LPX55's picture
Update app_temp.py
fef96e9 verified
import gradio as gr
import numpy as np
import random
import torch
import spaces
from io import BytesIO
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization_simple import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
from huggingface_hub import InferenceClient
import math
import os
import base64
import json
SYSTEM_PROMPT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
Please strictly follow the rewriting rules below:
## 1. General Principles
- Keep the rewritten prompt **concise and comprehensive**. Avoid overly long sentences and unnecessary descriptive language.
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.
- Keep the main part of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.
- All added objects or modifications must align with the logic and style of the scene in the input images.
- If multiple sub-images are to be generated, describe the content of each sub-image individually.
## 2. Task-Type Handling Rules
### 1. Add, Delete, Replace Tasks
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:
> Original: "Add an animal"
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.
### 2. Text Editing Tasks
- All text content must be enclosed in English double quotes `" "`. Keep the original language of the text, and keep the capitalization.
- Both adding new text and replacing existing text are text replacement tasks, For example:
- Replace "xx" to "yy"
- Replace the mask / bounding box to "yy"
- Replace the visual object to "yy"
- Specify text position, color, and layout only if user has required.
- If font is specified, keep the original language of the font.
### 3. Human Editing Tasks
- Make the smallest changes to the given user's prompt.
- If changes to background, action, expression, camera shot, or ambient lighting are required, please list each modification individually.
- **Edits to makeup or facial features / expression must be subtle, not exaggerated, and must preserve the subject's identity consistency.**
> Original: "Add eyebrows to the face"
> Rewritten: "Slightly thicken the person's eyebrows with little change, look natural."
### 4. Style Conversion or Enhancement Tasks
- If a style is specified, describe it concisely using key visual features. For example:
> Original: "Disco style"
> Rewritten: "1970s disco style: flashing lights, disco ball, mirrored walls, vibrant colors"
- For style reference, analyze the original image and extract key characteristics (color, composition, texture, lighting, artistic style, etc.), integrating them into the instruction.
- **Colorization tasks (including old photo restoration) must use the fixed template:**
"Restore and colorize the old photo."
- Clearly specify the object to be modified. For example:
> Original: Modify the subject in Picture 1 to match the style of Picture 2.
> Rewritten: Change the girl in Picture 1 to the ink-wash style of Picture 2 — rendered in black-and-white watercolor with soft color transitions.
### 5. Material Replacement
- Clearly specify the object and the material. For example: "Change the material of the apple to papercut style."
- For text material replacement, use the fixed template:
"Change the material of text "xxxx" to laser style"
### 6. Logo/Pattern Editing
- Material replacement should preserve the original shape and structure as much as possible. For example:
> Original: "Convert to sapphire material"
> Rewritten: "Convert the main subject in the image to sapphire material, preserving similar shape and structure"
- When migrating logos/patterns to new scenes, ensure shape and structure consistency. For example:
> Original: "Migrate the logo in the image to a new scene"
> Rewritten: "Migrate the logo in the image to a new scene, preserving similar shape and structure"
### 7. Multi-Image Tasks
- Rewritten prompts must clearly point out which image's element is being modified. For example:
> Original: "Replace the subject of picture 1 with the subject of picture 2"
> Rewritten: "Replace the girl of picture 1 with the boy of picture 2, keeping picture 2's background unchanged"
- For stylization tasks, describe the reference image's style in the rewritten prompt, while preserving the visual content of the source image.
## 3. Rationale and Logic Check
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" requires logical correction.
- Supplement missing critical information: e.g., if position is unspecified, choose a reasonable area based on composition (near subject, blank space, center/edge, etc.).
# Output Format Example
```json
{
"Rewritten": "..."
}
'''
def polish_prompt_hf(original_prompt, img_list):
"""
Rewrites the prompt using a Hugging Face InferenceClient.
Supports multiple images via img_list.
"""
# Ensure HF_TOKEN is set
api_key = os.environ.get("HF_TOKEN")
if not api_key:
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
return original_prompt
prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {original_prompt}\n\nRewritten Prompt:"
system_prompt = "you are a helpful assistant, you should provide useful answers to users."
try:
# Initialize the client
client = InferenceClient(
provider="nebius",
api_key=api_key,
)
# Convert list of images to base64 data URLs
image_urls = []
if img_list is not None:
# Ensure img_list is actually a list
if not isinstance(img_list, list):
img_list = [img_list]
for img in img_list:
image_url = None
# If img is a PIL Image
if hasattr(img, 'save'): # Check if it's a PIL Image
buffered = BytesIO()
img.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
image_url = f"data:image/png;base64,{img_base64}"
# If img is already a file path (string)
elif isinstance(img, str):
with open(img, "rb") as image_file:
img_base64 = base64.b64encode(image_file.read()).decode('utf-8')
image_url = f"data:image/png;base64,{img_base64}"
else:
print(f"Warning: Unexpected image type: {type(img)}, skipping...")
