Spaces:
Sleeping
Sleeping
Kartikay Khosla
commited on
Commit
Β·
14d6a4f
1
Parent(s):
149d94e
Update app.py and requirements.txt with URL support and emotion filter
Browse files- .DS_Store +0 -0
- SAURL +313 -0
- SAURL.py +313 -0
- app copy.py +295 -0
- requirements.txt +4 -1
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
SAURL
ADDED
|
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import spacy
|
| 3 |
+
import stanza
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import re
|
| 6 |
+
import docx
|
| 7 |
+
from collections import Counter
|
| 8 |
+
import stanza
|
| 9 |
+
from transformers import pipeline
|
| 10 |
+
import torch
|
| 11 |
+
from langdetect import detect
|
| 12 |
+
import streamlit as st
|
| 13 |
+
import io
|
| 14 |
+
from newspaper import Article # β
for URL input
|
| 15 |
+
|
| 16 |
+
# ===============================
|
| 17 |
+
# π§ Safe SpaCy + Stanza Downloads
|
| 18 |
+
# ===============================
|
| 19 |
+
def safe_load_spacy():
|
| 20 |
+
try:
|
| 21 |
+
return spacy.load("en_core_web_trf")
|
| 22 |
+
except OSError:
|
| 23 |
+
try:
|
| 24 |
+
return spacy.load("en_core_web_sm")
|
| 25 |
+
except OSError:
|
| 26 |
+
os.system("python -m spacy download en_core_web_sm")
|
| 27 |
+
return spacy.load("en_core_web_sm")
|
| 28 |
+
|
| 29 |
+
nlp_en = safe_load_spacy()
|
| 30 |
+
|
| 31 |
+
stanza_dir = os.path.expanduser("~/.stanza_resources")
|
| 32 |
+
if not os.path.exists(stanza_dir):
|
| 33 |
+
stanza.download('hi')
|
| 34 |
+
stanza.download('ta')
|
| 35 |
+
|
| 36 |
+
stanza.download('hi')
|
| 37 |
+
stanza.download('ta')
|
| 38 |
+
|
| 39 |
+
nlp_hi = stanza.Pipeline('hi', processors='tokenize,pos', use_gpu=torch.cuda.is_available())
|
| 40 |
+
nlp_ta = stanza.Pipeline('ta', processors='tokenize,pos', use_gpu=torch.cuda.is_available())
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# ===============================
|
| 44 |
+
# Language-Aware Pipeline Loader
|
| 45 |
+
# ===============================
|
| 46 |
+
def load_pipelines(language_code):
|
| 47 |
+
lang = language_code.upper()
|
| 48 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 49 |
+
st.write(f"π Language detected: {lang}")
|
| 50 |
+
st.write(f"Device set to use {'cuda:0' if device == 0 else 'cpu'}")
|
| 51 |
+
|
| 52 |
+
if lang == "EN":
|
| 53 |
+
emo_model = "SamLowe/roberta-base-go_emotions"
|
| 54 |
+
elif lang in ["HI", "TA"]:
|
| 55 |
+
emo_model = "bhadresh-savani/bert-base-go-emotion"
|
| 56 |
+
else:
|
| 57 |
+
emo_model = "SamLowe/roberta-base-go_emotions"
|
| 58 |
+
|
| 59 |
+
emotion_pipeline = pipeline(
|
| 60 |
+
"text-classification",
|
| 61 |
+
model=emo_model,
|
| 62 |
+
tokenizer=emo_model,
|
| 63 |
+
return_all_scores=True,
|
| 64 |
+
device=device
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
if lang == "EN":
|
| 68 |
+
sent_model = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 69 |
+
else:
|
| 70 |
+
sent_model = "cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual"
|
| 71 |
+
|
| 72 |
+
sentiment_pipeline = pipeline(
|
| 73 |
+
"text-classification",
|
| 74 |
+
model=sent_model,
|
| 75 |
+
tokenizer=sent_model,
|
| 76 |
+
return_all_scores=True,
|
| 77 |
+
device=device
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
return emotion_pipeline, sentiment_pipeline
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# ===============================
|
| 84 |
+
# DOCX Reader β keep paras separate
|
| 85 |
+
# ===============================
|
| 86 |
+
def read_and_split_articles(file_path):
|
| 87 |
+
doc = docx.Document(file_path)
|
| 88 |
+
paragraphs = [para.text.strip() for para in doc.paragraphs if para.text.strip()]
|
| 89 |
+
return paragraphs
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# ===============================
|
| 93 |
+
# URL Reader β title + main body
|
| 94 |
+
# ===============================
|
| 95 |
+
def read_article_from_url(url):
|
| 96 |
+
article = Article(url)
|
| 97 |
+
article.download()
|
| 98 |
+
article.parse()
|
| 99 |
+
title = article.title.strip()
|
| 100 |
+
body = article.text.strip()
|
| 101 |
+
full_text = f"{title}\n\n{body}"
|
| 102 |
+
return full_text
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# ===============================
|
| 106 |
+
# Filter Neutral
|
| 107 |
+
# ===============================
|
| 108 |
+
def filter_neutral(emotion_results, neutral_threshold=0.75):
|
| 109 |
+
scores = {r["label"]: round(r["score"], 3)
|
| 110 |
+
for r in sorted(emotion_results, key=lambda x: x["score"], reverse=True)}
|
| 111 |
+
if "neutral" in scores and scores["neutral"] > neutral_threshold:
|
| 112 |
+
scores.pop("neutral")
|
| 113 |
+
return scores
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# ===============================
|
| 117 |
+
# Sentence Splitter
|
| 118 |
+
# ===============================
|
| 119 |
+
def split_sentences(text, lang):
|
| 120 |
