Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import ssl | |
| ssl._create_default_https_context = ssl._create_unverified_context | |
| import glob | |
| import os | |
| def vid_to_audio(url=None): | |
| # importing packages | |
| from pytube import YouTube | |
| import os | |
| # url input from user | |
| yt = YouTube(url) | |
| # extract only audio | |
| video = yt.streams.filter(only_audio=True).first() | |
| # check for destination to save file | |
| destination = '.' | |
| # download the file | |
| out_file = video.download(output_path=destination) | |
| # save the file | |
| base, ext = os.path.splitext(out_file) | |
| new_file = base + '.mp3' | |
| os.rename(out_file, new_file) | |
| # result of success | |
| print(yt.title + " has been successfully downloaded.") | |
| return "OK" | |
| #vid_to_text(url='https://youtu.be/FE5tva_o7ew?si=ztkKeO7qwcpC36AS') | |
| def audio_to_text(): | |
| import torch | |
| from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
| model_id = "openai/whisper-tiny" | |
| model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
| model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True | |
| ) | |
| model.to(device) | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model=model, | |
| tokenizer=processor.tokenizer, | |
| feature_extractor=processor.feature_extractor, | |
| max_new_tokens=128, | |
| chunk_length_s=30, | |
| batch_size=16, | |
| torch_dtype=torch_dtype, | |
| device=device, | |
| ) | |
| files = glob.glob('*.mp3')[0] | |
| current_path = os.getcwd() | |
| file_path = os.path.join(current_path,files) | |
| result = pipe(file_path) | |
| print(result["text"]) | |
| return result["text"] | |
| audio_to_text() | |
| def summarize(): | |
| transcript = audio_to_text() | |
| from transformers import pipeline | |
| summarizer = pipeline("summarization", model="philschmid/flan-t5-base-samsum") | |
| #print(summarizer(transcript, do_sample=False)) | |
| return summarizer(transcript, do_sample=False) | |
| yt_link = st.text_input("Enter the YouTube URL: ") | |
| with st.button("Start Summarization"): | |
| with st.status("Downloading the video..."): | |
| vid_to_audio() | |
| with st.status("Summarizing..."): | |
| s = summarize() | |
| st.write(s) | |