Spaces:
Configuration error
Configuration error
| """ Optimizer Factory w/ Custom Weight Decay | |
| Hacked together by / Copyright 2021 Ross Wightman | |
| """ | |
| import logging | |
| from itertools import islice | |
| from typing import Optional, Callable, Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| from custom_timm.models.helpers import group_parameters | |
| from .adabelief import AdaBelief | |
| from .adafactor import Adafactor | |
| from .adahessian import Adahessian | |
| from .adamp import AdamP | |
| from .lamb import Lamb | |
| from .lars import Lars | |
| from .lookahead import Lookahead | |
| from .madgrad import MADGRAD | |
| from .nadam import Nadam | |
| from .nvnovograd import NvNovoGrad | |
| from .radam import RAdam | |
| from .rmsprop_tf import RMSpropTF | |
| from .sgdp import SGDP | |
| try: | |
| from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD | |
| has_apex = True | |
| except ImportError: | |
| has_apex = False | |
| _logger = logging.getLogger(__name__) | |
| def param_groups_weight_decay( | |
| model: nn.Module, | |
| weight_decay=1e-5, | |
| no_weight_decay_list=() | |
| ): | |
| no_weight_decay_list = set(no_weight_decay_list) | |
| decay = [] | |
| no_decay = [] | |
| for name, param in model.named_parameters(): | |
| if not param.requires_grad: | |
| continue | |
| if param.ndim <= 1 or name.endswith(".bias") or name in no_weight_decay_list: | |
| no_decay.append(param) | |
| else: | |
| decay.append(param) | |
| return [ | |
| {'params': no_decay, 'weight_decay': 0.}, | |
| {'params': decay, 'weight_decay': weight_decay}] | |
| def _group(it, size): | |
| it = iter(it) | |
| return iter(lambda: tuple(islice(it, size)), ()) | |
| def _layer_map(model, layers_per_group=12, num_groups=None): | |
| def _in_head(n, hp): | |
| if not hp: | |
| return True | |
| elif isinstance(hp, (tuple, list)): | |
| return any([n.startswith(hpi) for hpi in hp]) | |
| else: | |
| return n.startswith(hp) | |
| head_prefix = getattr(model, 'pretrained_cfg', {}).get('classifier', None) | |
| names_trunk = [] | |
| names_head = [] | |
| for n, _ in model.named_parameters(): | |
| names_head.append(n) if _in_head(n, head_prefix) else names_trunk.append(n) | |
| # group non-head layers | |
| num_trunk_layers = len(names_trunk) | |
| if num_groups is not None: | |
| layers_per_group = -(num_trunk_layers // -num_groups) | |
| names_trunk = list(_group(names_trunk, layers_per_group)) | |
| num_trunk_groups = len(names_trunk) | |
| layer_map = {n: i for i, l in enumerate(names_trunk) for n in l} | |
| layer_map.update({n: num_trunk_groups for n in names_head}) | |
| return layer_map | |
| def param_groups_layer_decay( | |
| model: nn.Module, | |
| weight_decay: float = 0.05, | |
| no_weight_decay_list: Tuple[str] = (), | |
| layer_decay: float = .75, | |
| end_layer_decay: Optional[float] = None, | |
| verbose: bool = False, | |
| ): | |
| """ | |
| Parameter groups for layer-wise lr decay & weight decay | |
| Based on BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L58 | |
| """ | |
| no_weight_decay_list = set(no_weight_decay_list) | |
| param_group_names = {} # NOTE for debugging | |
| param_groups = {} | |
| if hasattr(model, 'group_matcher'): | |
| # FIXME interface needs more work | |
| layer_map = group_parameters(model, model.group_matcher(coarse=False), reverse=True) | |
| else: | |
| # fallback | |
| layer_map = _layer_map(model) | |
| num_layers = max(layer_map.values()) + 1 | |
| layer_max = num_layers - 1 | |
| layer_scales = list(layer_decay ** (layer_max - i) for i in range(num_layers)) | |
| for name, param in model.named_parameters(): | |
| if not param.requires_grad: | |
| continue | |
| # no decay: all 1D parameters and model specific ones | |
| if param.ndim == 1 or name in no_weight_decay_list: | |
| g_decay = "no_decay" | |
| this_decay = 0. | |
| else: | |
| g_decay = "decay" | |
| this_decay = weight_decay | |
| layer_id = layer_map.get(name, layer_max) | |
| group_name = "layer_%d_%s" % (layer_id, g_decay) | |
| if group_name not in param_groups: | |