+
if lang == "hi":
|
| 121 |
+
sentences = re.split(r'ΰ₯€', text)
|
| 122 |
+
elif lang == "ta":
|
| 123 |
+
sentences = re.split(r'\.', text)
|
| 124 |
+
else:
|
| 125 |
+
doc = nlp_en(text)
|
| 126 |
+
sentences = [sent.text.strip() for sent in doc.sents]
|
| 127 |
+
return [s.strip() for s in sentences if s.strip()]
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# ===============================
|
| 131 |
+
# POS Tagger
|
| 132 |
+
# ===============================
|
| 133 |
+
def get_pos_tags(sentence, lang):
|
| 134 |
+
if lang == "en":
|
| 135 |
+
doc = nlp_en(sentence)
|
| 136 |
+
return [(token.text, token.pos_) for token in doc]
|
| 137 |
+
elif lang == "hi":
|
| 138 |
+
doc = nlp_hi(sentence)
|
| 139 |
+
return [(word.text, word.upos) for sent in doc.sentences for word in sent.words]
|
| 140 |
+
elif lang == "ta":
|
| 141 |
+
doc = nlp_ta(sentence)
|
| 142 |
+
return [(word.text, word.upos) for sent in doc.sentences for word in sent.words]
|
| 143 |
+
else:
|
| 144 |
+
return []
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
# ===============================
|
| 148 |
+
# Analysis Function
|
| 149 |
+
# ===============================
|
| 150 |
+
def analyze_article(article_text, lang, emotion_pipeline, sentiment_pipeline):
|
| 151 |
+
results_summary = []
|
| 152 |
+
export_rows = []
|
| 153 |
+
para_counters = []
|
| 154 |
+
emotion_to_sentences = {}
|
| 155 |
+
|
| 156 |
+
paragraphs = [p.strip() for p in article_text.split("\n\n") if p.strip()]
|
| 157 |
+
if len(paragraphs) <= 1:
|
| 158 |
+
paragraphs = [p.strip() for p in article_text.split("\n") if p.strip()]
|
| 159 |
+
|
| 160 |
+
# Weighted overall results
|
| 161 |
+
weighted_scores = {}
|
| 162 |
+
total_length = 0
|
| 163 |
+
all_sentiments = []
|
| 164 |
+
|
| 165 |
+
for para in paragraphs:
|
| 166 |
+
sentences = split_sentences(para, lang[:2])
|
| 167 |
+
for sentence in sentences:
|
| 168 |
+
emo_results = emotion_pipeline(sentence[:512])[0]
|
| 169 |
+
filtered = filter_neutral(emo_results)
|
| 170 |
+
length = len(sentence.split())
|
| 171 |
+
total_length += length
|
| 172 |
+
for emo, score in filtered.items():
|
| 173 |
+
weighted_scores[emo] = weighted_scores.get(emo, 0) + score * length
|
| 174 |
+
sentiment_results = sentiment_pipeline(sentence[:512])[0]
|
| 175 |
+
all_sentiments.append(max(sentiment_results, key=lambda x: x["score"]))
|
| 176 |
+
|
| 177 |
+
if total_length > 0:
|
| 178 |
+
weighted_scores = {emo: round(val / total_length, 3) for emo, val in weighted_scores.items()}
|
| 179 |
+
|
| 180 |
+
overall_sentiment = max(all_sentiments, key=lambda x: x["score"]) if all_sentiments else {}
|
| 181 |
+
|
| 182 |
+
st.subheader("π OVERALL (Weighted)")
|
| 183 |
+
st.write("Emotions β", weighted_scores)
|
| 184 |
+
st.write("Sentiment β", overall_sentiment)
|
| 185 |
+
|
| 186 |
+
export_rows.append({
|
| 187 |
+
"Type": "Overall",
|
| 188 |
+
"Text": "Weighted across article",
|
| 189 |
+
"Emotions": weighted_scores,
|
| 190 |
+
"Sentiment": overall_sentiment
|
| 191 |
+
})
|
| 192 |
+
|
| 193 |
+
# Paragraph-level
|
| 194 |
+
for p_idx, para in enumerate(paragraphs, start=1):
|
| 195 |
+
para_counter = Counter()
|
| 196 |
+
sentences = split_sentences(para, lang[:2])
|
| 197 |
+
for sentence in sentences:
|
| 198 |
+
results = emotion_pipeline(sentence[:512])[0]
|
| 199 |
+
filtered = filter_neutral(results, neutral_threshold=0.75)
|
| 200 |
+
for emo, score in filtered.items():
|
| 201 |
+
para_counter[emo] += score
|
| 202 |
+
if emo not in emotion_to_sentences:
|
| 203 |
+
emotion_to_sentences[emo] = []
|
| 204 |
+
if emo in sorted(filtered, key=filtered.get, reverse=True)[:5]:
|
| 205 |
+
emotion_to_sentences[emo].append(f"(Para {p_idx}) {sentence}")
|
| 206 |
+
|
| 207 |
+
para_counters.append((para, dict(sorted(para_counter.items(), key=lambda x:x[1], reverse=True))))
|
| 208 |
+
st.write(f"\nπ Paragraph {p_idx}: {para}")
|
| 209 |
+
st.write("Emotions β", para_counters[-1][1])
|
| 210 |
+
|
| 211 |
+
export_rows.append({
|
| 212 |
+
"Type": "Paragraph",
|
| 213 |
+
"Text": para,
|
| 214 |
+
"Emotions": para_counters[-1][1],
|
| 215 |
+
"Sentiment": ""
|
| 216 |
+
})
|
| 217 |
+
|
| 218 |
+
# Sentence-level
|
| 219 |
+
st.subheader("π SENTENCES")
|
| 220 |
+
for para in paragraphs:
|
| 221 |
+
sentences = split_sentences(para, lang[:2])
|
| 222 |
+
for sentence in sentences:
|
| 223 |
+
pos_tags = get_pos_tags(sentence, lang[:2])
|
| 224 |
+
results = emotion_pipeline(sentence[:512])[0]
|
| 225 |
+
filtered = filter_neutral(results, neutral_threshold=0.75)
|
| 226 |
+
sentiment_results = sentiment_pipeline(sentence[:512])[0]
|
| 227 |
+
best_sentiment = max(sentiment_results, key=lambda x: x["score"])
|
| 228 |
+
results_summary.append({
|
| 229 |
+
"sentence": sentence,
|
| 230 |
+
"pos_tags": pos_tags,
|
| 231 |
+
"emotions": filtered,
|
| 232 |
+
"sentiment": best_sentiment
|
| 233 |
