFormersAttnProcessor, | |
| ) | |
| from diffusers.models.lora import adjust_lora_scale_text_encoder | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| deprecate, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput | |
| if is_invisible_watermark_available(): | |
| from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker | |
| from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | |
| from diffusers import StableDiffusionXLControlNetPipeline | |
| from PIL import Image | |
| from torchvision.transforms.functional import to_tensor | |
| from einops import rearrange | |
| from torch import einsum | |
| import math | |
| from torchvision.utils import save_image | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class RegionControlNet_AttnProcessor: | |
| def __init__(self, attention_op=None, controller=None, place_in_unet=None): | |
| self.attention_op = attention_op | |
| self.controller = controller | |
| self.place_in_unet = place_in_unet | |
| def __call__( | |
| self, | |
| attn, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| temb: Optional[torch.FloatTensor] = None, | |
| scale: float = 1.0, | |
| **cross_attention_kwargs | |
| ) -> torch.Tensor: | |
| residual = hidden_states | |
| args = () if USE_PEFT_BACKEND else (scale,) | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = attn.to_q(hidden_states, *args) | |
| is_cross = True | |
| if encoder_hidden_states is None: | |
| is_cross = False | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states, *args) | |
| value = attn.to_v(encoder_hidden_states, *args) | |
| query = attn.head_to_batch_dim(query) | |
| key = attn.head_to_batch_dim(key) | |
| value = attn.head_to_batch_dim(value) | |
| attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
| attention_probs = self.controller(attention_probs, is_cross, self.place_in_unet) | |
| hidden_states = torch.bmm(attention_probs, value) | |
| hidden_states = attn.batch_to_head_dim(hidden_states) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states, *args) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| def revise_regionally_controlnet_forward(unet, controller): | |
| def change_forward(unet, count, place_in_unet): | |
| for name, layer in unet.named_children(): | |
| if layer.__class__.__name__ == 'Attention': | |
| layer.set_processor(RegionControlNet_AttnProcessor(controller=controller, place_in_unet=place_in_unet)) | |
| if 'attn2' in name: | |
| count += 1 | |
| else: | |
| count = change_forward(layer, count, place_in_unet) | |
| return count | |
| # use this to ensure the order | |
| cross_attention_idx = change_forward(unet.down_blocks, 0, "down") | |
| cross_attention_idx = change_forward(unet.mid_block, cross_attention_idx, "up") | |
| cross_attention_idx = change_forward(unet.up_blocks, cross_attention_idx, "mid") | |
| print(f'Number of attention layer registered {cross_attention_idx}') | |
| controller.num_att_layers = cross_attention_idx*2 | |
| class LoraMultiConceptPipeline(StableDiffusionXLControlNetPipeline): | |
| # leave controlnet out on purpose because it iterates with unet | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" | |
| _optional_components = [ | |
| "tokenizer", | |
| "tokenizer_2", | |
| "text_encoder", | |
| "text_encoder_2", | |
| "feature_extractor", | |
| "image_encoder", | |
| ] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| text_encoder_2: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| tokenizer_2: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], | |
| scheduler: KarrasDiffusionSchedulers, | |
| force_zeros_for_empty_prompt: bool = True, | |
| add_watermarker: Optional[bool] = None, | |
| feature_extractor: CLIPImageProcessor = None, | |
| image_encoder: CLIPVisionModelWithProjection = None | |
| ): | |
| if isinstance(controlnet, (list, tuple)): | |
| controlnet = MultiControlNetModel(controlnet) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| unet=unet, | |
| controlnet=controlnet, | |
| scheduler=scheduler, | |
| feature_extractor=feature_extractor, | |
| image_encoder=image_encoder, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) | |
| self.control_image_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False | |
| ) | |
| add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() | |
| if add_watermarker: | |
| self.watermark = StableDiffusionXLWatermarker() | |
| else: | |
| self.watermark = None | |
| self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| image: PipelineImageInput = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 5.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| controlnet_conditioning_scale: Union[float, List[float]] = 1.0, | |
| guess_mode: bool = False, | |
| control_guidance_start: Union[float, List[float]] = 0.0, | |
| control_guidance_end: Union[float, List[float]] = 1.0, | |
| original_size: Tuple[int, int] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Tuple[int, int] = None, | |
| negative_original_size: Optional[Tuple[int, int]] = None, | |
| negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| negative_target_size: Optional[Tuple[int, int]] = None, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| controller=None, | |
| concept_models=None, | |
| stage=None, | |
| region_masks=None, | |
| lora_list=None, | |
| styleL=None, | |
| **kwargs, | |
| ): | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet | |
| # align format for control guidance | |
| if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | |
| control_guidance_start = len(control_guidance_end) * [control_guidance_start] | |
| elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | |
| control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
| elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | |
| mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 | |
