Commit
·
b90f6cc
1
Parent(s):
5a3b63d
Guardar mis cambios locales
Browse files
app.py
CHANGED
|
@@ -10,7 +10,7 @@ def load_model():
|
|
| 10 |
except Exception as e:
|
| 11 |
return None, f"Failed to load model: {str(e)}"
|
| 12 |
|
| 13 |
-
def forecast_sales(uploaded_file, forecast_period=30):
|
| 14 |
if uploaded_file is None:
|
| 15 |
return "No file uploaded.", None
|
| 16 |
|
|
@@ -24,21 +24,26 @@ def forecast_sales(uploaded_file, forecast_period=30):
|
|
| 24 |
df['Date'] = pd.to_datetime(df['Date'])
|
| 25 |
df = df.rename(columns={'Date': 'ds', 'Sale': 'y'})
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
arima_model, error = load_model()
|
| 28 |
if arima_model is None:
|
| 29 |
return error, None
|
| 30 |
|
| 31 |
try:
|
|
|
|
| 32 |
forecast = arima_model.get_forecast(steps=forecast_period)
|
| 33 |
-
forecast_index = pd.date_range(df['ds'].max(), periods=forecast_period + 1, freq='D')[1:]
|
| 34 |
forecast_df = pd.DataFrame({'Date': forecast_index, 'Sales Forecast': forecast.predicted_mean})
|
| 35 |
except Exception as e:
|
| 36 |
return f"Failed during forecasting: {str(e)}", None
|
| 37 |
|
| 38 |
try:
|
| 39 |
fig, ax = plt.subplots(figsize=(10, 6))
|
| 40 |
-
|
| 41 |
-
ax.plot(
|
|
|
|
|
|
|
| 42 |
ax.set_xlabel('Date')
|
| 43 |
ax.set_ylabel('Sales')
|
| 44 |
ax.set_title('Sales Forecasting with ARIMA')
|
|
@@ -51,12 +56,14 @@ def setup_interface():
|
|
| 51 |
with gr.Blocks() as demo:
|
| 52 |
gr.Markdown("## MLCast v1.1 - Intelligent Sales Forecasting System")
|
| 53 |
file_input = gr.File(label="Upload your store data here (must contain Date and Sales)")
|
|
|
|
|
|
|
| 54 |
forecast_button = gr.Button("Forecast Sales")
|
| 55 |
output_text = gr.Textbox(visible=True)
|
| 56 |
output_plot = gr.Plot()
|
| 57 |
forecast_button.click(
|
| 58 |
forecast_sales,
|
| 59 |
-
inputs=[file_input, gr.Slider(1, 60, step=1, label="Forecast Period (days)", value=30)],
|
| 60 |
outputs=[output_text, output_plot]
|
| 61 |
)
|
| 62 |
return demo
|
|
|
|
| 10 |
except Exception as e:
|
| 11 |
return None, f"Failed to load model: {str(e)}"
|
| 12 |
|
| 13 |
+
def forecast_sales(uploaded_file, start_date, end_date, forecast_period=30):
|
| 14 |
if uploaded_file is None:
|
| 15 |
return "No file uploaded.", None
|
| 16 |
|
|
|
|
| 24 |
df['Date'] = pd.to_datetime(df['Date'])
|
| 25 |
df = df.rename(columns={'Date': 'ds', 'Sale': 'y'})
|
| 26 |
|
| 27 |
+
# Filtrar los datos según el rango de fechas seleccionado por el usuario
|
| 28 |
+
df_filtered = df[(df['ds'] >= pd.to_datetime(start_date)) & (df['ds'] <= pd.to_datetime(end_date))]
|
| 29 |
+
|
| 30 |
arima_model, error = load_model()
|
| 31 |
if arima_model is None:
|
| 32 |
return error, None
|
| 33 |
|
| 34 |
try:
|
| 35 |
+
forecast_index = pd.date_range(start=pd.to_datetime(end_date), periods=forecast_period + 1, freq='D')[1:]
|
| 36 |
forecast = arima_model.get_forecast(steps=forecast_period)
|
|
|
|
| 37 |
forecast_df = pd.DataFrame({'Date': forecast_index, 'Sales Forecast': forecast.predicted_mean})
|
| 38 |
except Exception as e:
|
| 39 |
return f"Failed during forecasting: {str(e)}", None
|
| 40 |
|
| 41 |
try:
|
| 42 |
fig, ax = plt.subplots(figsize=(10, 6))
|
| 43 |
+
# Dibujar las ventas actuales en rojo
|
| 44 |
+
ax.plot(df_filtered['ds'], df_filtered['y'], label='Actual Sales', color='red')
|
| 45 |
+
# Dibujar la predicción en azul
|
| 46 |
+
ax.plot(forecast_df['Date'], forecast_df['Sales Forecast'], label='Sales Forecast', color='blue', linestyle='--')
|
| 47 |
ax.set_xlabel('Date')
|
| 48 |
ax.set_ylabel('Sales')
|
| 49 |
ax.set_title('Sales Forecasting with ARIMA')
|
|
|
|
| 56 |
with gr.Blocks() as demo:
|
| 57 |
gr.Markdown("## MLCast v1.1 - Intelligent Sales Forecasting System")
|
| 58 |
file_input = gr.File(label="Upload your store data here (must contain Date and Sales)")
|
| 59 |
+
start_date_input = gr.Date(label="Start Date")
|
| 60 |
+
end_date_input = gr.Date(label="End Date")
|
| 61 |
forecast_button = gr.Button("Forecast Sales")
|
| 62 |
output_text = gr.Textbox(visible=True)
|
| 63 |
output_plot = gr.Plot()
|
| 64 |
forecast_button.click(
|
| 65 |
forecast_sales,
|
| 66 |
+
inputs=[file_input, start_date_input, end_date_input, gr.Slider(1, 60, step=1, label="Forecast Period (days)", value=30)],
|
| 67 |
outputs=[output_text, output_plot]
|
| 68 |
)
|
| 69 |
return demo
|