+
})
|
| 234 |
+
st.write(f"Sentence: {sentence}")
|
| 235 |
+
st.write(f"POS Tags β {pos_tags}")
|
| 236 |
+
st.write(f"Emotions β {filtered}")
|
| 237 |
+
st.write(f"Sentiment β {best_sentiment['label']} ({round(best_sentiment['score'],4)})\n")
|
| 238 |
+
|
| 239 |
+
for emo in sorted(filtered, key=filtered.get, reverse=True)[:5]:
|
| 240 |
+
if emo not in emotion_to_sentences:
|
| 241 |
+
emotion_to_sentences[emo] = []
|
| 242 |
+
emotion_to_sentences[emo].append(f"(Sentence) {sentence}")
|
| 243 |
+
|
| 244 |
+
export_rows.append({
|
| 245 |
+
"Type": "Sentence",
|
| 246 |
+
"Text": sentence,
|
| 247 |
+
"Emotions": filtered,
|
| 248 |
+
"Sentiment": best_sentiment
|
| 249 |
+
})
|
| 250 |
+
|
| 251 |
+
return results_summary, export_rows, emotion_to_sentences
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
# ===============================
|
| 255 |
+
# Streamlit App
|
| 256 |
+
# ===============================
|
| 257 |
+
st.title("π Multilingual Text Emotion + Sentiment Analyzer")
|
| 258 |
+
|
| 259 |
+
uploaded_file = st.file_uploader("Upload a DOCX file", type=["docx"])
|
| 260 |
+
url_input = st.text_input("Or enter an Article URL")
|
| 261 |
+
text_input = st.text_area("Or paste text here")
|
| 262 |
+
|
| 263 |
+
if st.button("π Analyze"):
|
| 264 |
+
with st.spinner("Running analysis... β³"):
|
| 265 |
+
if uploaded_file:
|
| 266 |
+
articles = read_and_split_articles(uploaded_file)
|
| 267 |
+
text_to_analyze = "\n\n".join(articles)
|
| 268 |
+
elif url_input.strip():
|
| 269 |
+
text_to_analyze = read_article_from_url(url_input)
|
| 270 |
+
elif text_input.strip():
|
| 271 |
+
text_to_analyze = text_input
|
| 272 |
+
else:
|
| 273 |
+
st.warning("Please upload a DOCX, enter a URL, or paste text to analyze.")
|
| 274 |
+
st.stop()
|
| 275 |
+
|
| 276 |
+
detected_lang = detect(text_to_analyze[:200]) if text_to_analyze else "en"
|
| 277 |
+
emotion_pipeline, sentiment_pipeline = load_pipelines(detected_lang)
|
| 278 |
+
results, export_rows, emotion_to_sentences = analyze_article(
|
| 279 |
+
text_to_analyze, detected_lang, emotion_pipeline, sentiment_pipeline
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
# β
Download buttons FIRST
|
| 283 |
+
df_export = pd.DataFrame(export_rows)
|
| 284 |
+
csv = df_export.to_csv(index=False).encode("utf-8")
|
| 285 |
+
|
| 286 |
+
st.download_button(
|
| 287 |
+
label="β¬οΈ Download CSV",
|
| 288 |
+
data=csv,
|
| 289 |
+
file_name="analysis_results.csv",
|
| 290 |
+
mime="text/csv",
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
excel_buffer = io.BytesIO()
|
| 294 |
+
df_export.to_excel(excel_buffer, index=False, engine="xlsxwriter")
|
| 295 |
+
st.download_button(
|
| 296 |
+
label="β¬οΈ Download Excel",
|
| 297 |
+
data=excel_buffer,
|
| 298 |
+
file_name="analysis_results.xlsx",
|
| 299 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# β
Emotion filter tabs at the end
|
| 303 |
+
if emotion_to_sentences and len(emotion_to_sentences) > 0:
|
| 304 |
+
st.subheader("π Explore by Emotion (Top 5 only)")
|
| 305 |
+
emotion_list = list(emotion_to_sentences.keys())
|
| 306 |
+
tabs = st.tabs(emotion_list)
|
| 307 |
+
for idx, emo in enumerate(emotion_list):
|
| 308 |
+
with tabs[idx]:
|
| 309 |
+
st.write(f"### πΉ {emo.upper()}")
|
| 310 |
+
for text in emotion_to_sentences[emo]:
|
| 311 |
+
st.write(f"- {text}")
|
| 312 |
+
else:
|
| 313 |
+
st.info("No emotions strong enough to show in Top 5 filters.")
|
SAURL.py
ADDED
|
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import spacy
|
| 3 |
+
import stanza
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import re
|
| 6 |
+
import docx
|
| 7 |
+
from collections import Counter
|
| 8 |
+
import stanza
|
| 9 |
+
from transformers import pipeline
|
| 10 |
+
import torch
|
| 11 |
+
from langdetect import detect
|
| 12 |
+
import streamlit as st
|
| 13 |
+
import io
|
| 14 |
+
from newspaper import Article # β
for URL input
|
| 15 |
+
|
| 16 |
+
# ===============================
|
| 17 |
+
# π§ Safe SpaCy + Stanza Downloads
|
| 18 |
+
# ===============================
|
| 19 |
+
def safe_load_spacy():
|
| 20 |
+
try:
|
| 21 |
+
return spacy.load("en_core_web_trf")
|
| 22 |
+
except OSError:
|
| 23 |
+
try:
|
| 24 |
+
return spacy.load("en_core_web_sm")
|
| 25 |
+
except OSError:
|
| 26 |
+
os.system("python -m spacy download en_core_web_sm")
|
| 27 |
+
return spacy.load("en_core_web_sm")
|
| 28 |
+
|
| 29 |
+
nlp_en = safe_load_spacy()
|
| 30 |
+
|
| 31 |
+
stanza_dir = os.path.expanduser("~/.stanza_resources")
|
| 32 |
+
if not os.path.exists(stanza_dir):
|
| 33 |
+
stanza.download('hi')
|
| 34 |
+
stanza.download('ta')
|
| 35 |
+
|
| 36 |
+
stanza.download('hi')
|
| 37 |
+
stanza.download('ta')
|
| 38 |
+
|
| 39 |
+
nlp_hi = stanza.Pipeline('hi', processors='tokenize,pos', use_gpu=torch.cuda.is_available())
|
| 40 |
+