continue
if image_url:
image_urls.append(image_url)
# Build the content array with text first, then all images
content = [
{
"type": "text",
"text": prompt
}
]
# Add all images to the content
for image_url in image_urls:
content.append({
"type": "image_url",
"image_url": {
"url": image_url
}
})
# Format the messages for the chat completions API
messages = [
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": content
}
]
# Call the API
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-VL-72B-Instruct",
messages=messages,
)
# Parse the response
result = completion.choices[0].message.content
# Try to extract JSON if present
if '"Rewritten"' in result:
try:
# Clean up the response
result = result.replace('```json', '').replace('```', '')
result_json = json.loads(result)
polished_prompt = result_json.get('Rewritten', result)
except:
polished_prompt = result
else:
polished_prompt = result
polished_prompt = polished_prompt.strip().replace("\n", " ")
return polished_prompt
except Exception as e:
print(f"Error during API call to Hugging Face: {e}")
# Fallback to original prompt if enhancement fails
return original_prompt
def encode_image(pil_image):
import io
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Scheduler configuration for Lightning
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
# Initialize scheduler with Lightning config
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
# Load the model pipeline
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
scheduler=scheduler,
torch_dtype=dtype).to(device)
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning",
weight_name="Qwen-Image-Edit-2509/Qwen-Image-Edit-2509-Lightning-4steps-V1.0-fp32.safetensors"
)
pipe.fuse_lora()
# Apply the same optimizations from the first version
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
# --- Ahead-of-time compilation ---
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max
def use_output_as_input(output_images):
"""Convert output images to input format for the gallery"""
if output_images is None or len(output_images) == 0:
return []
return output_images
# --- Main Inference Function (with hardcoded negative prompt) ---
@spaces.GPU(duration=40)
def infer(
images,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=1.0,
num_inference_steps=4,
height=None,
width=None,
rewrite_prompt=True,
num_images_per_prompt=2,
progress=gr.Progress(track_tqdm=True),
):
"""
Generates an image using the local Qwen-Image diffusers pipeline.
"""
# Hardcode the negative prompt as requested
negative_prompt = " "
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Set up the generator for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
# Load input images into PIL Images
pil_images = []
if images is not None:
for item in images:
try:
if isinstance(item[0], Image.Image):
pil_images.append(item[0].convert("RGB"))
elif isinstance(item[0], str):
pil_images.append(Image.open(item[0]).convert("RGB"))
elif hasattr(item, "name"):
pil_images.append(Image.open(item.name).convert("RGB"))
except Exception:
continue
if height==256 and width==256:
height, width = None, None
print(f"Calling pipeline with prompt: '{prompt}'")
print(f"Negative Prompt: '{negative_prompt}'")
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}, Size: {width}x{height}")
if rewrite_prompt and len(pil_images) > 0:
prompt = polish_prompt_hf(prompt, pil_images)
print(f"Rewritten Prompt: {prompt}")
# Generate the image
image = pipe(
image=pil_images if len(pil_images) > 0 else None,
prompt=prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
).images
return image, seed
# --- Examples and UI Layout ---
examples = []
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
#logo-title {
text-align: center;
}
#logo-title img {
width: 400px;
}
#edit_text{margin-top: -62px !important}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<div id="logo-title">
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;">
<h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 96px">[Plus] Fast, 8-steps with Lightning LoRA</h2>
</div>
""")
gr.Markdown("""
[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series.
This demo uses the new [Qwen-Image-Edit-2509](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) with the [Qwen-Image-Lightning v2](https://huggingface.co/lightx2v/Qwen-Image-Lightning) LoRA + [AoT compilation & FA3](https://huggingface.co/blog/zerogpu-aoti) for accelerated inference.
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) to run locally with ComfyUI or diffusers.
""")
with gr.Row():
with gr.Column():
input_images = gr.Gallery(label="Input Images",
show_label=False,
type="pil",
interactive=True)
# result = gr.Image(label="Result", show_label=False, type="pil")
result = gr.Gallery(label="Result", show_label=False, type="pil")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
placeholder="describe the edit instruction",
container=False,
)
run_button = gr.Button("Edit!", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
# Negative prompt UI element is removed here
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True guidance scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=40,
step=1,
value=4,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=8,
value=None,
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=8,
value=None,
)
num_images = gr.Slider(
label="Num Images per Prompt",
minimum=1,
maximum=4,
step=1,
value=1,
)
rewrite_prompt = gr.Checkbox(label="Rewrite prompt (being fixed)", value=False)
# gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_images,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
rewrite_prompt,
num_images
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()