Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from llama_cpp import Llama | |
| import os | |
| os.system("pip install -U huggingface_hub") | |
| os.system("huggingface-cli download Qwen/Qwen2.5-0.5B-Instruct-GGUF qwen2.5-0.5b-instruct-q2_k.gguf --local-dir . --local-dir-use-symlinks False") | |
| # Load the Qwen GGUF model | |
| MODEL_PATH = "./qwen2.5-0.5b-instruct-q2_k.gguf" # Ensure the file exists in this path | |
| model = Llama(model_path=MODEL_PATH) | |
| # Define the chat function | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| # Prepare the full prompt | |
| prompt = f"{system_message}\n" | |
| for user_msg, assistant_msg in history: | |
| prompt += f"User: {user_msg}\nAssistant: {assistant_msg}\n" | |
| prompt += f"User: {message}\nAssistant:" | |
| # Generate response using llama-cpp | |
| response = model( | |
| prompt, | |
| max_tokens=max_tokens, | |
| # temperature=temperature, | |
| # top_p=top_p | |
| ) | |
| # Extract text response | |
| return response["choices"][0]["text"].strip() | |
| # Define Gradio chat interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a helpful AI assistant.", label="System message"), | |
| gr.Slider(minimum=10, maximum=1024, value=256, step=10, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature no effect"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling) no effect"), | |
| ], | |
| ) | |
| # Launch Gradio app | |
| if __name__ == "__main__": | |
| demo.launch() | |