nlp_ta = stanza.Pipeline('ta', processors='tokenize,pos', use_gpu=torch.cuda.is_available())
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# ===============================
|
| 44 |
+
# Language-Aware Pipeline Loader
|
| 45 |
+
# ===============================
|
| 46 |
+
def load_pipelines(language_code):
|
| 47 |
+
lang = language_code.upper()
|
| 48 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 49 |
+
st.write(f"π Language detected: {lang}")
|
| 50 |
+
st.write(f"Device set to use {'cuda:0' if device == 0 else 'cpu'}")
|
| 51 |
+
|
| 52 |
+
if lang == "EN":
|
| 53 |
+
emo_model = "SamLowe/roberta-base-go_emotions"
|
| 54 |
+
elif lang in ["HI", "TA"]:
|
| 55 |
+
emo_model = "bhadresh-savani/bert-base-go-emotion"
|
| 56 |
+
else:
|
| 57 |
+
emo_model = "SamLowe/roberta-base-go_emotions"
|
| 58 |
+
|
| 59 |
+
emotion_pipeline = pipeline(
|
| 60 |
+
"text-classification",
|
| 61 |
+
model=emo_model,
|
| 62 |
+
tokenizer=emo_model,
|
| 63 |
+
return_all_scores=True,
|
| 64 |
+
device=device
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
if lang == "EN":
|
| 68 |
+
sent_model = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 69 |
+
else:
|
| 70 |
+
sent_model = "cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual"
|
| 71 |
+
|
| 72 |
+
sentiment_pipeline = pipeline(
|
| 73 |
+
"text-classification",
|
| 74 |
+
model=sent_model,
|
| 75 |
+
tokenizer=sent_model,
|
| 76 |
+
return_all_scores=True,
|
| 77 |
+
device=device
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
return emotion_pipeline, sentiment_pipeline
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# ===============================
|
| 84 |
+
# DOCX Reader β keep paras separate
|
| 85 |
+
# ===============================
|
| 86 |
+
def read_and_split_articles(file_path):
|
| 87 |
+
doc = docx.Document(file_path)
|
| 88 |
+
paragraphs = [para.text.strip() for para in doc.paragraphs if para.text.strip()]
|
| 89 |
+
return paragraphs
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# ===============================
|
| 93 |
+
# URL Reader β title + main body
|
| 94 |
+
# ===============================
|
| 95 |
+
def read_article_from_url(url):
|
| 96 |
+
article = Article(url)
|
| 97 |
+
article.download()
|
| 98 |
+
article.parse()
|
| 99 |
+
title = article.title.strip()
|
| 100 |
+
body = article.text.strip()
|
| 101 |
+
full_text = f"{title}\n\n{body}"
|
| 102 |
+
return full_text
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# ===============================
|
| 106 |
+
# Filter Neutral
|
| 107 |
+
# ===============================
|
| 108 |
+
def filter_neutral(emotion_results, neutral_threshold=0.75):
|
| 109 |
+
scores = {r["label"]: round(r["score"], 3)
|
| 110 |
+
for r in sorted(emotion_results, key=lambda x: x["score"], reverse=True)}
|
| 111 |
+
if "neutral" in scores and scores["neutral"] > neutral_threshold:
|
| 112 |
+
scores.pop("neutral")
|
| 113 |
+
return scores
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# ===============================
|
| 117 |
+
# Sentence Splitter
|
| 118 |
+
# ===============================
|
| 119 |
+
def split_sentences(text, lang):
|
| 120 |
+
if lang == "hi":
|
| 121 |
+
sentences = re.split(r'ΰ₯€', text)
|
| 122 |
+
elif lang == "ta":
|
| 123 |
+
sentences = re.split(r'\.', text)
|
| 124 |
+
else:
|
| 125 |
+
doc = nlp_en(text)
|
| 126 |
+
sentences = [sent.text.strip() for sent in doc.sents]
|
| 127 |
+
return [s.strip() for s in sentences if s.strip()]
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# ===============================
|
| 131 |
+
# POS Tagger
|
| 132 |
+
# ===============================
|
| 133 |
+
def get_pos_tags(sentence, lang):
|
| 134 |
+
if lang == "en":
|
| 135 |
+
doc = nlp_en(sentence)
|
| 136 |
+
return [(token.text, token.pos_) for token in doc]
|
| 137 |
+
elif lang == "hi":
|
| 138 |
+
doc = nlp_hi(sentence)
|
| 139 |
+
return [(word.text, word.upos) for sent in doc.sentences for word in sent.words]
|
| 140 |
+
elif lang == "ta":
|
| 141 |
+
doc = nlp_ta(sentence)
|
| 142 |
+
return [(word.text, word.upos) for sent in doc.sentences for word in sent.words]
|
| 143 |
+
else:
|
| 144 |
+
return []
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
# ===============================
|
| 148 |
+
# Analysis Function
|
| 149 |
+
# ===============================
|
| 150 |
+
def analyze_article(article_text, lang, emotion_pipeline, sentiment_pipeline):
|
| 151 |
+
results_summary = []
|
| 152 |
+
export_rows = []
|
| 153 |
+
para_counters = []
|
| 154 |
+
emotion_to_sentences = {}
|
| 155 |
+
|
| 156 |
+
paragraphs = [p.strip() for p in article_text.split("\n\n") if p.strip()]
|
| 157 |
+
if len(paragraphs) <= 1:
|
| 158 |
+
paragraphs = [p.strip() for p in article_text.split("\n") if p.strip()]
|
| 159 |
+
|
| 160 |
+
# Weighted overall results
|
| 161 |
+
weighted_scores = {}
|
| 162 |
+
total_length = 0
|
| 163 |
+
all_sentiments = []
|