| this_scale = layer_scales[layer_id] | |
| param_group_names[group_name] = { | |
| "lr_scale": this_scale, | |
| "weight_decay": this_decay, | |
| "param_names": [], | |
| } | |
| param_groups[group_name] = { | |
| "lr_scale": this_scale, | |
| "weight_decay": this_decay, | |
| "params": [], | |
| } | |
| param_group_names[group_name]["param_names"].append(name) | |
| param_groups[group_name]["params"].append(param) | |
| if verbose: | |
| import json | |
| _logger.info("parameter groups: \n%s" % json.dumps(param_group_names, indent=2)) | |
| return list(param_groups.values()) | |
| def optimizer_kwargs(cfg): | |
| """ cfg/argparse to kwargs helper | |
| Convert optimizer args in argparse args or cfg like object to keyword args for updated create fn. | |
| """ | |
| kwargs = dict( | |
| opt=cfg.opt, | |
| lr=cfg.lr, | |
| weight_decay=cfg.weight_decay, | |
| momentum=cfg.momentum) | |
| if getattr(cfg, 'opt_eps', None) is not None: | |
| kwargs['eps'] = cfg.opt_eps | |
| if getattr(cfg, 'opt_betas', None) is not None: | |
| kwargs['betas'] = cfg.opt_betas | |
| if getattr(cfg, 'layer_decay', None) is not None: | |
| kwargs['layer_decay'] = cfg.layer_decay | |
| if getattr(cfg, 'opt_args', None) is not None: | |
| kwargs.update(cfg.opt_args) | |
| return kwargs | |
| def create_optimizer(args, model, filter_bias_and_bn=True): | |
| """ Legacy optimizer factory for backwards compatibility. | |
| NOTE: Use create_optimizer_v2 for new code. | |
| """ | |
| return create_optimizer_v2( | |
| model, | |
| **optimizer_kwargs(cfg=args), | |
| filter_bias_and_bn=filter_bias_and_bn, | |
| ) | |
| def create_optimizer_v2( | |
| model_or_params, | |
| opt: str = 'sgd', | |
| lr: Optional[float] = None, | |
| weight_decay: float = 0., | |
| momentum: float = 0.9, | |
| filter_bias_and_bn: bool = True, | |
| layer_decay: Optional[float] = None, | |
| param_group_fn: Optional[Callable] = None, | |
| **kwargs): | |
| """ Create an optimizer. | |
| TODO currently the model is passed in and all parameters are selected for optimization. | |
| For more general use an interface that allows selection of parameters to optimize and lr groups, one of: | |
| * a filter fn interface that further breaks params into groups in a weight_decay compatible fashion | |
| * expose the parameters interface and leave it up to caller | |
| Args: | |
| model_or_params (nn.Module): model containing parameters to optimize | |
| opt: name of optimizer to create | |
| lr: initial learning rate | |
| weight_decay: weight decay to apply in optimizer | |
| momentum: momentum for momentum based optimizers (others may use betas via kwargs) | |
| filter_bias_and_bn: filter out bias, bn and other 1d params from weight decay | |
| **kwargs: extra optimizer specific kwargs to pass through | |
| Returns: | |
| Optimizer | |
| """ | |
| if isinstance(model_or_params, nn.Module): | |
| # a model was passed in, extract parameters and add weight decays to appropriate layers | |
| no_weight_decay = {} | |
| if hasattr(model_or_params, 'no_weight_decay'): | |
| no_weight_decay = model_or_params.no_weight_decay() | |
| if param_group_fn: | |
| parameters = param_group_fn(model_or_params) | |
| elif layer_decay is not None: | |
| parameters = param_groups_layer_decay( | |
| model_or_params, | |
| weight_decay=weight_decay, | |
| layer_decay=layer_decay, | |
| no_weight_decay_list=no_weight_decay) | |
| weight_decay = 0. | |
| elif weight_decay and filter_bias_and_bn: | |
| parameters = param_groups_weight_decay(model_or_params, weight_decay, no_weight_decay) | |
| weight_decay = 0. | |
| else: | |
| parameters = model_or_params.parameters() | |
| else: | |
| # iterable of parameters or param groups passed in | |
| parameters = model_or_params | |
| opt_lower = opt.lower() | |
| opt_split = opt_lower.split('_') | |
| opt_lower = opt_split[-1] | |
| if 'fused' in opt_lower: | |
| assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' | |
| opt_args = dict(weight_decay=weight_decay, **kwargs) | |
| if lr is not None: | |
| opt_args.setdefault('lr', lr) | |
| # basic SGD & related | |