| control_guidance_start, control_guidance_end = ( | |
| mult * [control_guidance_start], | |
| mult * [control_guidance_end], | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| # 2. Define call parameters | |
| batch_size = 2 | |
| device = self._execution_device | |
| if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): | |
| controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) | |
| global_pool_conditions = ( | |
| controlnet.config.global_pool_conditions | |
| if isinstance(controlnet, ControlNetModel) | |
| else controlnet.nets[0].config.global_pool_conditions | |
| ) | |
| guess_mode = guess_mode or global_pool_conditions | |
| # 3.1 Encode input prompt | |
| text_encoder_lora_scale = ( | |
| self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
| ) | |
| global_prompt = prompt[0] | |
| global_negative_prompt = negative_prompt | |
| region_prompts = [pt[0] for pt in prompt[1]] | |
| region_negative_prompts = [pt[1] for pt in prompt[1]] | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.encode_prompt( | |
| global_prompt, | |
| prompt_2, | |
| device, | |
| num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| global_negative_prompt, | |
| negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=self.clip_skip, | |
| ) | |
| region_prompt_embeds_list = [] | |
| region_add_text_embeds_list = [] | |
| for lora_param, region_prompt, region_negative_prompt in zip(lora_list, region_prompts, region_negative_prompts): | |
| if styleL: | |
| concept_models.set_adapters([lora_param, "style"], adapter_weights=[0.7, 0.5]) | |
| else: | |
| concept_models.set_adapters(lora_param) | |
| region_prompt_embeds, region_negative_prompt_embeds, region_pooled_prompt_embeds, region_negative_pooled_prompt_embeds = concept_models.encode_prompt( | |
| prompt=region_prompt, device=concept_models._execution_device, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=region_negative_prompt, lora_scale=text_encoder_lora_scale | |
| ) | |
| region_prompt_embeds_list.append(torch.concat([region_negative_prompt_embeds, region_prompt_embeds], dim=0).to(concept_models._execution_device)) | |
| region_add_text_embeds_list.append(torch.concat([region_negative_pooled_prompt_embeds, region_pooled_prompt_embeds], dim=0).to(concept_models._execution_device)) | |
| if stage==2: | |
| mask_list = [mask.float().to(dtype=prompt_embeds.dtype, device=device) if mask is not None else None for mask in region_masks] | |
| # 4. Prepare image | |
| if isinstance(controlnet, ControlNetModel) and image is not None: | |
| image = self.prepare_image( | |
| image=image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| guess_mode=guess_mode, | |
| ) | |
| height, width = image.shape[-2:] | |
| elif isinstance(controlnet, MultiControlNetModel) and image is not None: | |
| images = [] | |
| for image_ in image: | |
| image_ = self.prepare_image( | |
| image=image_, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| guess_mode=guess_mode, | |
| ) | |
| images.append(image_) | |
| image = images | |
| height, width = image[0].shape[-2:] | |
| else: | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 5. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| self._num_timesteps = len(timesteps) | |
| # 6. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size//2 * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6.1 repeat latent | |
| latents = torch.cat([latents, latents.clone()]) | |
| timestep_cond = None | |
| if self.unet.config.time_cond_proj_dim is not None: | |
| guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
| timestep_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7.1 Create tensor stating which controlnets to keep | |
| controlnet_keep = [] | |
| for i in range(len(timesteps)): | |
| keeps = [ | |
| 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
| for s, e in zip(control_guidance_start, control_guidance_end) | |
| ] | |
| controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) | |
| # 7.2 Prepare added time ids & embeddings | |
| if isinstance(image, list): | |
| original_size = original_size or image[0].shape[-2:] | |
| else: | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| add_text_embeds = pooled_prompt_embeds | |
| if self.text_encoder_2 is None: | |
| text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
| else: | |
| text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
| add_time_ids = self._get_add_time_ids( | |
| original_size, | |
| crops_coords_top_left, | |
| target_size, | |
| dtype=prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| add_time_ids_list = [] | |
| for _ in lora_list: | |
| region_add_time_ids = concept_models._get_add_time_ids(original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim) | |
| add_time_ids_list.append(torch.concat([region_add_time_ids, region_add_time_ids], dim=0).to(concept_models._execution_device)) | |
| if negative_original_size is not None and negative_target_size is not None: | |
| negative_add_time_ids = self._get_add_time_ids( | |
| negative_original_size, | |
| negative_crops_coords_top_left, | |
| negative_target_size, | |
| dtype=prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| else: | |
| negative_add_time_ids = add_time_ids | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
| add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
| prompt_embeds = prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
| # 8. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| is_unet_compiled = is_compiled_module(self.unet) | |
| is_controlnet_compiled = is_compiled_module(self.controlnet) | |
| is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") | |
| # hyper-parameters | |
| scale_range = np.linspace(1, 0.5, len(self.scheduler.timesteps)) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # Relevant thread: | |
| # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 | |
| if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: | |
| torch._inductor.cudagraph_mark_step_begin() | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
| # controlnet(s) inference | |
| if guess_mode and self.do_classifier_free_guidance: | |
| # Infer ControlNet only for the conditional batch. | |
| control_model_input = latents | |
| control_model_input = self.scheduler.scale_model_input(control_model_input, t) | |
| controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | |
| controlnet_added_cond_kwargs = { | |
| "text_embeds": add_text_embeds.chunk(2)[1], | |
| "time_ids": add_time_ids.chunk(2)[1], | |
| } | |
| else: | |
| control_model_input = latent_model_input | |
| controlnet_prompt_embeds = prompt_embeds | |
| controlnet_added_cond_kwargs = added_cond_kwargs | |
| if isinstance(controlnet_keep[i], list): | |
| cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | |
| else: | |
| controlnet_cond_scale = controlnet_conditioning_scale | |
| if isinstance(controlnet_cond_scale, list): | |
| controlnet_cond_scale = controlnet_cond_scale[0] | |
| cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
| if image is not None: | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| control_model_input, | |
| t, | |
| encoder_hidden_states=controlnet_prompt_embeds, | |
| controlnet_cond=image, | |
| conditioning_scale=cond_scale, | |
| guess_mode=guess_mode, | |
| added_cond_kwargs=controlnet_added_cond_kwargs, | |
| return_dict=False, | |
| ) | |
| if guess_mode and self.do_classifier_free_guidance: | |
| # Infered ControlNet only for the conditional batch. | |
| # To apply the output of ControlNet to both the unconditional and conditional batches, | |
| # add 0 to the unconditional batch to keep it unchanged. | |
| down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] | |
| mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) | |
| else: | |
| down_block_res_samples = None | |
| mid_block_res_sample = None | |
| # predict the noise residual | |
| if image is not None: | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| else: | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| if i > 15 and stage == 2: | |
| region_mask = self.get_region_mask(mask_list, noise_pred.shape[2], noise_pred.shape[3]) | |
| edit_noise = torch.concat([noise_pred[1:2], noise_pred[3:4]], dim=0) | |
| new_noise_pred = torch.zeros_like(edit_noise) | |
| new_noise_pred[:, :, region_mask == 0] = edit_noise[:, :, region_mask == 0] | |
| replace_ratio = 1.0 | |
| new_noise_pred[:, :, region_mask != 0] = (1 - replace_ratio) * edit_noise[:, :, region_mask != 0] | |
| for region_prompt_embeds, region_add_text_embeds, region_add_time_ids, concept_mask, region_prompt, lora_param in zip(region_prompt_embeds_list, region_add_text_embeds_list, add_time_ids_list, mask_list, region_prompts, lora_list): | |
| if concept_mask is not None: | |
| concept_mask = F.interpolate(concept_mask.unsqueeze(0).unsqueeze(0), | |
| size=(noise_pred.shape[2], noise_pred.shape[3]), | |
| mode='nearest').squeeze().to(dtype=noise_pred.dtype, device=concept_models._execution_device) | |
| region_latent_model_input = latent_model_input[3:4].clone().to(concept_models._execution_device) | |
| region_latent_model_input = torch.cat([region_latent_model_input] * 2) | |
| region_added_cond_kwargs = {"text_embeds": region_add_text_embeds, | |
| "time_ids": region_add_time_ids} | |
| if styleL: | |
| concept_models.set_adapters([lora_param, "style"], adapter_weights=[0.7, 0.5]) | |
| else: | |
| concept_models.set_adapters(lora_param) | |
| region_noise_pred = concept_models.unet( | |
| region_latent_model_input, | |
| t, | |
| encoder_hidden_states=region_prompt_embeds, | |
| cross_attention_kwargs={'scale': 0.8}, | |
| added_cond_kwargs=region_added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| new_noise_pred = new_noise_pred.to(concept_models._execution_device) | |
| new_noise_pred[:, :, concept_mask==1] += replace_ratio * (region_noise_pred[:, :, concept_mask==1] / (concept_mask.reshape(1, 1, *concept_mask.shape)[:, :, concept_mask==1].to(region_noise_pred.device))) | |
| new_noise_pred = new_noise_pred.to(noise_pred.device) | |
| noise_pred[1, :, :, :] = new_noise_pred[0] | |
| noise_pred[3, :, :, :] = new_noise_pred[1] | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| # manually for max memory savings | |
| if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: | |
| self.upcast_vae() | |
| latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| if stage==2: | |
| latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| if not output_type == "latent": | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
| if needs_upcasting: | |
| self.upcast_vae() | |
| latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| # cast back to fp16 if needed | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float16) | |
| else: | |
| image = latents | |
| if not output_type == "latent": | |
| # apply watermark if available | |
| if self.watermark is not None: | |
| image = self.watermark.apply_watermark(image) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return StableDiffusionXLPipelineOutput(images=image) | |
| def check_image(self, image, prompt, prompt_embeds): | |
| pass | |
| def get_region_mask(self, mask_list, feat_height, feat_width): | |
| exclusive_mask = torch.zeros((feat_height, feat_width)) | |
| for mask in mask_list: | |
| if mask is not None: | |
| mask = F.interpolate(mask.unsqueeze(0).unsqueeze(0), size=(feat_height, feat_width), | |
| mode='nearest').squeeze().to(dtype=exclusive_mask.dtype, device=exclusive_mask.device) | |
| exclusive_mask = ((mask == 1) | (exclusive_mask == 1)).to(dtype=mask.dtype) | |
| return exclusive_mask | |