| 164 |
+
|
| 165 |
+
for para in paragraphs:
|
| 166 |
+
sentences = split_sentences(para, lang[:2])
|
| 167 |
+
for sentence in sentences:
|
| 168 |
+
emo_results = emotion_pipeline(sentence[:512])[0]
|
| 169 |
+
filtered = filter_neutral(emo_results)
|
| 170 |
+
length = len(sentence.split())
|
| 171 |
+
total_length += length
|
| 172 |
+
for emo, score in filtered.items():
|
| 173 |
+
weighted_scores[emo] = weighted_scores.get(emo, 0) + score * length
|
| 174 |
+
sentiment_results = sentiment_pipeline(sentence[:512])[0]
|
| 175 |
+
all_sentiments.append(max(sentiment_results, key=lambda x: x["score"]))
|
| 176 |
+
|
| 177 |
+
if total_length > 0:
|
| 178 |
+
weighted_scores = {emo: round(val / total_length, 3) for emo, val in weighted_scores.items()}
|
| 179 |
+
|
| 180 |
+
overall_sentiment = max(all_sentiments, key=lambda x: x["score"]) if all_sentiments else {}
|
| 181 |
+
|
| 182 |
+
st.subheader("π OVERALL (Weighted)")
|
| 183 |
+
st.write("Emotions β", weighted_scores)
|
| 184 |
+
st.write("Sentiment β", overall_sentiment)
|
| 185 |
+
|
| 186 |
+
export_rows.append({
|
| 187 |
+
"Type": "Overall",
|
| 188 |
+
"Text": "Weighted across article",
|
| 189 |
+
"Emotions": weighted_scores,
|
| 190 |
+
"Sentiment": overall_sentiment
|
| 191 |
+
})
|
| 192 |
+
|
| 193 |
+
# Paragraph-level
|
| 194 |
+
for p_idx, para in enumerate(paragraphs, start=1):
|
| 195 |
+
para_counter = Counter()
|
| 196 |
+
sentences = split_sentences(para, lang[:2])
|
| 197 |
+
for sentence in sentences:
|
| 198 |
+
results = emotion_pipeline(sentence[:512])[0]
|
| 199 |
+
filtered = filter_neutral(results, neutral_threshold=0.75)
|
| 200 |
+
for emo, score in filtered.items():
|
| 201 |
+
para_counter[emo] += score
|
| 202 |
+
if emo not in emotion_to_sentences:
|
| 203 |
+
emotion_to_sentences[emo] = []
|
| 204 |
+
if emo in sorted(filtered, key=filtered.get, reverse=True)[:5]:
|
| 205 |
+
emotion_to_sentences[emo].append(f"(Para {p_idx}) {sentence}")
|
| 206 |
+
|
| 207 |
+
para_counters.append((para, dict(sorted(para_counter.items(), key=lambda x:x[1], reverse=True))))
|
| 208 |
+
st.write(f"\nπ Paragraph {p_idx}: {para}")
|
| 209 |
+
st.write("Emotions β", para_counters[-1][1])
|
| 210 |
+
|
| 211 |
+
export_rows.append({
|
| 212 |
+
"Type": "Paragraph",
|
| 213 |
+
"Text": para,
|
| 214 |
+
"Emotions": para_counters[-1][1],
|
| 215 |
+
"Sentiment": ""
|
| 216 |
+
})
|
| 217 |
+
|
| 218 |
+
# Sentence-level
|
| 219 |
+
st.subheader("π SENTENCES")
|
| 220 |
+
for para in paragraphs:
|
| 221 |
+
sentences = split_sentences(para, lang[:2])
|
| 222 |
+
for sentence in sentences:
|
| 223 |
+
pos_tags = get_pos_tags(sentence, lang[:2])
|
| 224 |
+
results = emotion_pipeline(sentence[:512])[0]
|
| 225 |
+
filtered = filter_neutral(results, neutral_threshold=0.75)
|
| 226 |
+
sentiment_results = sentiment_pipeline(sentence[:512])[0]
|
| 227 |
+
best_sentiment = max(sentiment_results, key=lambda x: x["score"])
|
| 228 |
+
results_summary.append({
|
| 229 |
+
"sentence": sentence,
|
| 230 |
+
"pos_tags": pos_tags,
|
| 231 |
+
"emotions": filtered,
|
| 232 |
+
"sentiment": best_sentiment
|
| 233 |
+
})
|
| 234 |
+
st.write(f"Sentence: {sentence}")
|
| 235 |
+
st.write(f"POS Tags β {pos_tags}")
|
| 236 |
+
st.write(f"Emotions β {filtered}")
|
| 237 |
+
st.write(f"Sentiment β {best_sentiment['label']} ({round(best_sentiment['score'],4)})\n")
|
| 238 |
+
|
| 239 |
+
for emo in sorted(filtered, key=filtered.get, reverse=True)[:5]:
|
| 240 |
+
if emo not in emotion_to_sentences:
|
| 241 |
+
emotion_to_sentences[emo] = []
|
| 242 |
+
emotion_to_sentences[emo].append(f"(Sentence) {sentence}")
|
| 243 |
+
|
| 244 |
+
export_rows.append({
|
| 245 |
+
"Type": "Sentence",
|
| 246 |
+
"Text": sentence,
|
| 247 |
+
"Emotions": filtered,
|
| 248 |
+
"Sentiment": best_sentiment
|
| 249 |
+
})
|
| 250 |
+
|
| 251 |
+
return results_summary, export_rows, emotion_to_sentences
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
# ===============================
|
| 255 |
+
# Streamlit App
|
| 256 |
+
# ===============================
|
| 257 |
+
st.title("π Multilingual Text Emotion + Sentiment Analyzer")
|
| 258 |
+
|
| 259 |
+
uploaded_file = st.file_uploader("Upload a DOCX file", type=["docx"])
|
| 260 |
+
url_input = st.text_input("Or enter an Article URL")
|
| 261 |
+
text_input = st.text_area("Or paste text here")
|
| 262 |
+
|
| 263 |
+
if st.button("π Analyze"):
|
| 264 |
+
with st.spinner("Running analysis... β³"):
|
| 265 |
+
if uploaded_file:
|
| 266 |
+
articles = read_and_split_articles(uploaded_file)
|
| 267 |
+
text_to_analyze = "\n\n".join(articles)
|
| 268 |
+
elif url_input.strip():
|
| 269 |
+
text_to_analyze = read_article_from_url(url_input)
|
| 270 |
+
elif text_input.strip():
|
| 271 |
+
text_to_analyze = text_input
|
| 272 |
+
else:
|
| 273 |
+
st.warning("Please upload a DOCX, enter a URL, or paste text to analyze.")