| if opt_lower == 'sgd' or opt_lower == 'nesterov': | |
| # NOTE 'sgd' refers to SGD + nesterov momentum for legacy / backwards compat reasons | |
| opt_args.pop('eps', None) | |
| optimizer = optim.SGD(parameters, momentum=momentum, nesterov=True, **opt_args) | |
| elif opt_lower == 'momentum': | |
| opt_args.pop('eps', None) | |
| optimizer = optim.SGD(parameters, momentum=momentum, nesterov=False, **opt_args) | |
| elif opt_lower == 'sgdp': | |
| optimizer = SGDP(parameters, momentum=momentum, nesterov=True, **opt_args) | |
| # adaptive | |
| elif opt_lower == 'adam': | |
| optimizer = optim.Adam(parameters, **opt_args) | |
| elif opt_lower == 'adamw': | |
| optimizer = optim.AdamW(parameters, **opt_args) | |
| elif opt_lower == 'adamp': | |
| optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) | |
| elif opt_lower == 'nadam': | |
| try: | |
| # NOTE PyTorch >= 1.10 should have native NAdam | |
| optimizer = optim.Nadam(parameters, **opt_args) | |
| except AttributeError: | |
| optimizer = Nadam(parameters, **opt_args) | |
| elif opt_lower == 'radam': | |
| optimizer = RAdam(parameters, **opt_args) | |
| elif opt_lower == 'adamax': | |
| optimizer = optim.Adamax(parameters, **opt_args) | |
| elif opt_lower == 'adabelief': | |
| optimizer = AdaBelief(parameters, rectify=False, **opt_args) | |
| elif opt_lower == 'radabelief': | |
| optimizer = AdaBelief(parameters, rectify=True, **opt_args) | |
| elif opt_lower == 'adadelta': | |
| optimizer = optim.Adadelta(parameters, **opt_args) | |
| elif opt_lower == 'adagrad': | |
| opt_args.setdefault('eps', 1e-8) | |
| optimizer = optim.Adagrad(parameters, **opt_args) | |
| elif opt_lower == 'adafactor': | |
| optimizer = Adafactor(parameters, **opt_args) | |
| elif opt_lower == 'lamb': | |
| optimizer = Lamb(parameters, **opt_args) | |
| elif opt_lower == 'lambc': | |
| optimizer = Lamb(parameters, trust_clip=True, **opt_args) | |
| elif opt_lower == 'larc': | |
| optimizer = Lars(parameters, momentum=momentum, trust_clip=True, **opt_args) | |
| elif opt_lower == 'lars': | |
| optimizer = Lars(parameters, momentum=momentum, **opt_args) | |
| elif opt_lower == 'nlarc': | |
| optimizer = Lars(parameters, momentum=momentum, trust_clip=True, nesterov=True, **opt_args) | |
| elif opt_lower == 'nlars': | |
| optimizer = Lars(parameters, momentum=momentum, nesterov=True, **opt_args) | |
| elif opt_lower == 'madgrad': | |
| optimizer = MADGRAD(parameters, momentum=momentum, **opt_args) | |
| elif opt_lower == 'madgradw': | |
| optimizer = MADGRAD(parameters, momentum=momentum, decoupled_decay=True, **opt_args) | |
| elif opt_lower == 'novograd' or opt_lower == 'nvnovograd': | |
| optimizer = NvNovoGrad(parameters, **opt_args) | |
| elif opt_lower == 'rmsprop': | |
| optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=momentum, **opt_args) | |
| elif opt_lower == 'rmsproptf': | |
| optimizer = RMSpropTF(parameters, alpha=0.9, momentum=momentum, **opt_args) | |
| # second order | |
| elif opt_lower == 'adahessian': | |
| optimizer = Adahessian(parameters, **opt_args) | |
| # NVIDIA fused optimizers, require APEX to be installed | |
| elif opt_lower == 'fusedsgd': | |
| opt_args.pop('eps', None) | |
| optimizer = FusedSGD(parameters, momentum=momentum, nesterov=True, **opt_args) | |
| elif opt_lower == 'fusedmomentum': | |
| opt_args.pop('eps', None) | |
| optimizer = FusedSGD(parameters, momentum=momentum, nesterov=False, **opt_args) | |
| elif opt_lower == 'fusedadam': | |
| optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) | |
| elif opt_lower == 'fusedadamw': | |
| optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) | |
| elif opt_lower == 'fusedlamb': | |
| optimizer = FusedLAMB(parameters, **opt_args) | |
| elif opt_lower == 'fusednovograd': | |
| opt_args.setdefault('betas', (0.95, 0.98)) | |
| optimizer = FusedNovoGrad(parameters, **opt_args) | |
| else: | |
| assert False and "Invalid optimizer" | |
| raise ValueError | |
| if len(opt_split) > 1: | |
| if opt_split[0] == 'lookahead': | |
| optimizer = Lookahead(optimizer) | |
| return optimizer | |