Commit
·
93a5668
1
Parent(s):
9f65c7c
Guardar mis cambios locales
Browse files
app.py
CHANGED
|
@@ -23,7 +23,7 @@ def parse_date(date_str):
|
|
| 23 |
except ValueError:
|
| 24 |
return None, None, "Date format should be 'Month-Year', e.g., 'January-2024'."
|
| 25 |
|
| 26 |
-
def forecast_sales(uploaded_file,
|
| 27 |
if uploaded_file is None:
|
| 28 |
return "No file uploaded.", None, "Please upload a file."
|
| 29 |
|
|
@@ -34,13 +34,14 @@ def forecast_sales(uploaded_file, date_str, forecast_period=30):
|
|
| 34 |
except Exception as e:
|
| 35 |
return None, f"Failed to read the uploaded CSV file: {str(e)}", "Error reading file."
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
df['Date'] = pd.to_datetime(df['Date'])
|
| 38 |
df = df.rename(columns={'Date': 'ds', 'Sale': 'y'})
|
| 39 |
|
| 40 |
-
start_date, end_date, error = parse_date(date_str)
|
| 41 |
-
if error:
|
| 42 |
-
return None, error, "Invalid date format."
|
| 43 |
-
|
| 44 |
df_filtered = df[(df['ds'] >= start_date) & (df['ds'] <= end_date)]
|
| 45 |
|
| 46 |
arima_model, error = load_model()
|
|
@@ -48,8 +49,8 @@ def forecast_sales(uploaded_file, date_str, forecast_period=30):
|
|
| 48 |
return None, error, "Failed to load ARIMA model."
|
| 49 |
|
| 50 |
try:
|
| 51 |
-
forecast = arima_model.get_forecast(steps=forecast_period)
|
| 52 |
forecast_index = pd.date_range(start=end_date, periods=forecast_period + 1, freq='D')[1:]
|
|
|
|
| 53 |
forecast_df = pd.DataFrame({'Date': forecast_index, 'Sales Forecast': forecast.predicted_mean})
|
| 54 |
except Exception as e:
|
| 55 |
return None, f"Failed during forecasting: {str(e)}", "Forecasting failed."
|
|
@@ -62,7 +63,7 @@ def forecast_sales(uploaded_file, date_str, forecast_period=30):
|
|
| 62 |
ax.set_ylabel('Sales')
|
| 63 |
ax.set_title('Sales Forecasting with ARIMA')
|
| 64 |
ax.legend()
|
| 65 |
-
return
|
| 66 |
except Exception as e:
|
| 67 |
return None, f"Failed to generate plot: {str(e)}", "Plotting failed."
|
| 68 |
|
|
@@ -71,14 +72,15 @@ def setup_interface():
|
|
| 71 |
gr.Markdown("## MLCast v1.1 - Intelligent Sales Forecasting System")
|
| 72 |
with gr.Row():
|
| 73 |
file_input = gr.File(label="Upload your store data here (must contain Date and Sales)")
|
| 74 |
-
|
|
|
|
| 75 |
forecast_button = gr.Button("Forecast Sales")
|
| 76 |
output_plot = gr.Plot()
|
| 77 |
output_message = gr.Textbox(label="System Messages", visible=True)
|
| 78 |
forecast_button.click(
|
| 79 |
forecast_sales,
|
| 80 |
-
inputs=[file_input,
|
| 81 |
-
outputs=[
|
| 82 |
)
|
| 83 |
return demo
|
| 84 |
|
|
|
|
| 23 |
except ValueError:
|
| 24 |
return None, None, "Date format should be 'Month-Year', e.g., 'January-2024'."
|
| 25 |
|
| 26 |
+
def forecast_sales(uploaded_file, start_date_str, end_date_str, forecast_period=30):
|
| 27 |
if uploaded_file is None:
|
| 28 |
return "No file uploaded.", None, "Please upload a file."
|
| 29 |
|
|
|
|
| 34 |
except Exception as e:
|
| 35 |
return None, f"Failed to read the uploaded CSV file: {str(e)}", "Error reading file."
|
| 36 |
|
| 37 |
+
start_date, _, error = parse_date(start_date_str)
|
| 38 |
+
_, end_date, error_end = parse_date(end_date_str)
|
| 39 |
+
if error or error_end:
|
| 40 |
+
return None, error or error_end, "Invalid date format."
|
| 41 |
+
|
| 42 |
df['Date'] = pd.to_datetime(df['Date'])
|
| 43 |
df = df.rename(columns={'Date': 'ds', 'Sale': 'y'})
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
df_filtered = df[(df['ds'] >= start_date) & (df['ds'] <= end_date)]
|
| 46 |
|
| 47 |
arima_model, error = load_model()
|
|
|
|
| 49 |
return None, error, "Failed to load ARIMA model."
|
| 50 |
|
| 51 |
try:
|
|
|
|
| 52 |
forecast_index = pd.date_range(start=end_date, periods=forecast_period + 1, freq='D')[1:]
|
| 53 |
+
forecast = arima_model.get_forecast(steps=forecast_period)
|
| 54 |
forecast_df = pd.DataFrame({'Date': forecast_index, 'Sales Forecast': forecast.predicted_mean})
|
| 55 |
except Exception as e:
|
| 56 |
return None, f"Failed during forecasting: {str(e)}", "Forecasting failed."
|
|
|
|
| 63 |
ax.set_ylabel('Sales')
|
| 64 |
ax.set_title('Sales Forecasting with ARIMA')
|
| 65 |
ax.legend()
|
| 66 |
+
return None, fig, "File loaded and processed successfully."
|
| 67 |
except Exception as e:
|
| 68 |
return None, f"Failed to generate plot: {str(e)}", "Plotting failed."
|
| 69 |
|
|
|
|
| 72 |
gr.Markdown("## MLCast v1.1 - Intelligent Sales Forecasting System")
|
| 73 |
with gr.Row():
|
| 74 |
file_input = gr.File(label="Upload your store data here (must contain Date and Sales)")
|
| 75 |
+
start_date_input = gr.Textbox(label="Start Date (e.g., January-2024)", placeholder="Enter Start Date")
|
| 76 |
+
end_date_input = gr.Textbox(label="End Date (e.g., January-2024)", placeholder="Enter End Date")
|
| 77 |
forecast_button = gr.Button("Forecast Sales")
|
| 78 |
output_plot = gr.Plot()
|
| 79 |
output_message = gr.Textbox(label="System Messages", visible=True)
|
| 80 |
forecast_button.click(
|
| 81 |
forecast_sales,
|
| 82 |
+
inputs=[file_input, start_date_input, end_date_input],
|
| 83 |
+
outputs=[output_message, output_plot]
|
| 84 |
)
|
| 85 |
return demo
|
| 86 |
|