|
| 274 |
+
st.stop()
|
| 275 |
+
|
| 276 |
+
detected_lang = detect(text_to_analyze[:200]) if text_to_analyze else "en"
|
| 277 |
+
emotion_pipeline, sentiment_pipeline = load_pipelines(detected_lang)
|
| 278 |
+
results, export_rows, emotion_to_sentences = analyze_article(
|
| 279 |
+
text_to_analyze, detected_lang, emotion_pipeline, sentiment_pipeline
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
# β
Download buttons FIRST
|
| 283 |
+
df_export = pd.DataFrame(export_rows)
|
| 284 |
+
csv = df_export.to_csv(index=False).encode("utf-8")
|
| 285 |
+
|
| 286 |
+
st.download_button(
|
| 287 |
+
label="β¬οΈ Download CSV",
|
| 288 |
+
data=csv,
|
| 289 |
+
file_name="analysis_results.csv",
|
| 290 |
+
mime="text/csv",
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
excel_buffer = io.BytesIO()
|
| 294 |
+
df_export.to_excel(excel_buffer, index=False, engine="xlsxwriter")
|
| 295 |
+
st.download_button(
|
| 296 |
+
label="β¬οΈ Download Excel",
|
| 297 |
+
data=excel_buffer,
|
| 298 |
+
file_name="analysis_results.xlsx",
|
| 299 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# β
Emotion filter tabs at the end
|
| 303 |
+
if emotion_to_sentences and len(emotion_to_sentences) > 0:
|
| 304 |
+
st.subheader("π Explore by Emotion (Top 5 only)")
|
| 305 |
+
emotion_list = list(emotion_to_sentences.keys())
|
| 306 |
+
tabs = st.tabs(emotion_list)
|
| 307 |
+
for idx, emo in enumerate(emotion_list):
|
| 308 |
+
with tabs[idx]:
|
| 309 |
+
st.write(f"### πΉ {emo.upper()}")
|
| 310 |
+
for text in emotion_to_sentences[emo]:
|
| 311 |
+
st.write(f"- {text}")
|
| 312 |
+
else:
|
| 313 |
+
st.info("No emotions strong enough to show in Top 5 filters.")
|
app copy.py
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import spacy
|
| 3 |
+
import stanza
|
| 4 |
+
|
| 5 |
+
# ===============================
|
| 6 |
+
# π§ Safe SpaCy + Stanza Downloads
|
| 7 |
+
# ===============================
|
| 8 |
+
def safe_load_spacy():
|
| 9 |
+
try:
|
| 10 |
+
return spacy.load("en_core_web_trf")
|
| 11 |
+
except OSError:
|
| 12 |
+
try:
|
| 13 |
+
return spacy.load("en_core_web_sm")
|
| 14 |
+
except OSError:
|
| 15 |
+
os.system("python -m spacy download en_core_web_sm")
|
| 16 |
+
return spacy.load("en_core_web_sm")
|
| 17 |
+
|
| 18 |
+
# β
Initialize English SpaCy safely
|
| 19 |
+
nlp_en = safe_load_spacy()
|
| 20 |
+
|
| 21 |
+
# Ensure Stanza models exist
|
| 22 |
+
stanza_dir = os.path.expanduser("~/.stanza_resources")
|
| 23 |
+
if not os.path.exists(stanza_dir):
|
| 24 |
+
stanza.download('hi')
|
| 25 |
+
stanza.download('ta')
|
| 26 |
+
|
| 27 |
+
# ===============================
|
| 28 |
+
# 1οΈβ£ Imports
|
| 29 |
+
# ===============================
|
| 30 |
+
import pandas as pd
|
| 31 |
+
import re
|
| 32 |
+
import docx
|
| 33 |
+
from collections import Counter
|
| 34 |
+
import stanza
|
| 35 |
+
from transformers import pipeline
|
| 36 |
+
import torch
|
| 37 |
+
from langdetect import detect
|
| 38 |
+
import streamlit as st
|
| 39 |
+
import io
|
| 40 |
+
|
| 41 |
+
# ===============================
|
| 42 |
+
# 2οΈβ£ Pre-download Stanza models
|
| 43 |
+
# ===============================
|
| 44 |
+
stanza.download('hi')
|
| 45 |
+
stanza.download('ta')
|
| 46 |
+
|
| 47 |
+
# ===============================
|
| 48 |
+
# 3οΈβ£ Initialize Stanza for Hindi/Tamil
|
| 49 |
+
# ===============================
|
| 50 |
+
nlp_hi = stanza.Pipeline('hi', processors='tokenize,pos', use_gpu=torch.cuda.is_available())
|
| 51 |
+
nlp_ta = stanza.Pipeline('ta', processors='tokenize,pos', use_gpu=torch.cuda.is_available())
|
| 52 |
+
|
| 53 |
+
# ===============================
|
| 54 |
+
# 4οΈβ£ Language-Aware Pipeline Loader
|
| 55 |
+
# ===============================
|
| 56 |
+
def load_pipelines(language_code):
|
| 57 |
+
lang = language_code.upper()
|
| 58 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 59 |
+
st.write(f"π Language detected: {lang}")
|
| 60 |
+
st.write(f"Device set to use {'cuda:0' if device == 0 else 'cpu'}")
|
| 61 |
+
|
| 62 |
+
# Emotion model
|
| 63 |
+
if lang == "EN":
|
| 64 |
+
emo_model = "SamLowe/roberta-base-go_emotions"
|
| 65 |
+
elif lang in ["HI", "TA"]:
|
| 66 |
+
emo_model = "bhadresh-savani/bert-base-go-emotion"
|
| 67 |
+
else:
|
| 68 |
+
emo_model = "SamLowe/roberta-base-go_emotions"
|
| 69 |
+
|
| 70 |
+
emotion_pipeline = pipeline(
|
| 71 |
+
"text-classification",
|
| 72 |
+
model=emo_model,
|
| 73 |
+
tokenizer=emo_model,
|
| 74 |
+
return_all_scores=True,
|
| 75 |
+
device=device
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Sentiment model
|
| 79 |
+
if lang == "EN":
|
| 80 |
+
sent_model = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 81 |
+
else:
|
| 82 |
+
sent_model = "cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual"
|
| 83 |
+
|
| 84 |
+
sentiment_pipeline = pipeline(
|
| 85 |
+
"text-classification",
|
| 86 |
+
model=sent_model,
|
| 87 |
+
tokenizer=sent_model,
|
| 88 |
+
return_all_scores=True,
|
| 89 |
+
device=device
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
return emotion_pipeline, sentiment_pipeline
|
| 93 |
+
|
| 94 |
+
# ===============================
|
| 95 |
+
# 5οΈβ£ Read DOCX and split articles
|
| 96 |
+
# ===============================
|
| 97 |
+
def read_and_split_articles(file_path):
|
| 98 |
+
doc = docx.Document(file_path)
|
| 99 |
+
paragraphs = [para.text.strip() for para in doc.paragraphs if para.text.strip()]
|
| 100 |
+
return paragraphs # β
Each docx paragraph separately
|
| 101 |
+
|
| 102 |
+
# ===============================
|
| 103 |
+
# 6οΈβ£ Utility β Filter Neutral
|
| 104 |
+
# ===============================
|
| 105 |
+
def filter_neutral(emotion_results, neutral_threshold=0.75):
|
| 106 |
+
scores = {r["label"]: round(r["score"], 3)
|
| 107 |
+
for r in sorted(emotion_results, key=lambda x: x["score"], reverse=True)}
|
| 108 |
+
if "neutral" in scores and scores["neutral"] > neutral_threshold:
|
| 109 |
+
scores.pop("neutral")
|
| 110 |
+
return scores
|
| 111 |
+
|
| 112 |
+
# ===============================
|
| 113 |
+
# 7οΈβ£ Sentence Splitter
|
| 114 |
+
# ===============================
|
| 115 |
+
def split_sentences(text, lang):
|
| 116 |
+
if lang == "hi":
|
| 117 |
+
sentences = re.split(r'ΰ₯€', text)
|
| 118 |
+
elif lang == "ta":
|
| 119 |
+
sentences = re.split(r'\.', text)
|
| 120 |
+
else:
|
| 121 |
+
doc = nlp_en(text)
|
| 122 |
+
sentences = [sent.text.strip() for sent in doc.sents]
|
| 123 |
+
return [s.strip() for s in sentences if s.strip()]
|
| 124 |
+
|
| 125 |
+
# ===============================
|
| 126 |
+
# 8οΈβ£ PoS Tagger
|
| 127 |
+
# ===============================
|
| 128 |
+
def get_pos_tags(sentence, lang):
|
| 129 |
+
if lang == "en":
|
| 130 |
+
doc = nlp_en(sentence)
|
| 131 |
+
return [(token.text, token.pos_) for token in doc]
|
| 132 |
+
elif lang == "hi":
|
| 133 |
+
doc = nlp_hi(sentence)
|
| 134 |
+
return [(word.text, word.upos) for sent in doc.sentences for word in sent.words]
|
| 135 |
+
elif lang == "ta":
|
| 136 |
+
doc = nlp_ta(sentence)
|
| 137 |
+
return [(word.text, word.upos) for sent in doc.sentences for word in sent.words]
|
| 138 |
+
else:
|
| 139 |
+
return []
|
| 140 |
+
|
| 141 |
+
# ===============================
|
| 142 |
+
# 9οΈβ£ Analysis Function
|
| 143 |
+
# ===============================
|
| 144 |
+
def analyze_article(article_text, lang, emotion_pipeline, sentiment_pipeline, normalize_paragraphs):
|
| 145 |
+
results_summary = []
|
| 146 |
+
export_rows = []
|
| 147 |
+
para_counters = []
|
| 148 |
+
article_counter = Counter()
|
| 149 |
+
|
| 150 |
+
paragraphs = [p.strip() for p in article_text.split("\n\n") if p.strip()]
|
| 151 |
+
|
| 152 |
+
# -------------------------------
|
| 153 |
+
# β
Weighted Overall results
|
| 154 |
+
weighted_scores = {}
|
| 155 |
+
total_length = 0
|
| 156 |
+
all_sentiments = []
|
| 157 |
+
|
| 158 |
+
for para in paragraphs:
|
| 159 |
+
sentences = split_sentences(para, lang[:2])
|
| 160 |
+
for sentence in sentences:
|
| 161 |
+
emo_results = emotion_pipeline(sentence[:512])[0]
|
| 162 |
+
filtered = filter_neutral(emo_results)
|
| 163 |
+
length = len(sentence.split())
|
| 164 |
+
total_length += length
|
| 165 |
+
for emo, score in filtered.items():
|
| 166 |
+
weighted_scores[emo] = weighted_scores.get(emo, 0) + score * length
|
| 167 |
+
sentiment_results = sentiment_pipeline(sentence[:512])[0]
|
| 168 |
+
all_sentiments.append(max(sentiment_results, key=lambda x: x["score"]))
|
| 169 |
+
|
| 170 |
+
if total_length > 0:
|
| 171 |
+
weighted_scores = {emo: round(val / total_length, 3) for emo, val in weighted_scores.items()}
|
| 172 |
+
|
| 173 |
+
overall_sentiment = max(all_sentiments, key=lambda x: x["score"]) if all_sentiments else {}
|
| 174 |
+
|
| 175 |
+
st.subheader("π OVERALL (Weighted)")
|
| 176 |
+
st.write("Emotions β", weighted_scores)
|
| 177 |
+
st.write("Sentiment β", overall_sentiment)
|
| 178 |
+
|
| 179 |
+
export_rows.append({
|
| 180 |
+
"Type": "Overall",
|
| 181 |
+
"Text": "Weighted across article",
|
| 182 |
+
"Emotions": weighted_scores,
|
| 183 |
+
"Sentiment": overall_sentiment
|
| 184 |
+
})
|
| 185 |
+
|
| 186 |
+
# -------------------------------
|
| 187 |
+
# Paragraph-level
|
| 188 |
+
for p_idx, para in enumerate(paragraphs, start=1):
|
| 189 |
+
para_counter = Counter()
|
| 190 |
+
sentences = split_sentences(para, lang[:2])
|
| 191 |
+
for sentence in sentences:
|
| 192 |
+
results = emotion_pipeline(sentence[:512])[0]
|
| 193 |
+
filtered = filter_neutral(results, neutral_threshold=0.75)
|
| 194 |
+
for emo, score in filtered.items():
|
| 195 |
+
para_counter[emo] += score
|
| 196 |
+
|
| 197 |
+
if normalize_paragraphs:
|
| 198 |
+
# β
Normalize scores so they sum β€ 1
|
| 199 |
+
total = sum(para_counter.values())
|
| 200 |
+
if total > 0:
|
| 201 |
+
para_counter = {emo: round(val / total, 3) for emo, val in para_counter.items()}
|
| 202 |
+
|
| 203 |
+
para_counters.append((para, dict(sorted(para_counter.items(), key=lambda x:x[1], reverse=True))))
|
| 204 |
+
st.write(f"\nπ Paragraph {p_idx}: {para}")
|
| 205 |
+
st.write("Emotions β", para_counters[-1][1])
|
| 206 |
+
|
| 207 |
+
export_rows.append({
|
| 208 |
+
"Type": "Paragraph",
|
| 209 |
+
"Text": para,
|
| 210 |
+
"Emotions": para_counters[-1][1],
|
| 211 |
+
"Sentiment": ""
|
| 212 |
+
})
|
| 213 |
+
|
| 214 |
+
# -------------------------------
|
| 215 |
+
# Sentence-level
|
| 216 |
+
st.subheader("π SENTENCES")
|
| 217 |
+
for para in paragraphs:
|
| 218 |
+
sentences = split_sentences(para, lang[:2])
|
| 219 |
+
for sentence in sentences:
|
| 220 |
+
pos_tags = get_pos_tags(sentence, lang[:2])
|
| 221 |
+
results = emotion_pipeline(sentence[:512])[0]
|
| 222 |
+
filtered = filter_neutral(results, neutral_threshold=0.75)
|
| 223 |
+
sentiment_results = sentiment_pipeline(sentence[:512])[0]
|
| 224 |
+
best_sentiment = max(sentiment_results, key=lambda x: x["score"])
|
| 225 |
+
results_summary.append({
|
| 226 |
+
"sentence": sentence,
|
| 227 |
+
"pos_tags": pos_tags,
|
| 228 |
+
"emotions": filtered,
|
| 229 |
+
"sentiment": best_sentiment
|
| 230 |
+
})
|
| 231 |
+
st.write(f"Sentence: {sentence}")
|
| 232 |
+
st.write(f"POS Tags β {pos_tags}")
|
| 233 |
+
st.write(f"Emotions β {filtered}")
|
| 234 |
+
st.write(f"Sentiment β {best_sentiment['label']} ({round(best_sentiment['score'],4)})\n")
|
| 235 |
+
|
| 236 |
+
export_rows.append({
|
| 237 |
+
"Type": "Sentence",
|
| 238 |
+
"Text": sentence,
|
| 239 |
+
"Emotions": filtered,
|
| 240 |
+
"Sentiment": best_sentiment
|
| 241 |
+
})
|
| 242 |
+
|
| 243 |
+
return results_summary, export_rows
|
| 244 |
+
|
| 245 |
+
# ===============================
|
| 246 |
+
# π Streamlit App
|
| 247 |
+
# ===============================
|
| 248 |
+
st.title("π Multilingual Text Emotion + Sentiment Analyzer")
|
| 249 |
+
|
| 250 |
+
uploaded_file = st.file_uploader("Upload a DOCX file", type=["docx"])
|
| 251 |
+
text_input = st.text_area("Or paste text here")
|
| 252 |
+
|
| 253 |
+
# β
Checkbox for paragraph normalization
|
| 254 |
+
normalize_paragraphs = st.checkbox("Normalize paragraph emotion scores", value=True)
|
| 255 |
+
|
| 256 |
+
# β
Placeholder for download buttons at the top
|
| 257 |
+
download_placeholder = st.empty()
|
| 258 |
+
|
| 259 |
+
if st.button("π Analyze"):
|
| 260 |
+
with st.spinner("Running analysis... β³"):
|
| 261 |
+
if uploaded_file:
|
| 262 |
+
articles = read_and_split_articles(uploaded_file)
|
| 263 |
+
text_to_analyze = "\n\n".join(articles) if articles else ""
|
| 264 |
+
elif text_input.strip():
|
| 265 |
+
text_to_analyze = text_input
|
| 266 |
+
else:
|
| 267 |
+
st.warning("Please upload a DOCX file or paste text to analyze.")
|
| 268 |
+
st.stop()
|
| 269 |
+
|
| 270 |
+
detected_lang = detect(text_to_analyze[:200]) if text_to_analyze else "en"
|
| 271 |
+
emotion_pipeline, sentiment_pipeline = load_pipelines(detected_lang)
|
| 272 |
+
results, export_rows = analyze_article(
|
| 273 |
+
text_to_analyze, detected_lang, emotion_pipeline, sentiment_pipeline, normalize_paragraphs
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
# β
Show download buttons at the TOP
|
| 277 |
+
df_export = pd.DataFrame(export_rows)
|
| 278 |
+
csv = df_export.to_csv(index=False).encode("utf-8")
|
| 279 |
+
|
| 280 |
+
with download_placeholder.container():
|
| 281 |
+
st.download_button(
|
| 282 |
+
label="β¬οΈ Download CSV",
|
| 283 |
+
data=csv,
|
| 284 |
+
file_name="analysis_results.csv",
|
| 285 |
+
mime="text/csv",
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
excel_buffer = io.BytesIO()
|
| 289 |
+
df_export.to_excel(excel_buffer, index=False, engine="xlsxwriter")
|
| 290 |
+
st.download_button(
|
| 291 |
+
label="β¬οΈ Download Excel",
|
| 292 |
+
data=excel_buffer,
|
| 293 |
+
file_name="analysis_results.xlsx",
|
| 294 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 295 |
+
)
|
requirements.txt
CHANGED
|
@@ -9,7 +9,10 @@ langdetect
|
|
| 9 |
openpyxl
|
| 10 |
xlsxwriter
|
| 11 |
lxml[html_clean]
|
| 12 |
-
newspaper3k
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
# β
SpaCy and models
|
|
|
|
| 9 |
openpyxl
|
| 10 |
xlsxwriter
|
| 11 |
lxml[html_clean]
|
| 12 |
+
newspaper3k==0.2.8
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
|
| 17 |
|
| 18 |
# β
SpaCy and models
|